Rendiconti Lincei

 Matematica E Applicazioni
Menita Carozza, Gioconda Moscariello, Antonia Passarelli di Napoli

Linear elliptic equations with BMO coefficients

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 10 (1999), n.1, p. 17-23.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1999_9_10_1_17_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://ww.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1999.

Analisi matematica. - Linear elliptic equations with BMO coefficients. Nota di Menita Carozza, Gioconda Moscariello e Antonia Passarelli di Napoli, presentata (*) dal Socio E. Magenes.

Abstract. - We prove an existence and uniqueness theorem for the Dirichlet problem for the equation $\operatorname{div}(a(x) \nabla u)=\operatorname{div} f$ in an open cube $\Omega \subset \mathbb{R}^{N}$, when f belongs to some $L^{p}(\Omega)$, with p close to 2 . Here we assume that the coefficient a belongs to the space $B M O(\Omega)$ of functions of bounded mean oscillation and verifies the condition $a(x) \geq \lambda_{o}>0$ for a.e. $x \in \Omega$.

Key words: Dirichlet problem; Existence and regularity; $B M O$-space.

Risssunto. - Equazioni lineari ellittiche a coefficienti BMO. Si prova un teorema di esistenza ed unicità per il problema di Dirichlet per l'equazione $\operatorname{div}(a(x) \nabla u)=\operatorname{div} f$ in un cubo aperto $\Omega \subset \mathbb{R}^{N}$, dove f appartiene a $L^{p}(\Omega)$, con p vicino a 2 . Si assume che il coefficiente a appartenga allo spazio $B M O(\Omega)$ delle funzioni ad oscillazione media limitata e verifichi la condizione $a(x) \geq \lambda_{o}>0$ per q.o. $x \in \Omega$.

1. Introduction

The main objective of this paper is to investigate the existence and uniqueness of solutions $u \in W_{o}^{1, p}(\Omega)$ of the Dirichlet problem

$$
\begin{cases}\operatorname{div}(a(x) \nabla u)=\operatorname{div} f & \text { in } \quad \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open cube of $\mathbb{R}^{N},(N \geq 2), f$ belongs to $L^{p}\left(\Omega ; \mathbb{R}^{N}\right)$, with p close to 2 , and a is a function verifying the following assumptions

$$
\begin{equation*}
a(x) \geq \lambda_{o}>0 \quad \text { for a.e. } x \in \Omega \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
a(x) \in B M O(\Omega) . \tag{ii}
\end{equation*}
$$

$B M O(\Omega)$ denotes the space of John and Nirenberg of functions of bounded mean oscillation (for the definition see Section 2 below).

We say that $u \in W_{o}^{1, p}(\Omega)$ is a solution of problem at (1.1) if u verifies

$$
\int_{\Omega} a(x) \nabla u \nabla \varphi=\int_{\Omega} f \nabla \varphi \quad \forall \varphi \in C_{o}^{\infty}(\Omega) .
$$

We establish the following
Theorem A. Under the assumptions (i), (ii), there exists $\varepsilon_{o}>0$, depending on λ_{o} and the BMO-norm of a, such that for every $f \in L^{2-\varepsilon}\left(\Omega ; \mathbb{R}^{N}\right),|\varepsilon|<\varepsilon_{o}$, problem (1.1) admits a
(*) Nella seduta del 13 novembre 1998.
unique solution $u \in W_{o}^{1,2-\varepsilon}(\Omega)$ and the following estimate

$$
\begin{equation*}
\|u\|_{W_{o}^{1,2-\varepsilon}} \leq c| | f \|_{L^{2-\varepsilon}} \tag{1.2}
\end{equation*}
$$

with $c=c\left(\lambda_{0},\|a\|_{B M O}, N\right)$, holds.
The main tool in the proof of this theorem is an a priori estimate obtained by using the Hodge decomposition in conjunction with a local version of a regularity result of div-curl quantities on the Hardy space \mathcal{H}^{1} (see [2] and Proposition 2.5 below).

Let us remark that Theorem A is an extension of a well known result due to Meyers who considered the case when $a(x)$ is bounded (see [6]).

It is worth pointing out that for $a(x)$ bounded, the result of Meyers gives ε which gets small as $\|a\|_{\infty}$ tends to ∞. From this point of view Theorem A is somewhat surprising.

2. Definitions and preliminary results

Here and subsequently, Ω is a cube in \mathbb{R}^{N}. In order to introduce the Hardy space $\mathcal{H}^{1}(\Omega)$, we consider a function $\varphi \in C_{0}^{\infty}(\Omega)$ such that $\operatorname{supp} \varphi \subset B_{1}(0)=\{x \in$ $\left.\in \mathbb{R}^{N}:|x|<1\right\}$ and $\int \varphi d x=1$. For every $t>0$ we consider the mollifying function $\varphi_{t}(x)=t^{-n} \varphi\left(t^{-1} x\right)$ and given any function $h \in L_{\text {loc }}^{1}(\Omega)$ we set

$$
h_{t}(x)=h \star \varphi_{t}(x) \quad \text { for } \quad \text { a.e. } \quad x \in \Omega,
$$

whenever $0 \leq t<\operatorname{dist}(x, \partial \Omega)$. Then we define the radial maximal function of f by

$$
\mathcal{M} h(x)=\mathcal{M}_{\Omega} h(x)=\sup \left\{\left|h_{t}(x)\right| ; 0<t<\operatorname{dist}(x, \partial \Omega)\right\}
$$

for all $x \in \Omega$. Now, we are in position to give the following
Definition 2.1. The Hardy space $\mathcal{H}^{1}(\Omega)$ consists of the functions $h \in L_{\text {loc }}^{1}(\Omega)$ such that

$$
\begin{equation*}
\|h\|_{\mathcal{H}^{1}(\Omega)}=\left\|\mathcal{M}_{\Omega} h(x)\right\|_{L^{1}(\Omega)}<\infty \tag{2.1}
\end{equation*}
$$

The functional $\left\|\|_{\mathcal{H}^{1}}\right.$ is a norm which makes $\mathcal{H}^{1}(\Omega)$ a Banach space (see [7, 5]).
Let us remark that the Definition 2.1 does not depend on the choice of the function φ up to equivalence of norms and that if $\Omega=\mathbb{R}^{N}$ it is the classical definition of $\mathcal{H}^{1}\left(\mathbb{R}^{N}\right)$.

It is well known that the dual space of $\mathcal{H}^{1}\left(\mathbb{R}^{N}\right)$ is $B M O\left(\mathbb{R}^{N}\right)$, where

$$
B M O\left(\mathbb{R}^{N}\right)=\left\{g \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right): \quad\|g\|=\sup _{Q} f_{Q}\left|g-g_{Q}\right|<\infty\right\}
$$

is the space of all functions of bounded mean oscillation.
Definition 2.2. The space $B M O(\Omega)$ is the space of functions $g \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
\|g\|=\sup _{Q \subseteq \Omega} f_{Q}\left|g-g_{Q}\right|+f_{\Omega}|g|<\infty \tag{2.2}
\end{equation*}
$$

In order to establish our result we need the following
Theorem 2.3. For every $g \in B M O(\Omega)$ there exists a unique $T \in\left(\mathcal{H}^{1}(\Omega)\right)^{\prime}$ such that

$$
\begin{equation*}
T(h)=\int_{\Omega} h(x) g(x) d x \quad \text { for all } \quad h \in \mathcal{H}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

Conversely, for every $T \in\left(\mathcal{H}^{1}(\Omega)\right)^{\prime}$ there exists a unique $g \in B M O(\Omega)$ which satisfies (2.3). The correspondence $T \rightarrow g$ determined by (2.3) is a Banach space isomorphism between $\left(\mathcal{H}^{1}(\Omega)\right)^{\prime}$ and $B M O(\Omega)$.

Proof. See Theorem 2 in [7, p. 223].
It is well known that the space $B M O(\Omega)$ is related to the $L^{p}(\Omega)$ space, for $0<p<\infty$, by the following continuous embeddings

$$
L^{\infty}(\Omega) \hookrightarrow B M O(\Omega) \hookrightarrow L^{p}(\Omega)
$$

Let us consider two vector fields $E=\left(E^{1}, \ldots, E^{n}\right)$ and $B=\left(B^{1}, \ldots, B^{n}\right)$ such that

$$
\operatorname{curl} E=\left(\frac{\partial E_{i}}{\partial x_{j}}-\frac{\partial E_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, n}=0
$$

and

$$
\operatorname{div} B=\sum_{i=1}^{n} \frac{\partial B_{i}}{\partial x_{i}}=0
$$

The scalar product of such vector fields enjoy a higher degree of regularity than generic products of arbitrary vector fields. The first result in such direction goes back to the div-curl Lemma due to Murat and Tartar (see $[8,9]$) and the subsequent theory of compensated compactness. More recently in [2] the following celebrated result was proved

Theorem 2.4. Let $B \in L^{p}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and $E \in L^{q}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ where p, q are Hölder conjugate exponents, be two vector fields such that $\operatorname{div} B=0$ and $\operatorname{curl} E=0$. Then the scalar product $E \cdot B$ belongs to the Hardy space $\mathcal{H}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\|E \cdot B\|_{\mathcal{H}^{1}} \leq c\|E\|_{L^{q}}\|B\|_{L^{p}}
$$

where c is a constant depending only on the dimension N.
From now on it is essential to consider Ω an open cube of \mathbb{R}^{N} in order to apply a local version of the previous theorem (see [5]), namely

Proposition 2.5. Let $B \in L^{p}\left(\Omega, \mathbb{R}^{N}\right)$ and $E \in L^{q}\left(\Omega, \mathbb{R}^{N}\right)$ be two vector fields such that $\operatorname{div} B=0$ and $\operatorname{curl} E=0$, where $1 / p+1 / q=1$. Then their scalar product $E \cdot B$ belongs to the Hardy space $\mathcal{H}^{1}(\Omega)$ and

$$
\|E \cdot B\|_{\mathcal{H}^{1}(\Omega)} \leq c\|E\|_{L^{q}(\Omega)}\|B\|_{L^{p}(\Omega)}
$$

where c is a constant depending on the dimension N.

Finally we recall the following
Theorem 2.6 (Hodge decomposition). Let $w \in W_{0}^{1, r}(\Omega), r>1$ and let $1-r<\varepsilon<1$. Then there exist $\psi \in W_{0}^{1, \frac{r}{1-\varepsilon}}(\Omega)$ and a divergence free vector field $H \in L^{\frac{r}{1-\varepsilon}}\left(\Omega ; \mathbb{R}^{N}\right)$ such that

$$
|\nabla w|^{-\varepsilon} \nabla w=\nabla \psi+H
$$

and

$$
\begin{aligned}
\|H\|_{\frac{r}{1-\varepsilon}} & \leq c_{1} \mid \varepsilon\| \| \nabla w \|_{r}^{1-\varepsilon}, \\
\|\nabla \psi\|_{\frac{r}{1-\varepsilon}}^{1-\varepsilon} & \leq c_{2}\|\nabla w\|_{r}^{1-\varepsilon}
\end{aligned}
$$

where $c_{i}=c_{i}(N)$.
Proof. See Theorem 3 in [4].

3. Proof of Theorem A

Before proving the existence and uniqueness result stated in Theorem A, we have to establish a Lemma which is a refined version of a result contained in [3].

Lemma 3.1. Let us consider the Dirichlet problem

$$
\begin{cases}\operatorname{div}(\alpha(x) \nabla u)=\operatorname{div} f & \text { in } \quad \Omega \tag{3.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where α is a function verifying the following assumptions

$$
\begin{array}{ll}
0<\lambda_{o} \leq \alpha(x) & \text { for a.e. } x \in \Omega \\
\alpha \in L^{\infty}(\Omega) .
\end{array}
$$

Then for every $|\varepsilon|<\varepsilon_{o}=\frac{\lambda_{o}}{\widetilde{c}\|\alpha\|_{B M O}} \widetilde{c}$ positive number, and for $f \in L^{2-\varepsilon}\left(\Omega ; \mathbb{R}^{N}\right)$ the problem (3.1) admits a unique solution u and the following estimate

$$
\|u\|_{W_{o}^{1,2-\varepsilon}} \leq c \mid\|f\|_{L^{2-\varepsilon}}
$$

with $c=c\left(\lambda_{0},\|\alpha\|_{B M O}, N\right)$, holds.
Proof. Let $f_{j} \in L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$ converge to f in $L^{2-\varepsilon}\left(\Omega ; \mathbb{R}^{N}\right)$ and u_{j} be the solution to the problem

$$
\begin{cases}\operatorname{div}\left(\alpha(x) \nabla u_{j}\right)=\operatorname{div} f_{j} & \text { in } \Omega \\ u_{j}=0 & \text { on } \partial \Omega\end{cases}
$$

By the stability of the Hodge decomposition stated in Theorem 2.6, for every j, k there exist $\psi \in W_{o}^{1, \frac{2-\varepsilon}{1-\varepsilon}}(\Omega)$ and a divergence free vector field $H \in L^{\frac{2-\varepsilon}{1-\varepsilon}}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\left|\nabla u_{j}-\nabla u_{k}\right|^{-\varepsilon}\left(\nabla u_{j}-\nabla u_{k}\right)=\nabla \psi+H
$$

and

$$
\|H\|_{\frac{2-\varepsilon}{1-\varepsilon}} \leq c_{1}|\varepsilon|\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon}^{1-\varepsilon}
$$

$$
\begin{equation*}
\|\nabla \psi\|_{\frac{2-\varepsilon}{1-\varepsilon}} \leq c_{2}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon}^{1-\varepsilon} \tag{3.2}
\end{equation*}
$$

where c_{1}, c_{2} are constants depending only on N .
From our assumptions it follows that for every j, k

$$
\begin{aligned}
\lambda_{o} \int_{\Omega}\left|\nabla u_{j}-\nabla u_{k}\right|^{2-\varepsilon} & \left.\leq \int_{\Omega}\left\langle\alpha(x)\left(\nabla u_{j}-\nabla u_{k}\right),\right| \nabla u_{j}-\left.\nabla u_{k}\right|^{-\varepsilon}\left(\nabla u_{j}-\nabla u_{k}\right)\right\rangle= \\
= & \int_{\Omega}\left\langle\alpha(x)\left(\nabla u_{j}-\nabla u_{k}\right), \nabla \psi+H\right\rangle= \\
& =\int_{\Omega}\left(f_{j}-f_{k}\right) \nabla \psi+\int_{\Omega} \alpha(x)\left\langle\nabla u_{j}-\nabla u_{k}, H\right\rangle=I+I I .
\end{aligned}
$$

To estimate I, it suffices to apply Hölder inequality and (3.2) to get

$$
\begin{equation*}
\mathrm{I} \leq\left\|f_{j}-f_{k}\right\|_{2-\varepsilon}\|\nabla \psi\|_{\frac{2-\varepsilon}{1-\varepsilon}} \leq c_{2}\left\|f_{j}-f_{k}\right\|_{2-\varepsilon}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon}^{1-\varepsilon} . \tag{3.3}
\end{equation*}
$$

To estimate II we observe that since $\operatorname{div} H=0$ and $\operatorname{curl}\left(\nabla u_{j}-\nabla u_{k}\right)=0$, by Proposition 2.5 their scalar product belongs to the Hardy space $\mathcal{H}^{1}(\Omega)$ and moreover

$$
\left\|\left\langle H, \nabla u_{j}-\nabla u_{k}\right\rangle\right\|_{\mathcal{H}^{1}} \leq c_{3}\|H\|_{\frac{2-\varepsilon}{1-\varepsilon}}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon .}
$$

Since $\alpha \in L^{\infty}(\Omega) \subset B M O(\Omega)$ by Theorem 2.3, thanks to (3.2) we obtain

$$
\begin{array}{r}
\mathrm{II} \leq c_{4}\|\alpha\|_{B M O}\left\|\left\langle H, \nabla u_{j}-\nabla u_{k}\right\rangle\right\|_{\mathcal{H}^{1}} \leq c_{3} c_{4}\|\alpha\|_{B M O}\|H\|_{\frac{2-\varepsilon}{1-\varepsilon}}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon} \leq \tag{3.4}\\
\leq c_{1} c_{3} c_{4}|\varepsilon|\|\alpha\|_{B M O}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon}^{2-\varepsilon} .
\end{array}
$$

From estimates (3.3) and (3.4) we have
$\lambda_{o} \int_{\Omega}\left|\nabla u_{j}-\nabla u_{k}\right|^{2-\varepsilon} \leq c_{2}\left\|f_{j}-f_{k}\right\|_{2-\varepsilon}\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon}^{1-\varepsilon}+c_{1} c_{3} c_{4} \mid \varepsilon\| \| \alpha\left\|_{B M O}\right\| \nabla u_{j}-\nabla u_{k} \|_{2-\varepsilon}^{2-\varepsilon}$ and then

$$
\left\|\nabla u_{j}-\nabla u_{k}\right\|_{2-\varepsilon} \leq c\left\|f_{j}-f_{k}\right\|_{2-\varepsilon}
$$

Then for every ε such that

$$
|\varepsilon|<\frac{\lambda_{o}}{c_{1} c_{3} c_{4}\|\alpha\|_{B M O}}
$$

we have that

$$
\begin{equation*}
\left\|u_{j}-u_{k}\right\|_{W_{o}^{1,2-\varepsilon}} \leq c| | f_{j}-f_{k} \|_{L^{2}-\varepsilon} \tag{3.5}
\end{equation*}
$$

Formula (3.5) implies that u_{j} is a Cauchy sequence and then it converges to a function u in $W_{o}^{1,2-\varepsilon}(\Omega)$. One can easily check that u solves problem (3.1).

Now, we are in position to give the proof of Theorem A.

Proof of Theorem A. Let us consider the sequence a_{j} defined by

$$
a_{j}(x)=\left\{\begin{array}{lll}
a(x) & \text { if } & a(x) \leq j \\
j & \text { if } & a(x) \geq j
\end{array}\right.
$$

and the Dirichlet problems

$$
\begin{cases}\operatorname{div}\left(a_{j}(x) \nabla u_{j}\right)=\operatorname{div} f & \text { in } \quad \Omega \tag{3.6}\\ u_{j}=0 & \text { on } \partial \Omega .\end{cases}
$$

Since $\left\|a_{j}\right\|_{B M O} \leq 2\|a\|_{B M O}$ for every j [1, Lemma A.2], by Lemma 3.1, if $|\varepsilon| \leq \frac{\lambda_{o}}{c| | a \|_{B M O}}$ and $f \in L^{2-\varepsilon}(\Omega)$, each problem (3.6) admits a unique solution u_{j} in $W_{o}^{1,2-\varepsilon}(\Omega)$. As before we use the Hodge decomposition to get

$$
\left|\nabla u_{j}\right|^{-\varepsilon}\left(\nabla u_{j}\right)=\nabla \psi_{j}+H_{j}
$$

where $\operatorname{div} H_{j}=0$ and

$$
\begin{aligned}
\left\|H_{j}\right\|_{\frac{2-\varepsilon}{1-\varepsilon}} & \leq c \mid \varepsilon\| \| \nabla u_{j} \|_{2-\varepsilon}^{1-\varepsilon} \\
\left\|\nabla \psi_{j}\right\|_{\frac{2-\varepsilon}{1-\varepsilon}} & \leq c\left\|\nabla u_{j}\right\|_{2-\varepsilon}^{1-\varepsilon}
\end{aligned}
$$

where c denotes a constant depending only on N .
Using that $a(x) \geq \lambda_{o}$ and arguing as in the previous Lemma we get
$\lambda_{o} \int_{\Omega}\left|\nabla u_{j}\right|^{2-\varepsilon} \leq \int_{\Omega} f \nabla \psi_{j}+\int_{\Omega} a_{j}(x)\left\langle\nabla u_{j}, H_{j}\right\rangle \leq c| | f\left\|_{2-\varepsilon}\right\| \nabla u_{j}\left\|_{2-\varepsilon}^{1-\varepsilon}+c|\varepsilon|\right\| a\left\|_{B M O}\right\| \nabla u_{j} \|_{2-\varepsilon}^{2-\varepsilon}$. Then

$$
\left\|\nabla u_{j}\right\|_{2-\varepsilon} \leq c| | f \|_{2-\varepsilon}
$$

with $c=c\left(\lambda_{0},\|a\|_{B M O}, N\right)$. The sequence $\left(u_{j}\right)$ is bounded in $W_{o}^{1,2-\varepsilon}(\Omega)$, and then there exist a subsequence of $\left(u_{j}\right)$, still denoted by $\left(u_{j}\right)$, and a function u such that

$$
u_{j} \rightarrow u \quad \text { weakly } \quad \text { in } \quad W^{1,2-\varepsilon}(\Omega)
$$

Since, for $\varphi \in C_{o}^{\infty}(\Omega), a_{j} \nabla \varphi$ converges strongly to $a \nabla \varphi$ in $L^{p}(\Omega)$ for every $p<\infty$ and ∇u_{j} converges weakly to ∇u in $L^{2-\varepsilon}(\Omega)$, we obtain that u solves the problem (1.1), i.e. that

$$
\int_{\Omega} a(x) \nabla u \nabla \varphi=\int_{\Omega} f \nabla \varphi \quad \forall \varphi \in C_{o}^{\infty}(\Omega)
$$

Moreover, we have that

$$
\begin{equation*}
\|\nabla u\|_{2-\varepsilon} \leq c\|f\|_{2-\varepsilon} \tag{3.7}
\end{equation*}
$$

with $c=c\left(\lambda_{0},\|a\|_{B M O}, N\right)$. The uniqueness is an easy consequence of the previous estimate.

This work was performed under the research program «Equazioni differenziali e calcolo delle variazioni» supported by MURST (1997-98).

References

[1] H. Brezis - L. Nirenberg, Degree theory and BMO; Part I: Compact manifolds with boundary. Selecta Math., 1 (2), 1995, 197-263.
[2] R. R. Coifman - P.L. Lions - Y. Meyer - S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl.,1993, 247-286.
[3] A. Fiorenza - C. Sbordone, Existence and uniqueness results of nonlinear equations with right hand side in L^{1}. Studia Math., 127 (3), 1998, 223-231.
[4] T. Iwaniec - C. Sbordone, Weak minima of variational integrals. J. Reine Angew. Math., 454, 1994, 143-161.
[5] T. Iwaniec - A. Verde, A study of Jacobians in Hardy-Orlicz spaces. Proc. Royal Soc. of Edinburgh, to appear.
[6] N. Meyers, An L ${ }^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Pisa, 17, 1963, 189-206.
[7] A. Miyachi, H^{p} spaces over open subset of \mathbb{R}^{n}. Studia Math., XCV, 1990, 204-228.
[8] F. Murat, Compacité par compensation. Ann. Sc. Normale Sup. Pisa, 5, 1978, 489-507.
[9] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics. Heriot Watt Symposium, Research Notes in Math., Pitman, London, 39, 1979, 136212.

Pervenuta il 6 luglio 1998,
in forma definitiva il 13 novembre 1998.
M. Carozza:

Università degli Studi del Sannio
Via Port'Arsa - 82100 Benevento carozza@matna2.dma.unina.it
G. Moscariello, A. Passarelli di Napoli: Dipartimento di Matematica «Renato Caccioppoli» Università degli Studi di Napoli Via Cintia - Complesso Monte S. Angelo - 80126 Napoli moscar@matna2.dma.unina.it passarel@matna2.dma.unina.it

