ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Patrizia Longobardi, Mercede Maj

Some remarks on groups in which elements with the same *p*-power commute

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **10** (1999), n.1, p. 11–15. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1999_9_10_1_11_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1999.

Teoria dei gruppi. — Some remarks on groups in which elements with the same ppower commute. Nota di Patrizia Longobardi e Mercede Maj, presentata (*) dal Socio G. Zappa.

ABSTRACT. — In this paper we characterize certain classes of groups G in which, from $x^p = y^p(x, y \in G, p$ a fixed prime), it follows that xy = yx. Our results extend results previously obtained by other authors, in the finite case.

KEY WORDS: *p*-powers; *p*-elements; Locally nilpotent groups.

RIASSUNTO. — Alcune osservazioni sui gruppi in cui sono permutabili elementi con la stessa potenza p-ma. In questa Nota si caratterizzano alcune classi di gruppi G tali che da $x^p = y^p(x, y \in G, p$ primo fissato), segue xy = yx. In particolare si estendono risultati precedentemente ottenuti da altri autori, nel caso finito.

1. INTRODUCTION

Let p be a prime. We will denote by C_p the class of all groups G which satisfy the following property:

$$x^p = y^p$$
, $x, y \in G$ implies $xy = yx$.

Groups in the class C_2 have been studied by L. Brailovsky and G.A. Freiman in [3] and by L. Brailovsky and M. Herzog in [4]. Finite groups in C_p , with $p \neq 2$, have been investigated by M. Bianchi, A. Gillio and L. Verardi in [1]. They proved that a finite *p*-group G, with p odd, is in C_p if and only if the elements of order p form a subgroup $\Omega(G) \leq Z(G)$. Finite p-groups with this property constitute an interesting class, studied by many authors [2, 7-9]. A classical result due to J. Thompson (see, for instance, [6, III, 12.2]) ensures that if G is a finite p-group, with p > 2, and any element of G of order p is central, then d(G) < d(Z(G)), where d(H) denotes the minimal number of generators of a finite group H. More recently, D. Bubboloni and G. Corsi Tani [5] have studied the relationship between this class and the class of regular p-groups.

In [1] it is also proved that a finite group G is in C_p if and only if G possesses a normal Sylow p-subgroup $P \in C_p$. In this paper we extend the results of [1] to not necessarily finite groups, by proving the following theorems.

THEOREM 1. Let G be a p-group, with p odd. G is in the class C_p if and only if G is hypercentral of length $\leq \omega$ and every element of G of order p is contained in Z(G).

THEOREM 2. Let G be a p-group, with p odd. G is in the class C_p if and only if G is hypercentral of length $\leq \omega$ and, for any positive integer i, every element of G of order p^i is contained in the *i*-centre $\zeta_i(G)$.

(*) Nella seduta del 12 febbraio 1999.

THEOREM 3. Let G be a group in the class C_p , with p odd. Then for any integer i the p-elements of G of order at most p^i form a normal subgroup P_i of class $\leq i$.

From Theorem 3 it easily follows

COROLLARY 4. A torsion group G is in the class C_p , with p odd, if and only if the p-elements of G form a normal subgroup P in the class C_p .

We notice that there exist infinite non-hypercentral *p*-groups with every element of order *p* in the centre, hence in Theorem 1 the condition *G* hypercentral is essential. For example, A. Yu. Ol'shanskii constructed in [10] an infinite torsion-free group *H* with Z(H) infinite cyclic and H/Z(H) isomorphic to the infinite Burnside group B(n, p) of exponent *p*. Now, if we write $Z(H) = \langle z \rangle$, and $G = H/\langle z^p \rangle$, from $a^p \in \langle z^p \rangle$, we get $a^p = (z^p)^{\alpha}$, $(a^{-1}z^{\alpha})^p = 1$, and $a^{-1}z^{\alpha} = 1$, therefore $a \in Z(H)$, and every element of *G* of order *p* is in the center of *G*.

We also remark that the result proved by Bianchi, Gillio, Verardi for finite *p*-groups actually holds for any locally nilpotent group. In fact we have:

THEOREM 5. A locally nilpotent group G is in the class C_p if and only if every element of G of order p is contained in the centre Z(G).

Now let p be an odd prime and write $\mathfrak{S}_{2,p}$ the class of groups G such that the subgroup generated by two p-elements is a finite p-group. Then, by Theorem 3, the class C_p is a subclass of the class $\mathfrak{S}_{2,p}$. Conversely, if \mathcal{H} is a subclass of $\mathfrak{S}_{2,p}$, closed under subgroups and homomorphic images and G is a group in \mathcal{H} with no p-elements, then it is easy to prove that G is in the class C_p . On the other hand, there exist torsion-free groups that are not in the class C_p . In fact, let H be the group constructed by Ol'shanskii, and mentioned before. If a, b are elements of H non-commuting mod Z(G), then we have $a^p = z^{\alpha}$ and $b^p = z^{\beta}$, for some integers α , β and obviously p does not divide α , β , since H is torsion-free, therefore $a^{\beta p} = b^{\alpha p}$, with $[a^{\beta}, b^{\alpha}] \neq 1$.

Our final result is the following

THEOREM 6. Let G be a group such that every finitely generated subgroup of G has finite abelian subgroup rank. Then G is in the class C_p if and only if the p-elements of G form a normal subgroup P in the class C_p such that G/P is in the class C_p and every nilpotent subgroup of G is in the class C_p .

2. Preliminary results

Throughout this Section p is an odd prime. In order to prove the results stated in the Introduction we shall require the following lemmas.

LEMMA 1. Let $G \in C_p$ be a locally nilpotent group. Then the p-elements of G of order at most p form a subgroup $\Omega(G) \leq Z(G)$ such that $G/\Omega(G) \in C_p$.

PROOF. We will show that any element of G of order p is in Z(G). Let $a \in G$ be of order p, $g \in G$ and $a \in \zeta_2(\langle a, g \rangle)$; we claim that $a \in Z(\langle a, g \rangle)$. In fact, from $a \in \zeta_2(\langle a, g \rangle)$, we get $[a, g] \in Z(\langle a, g \rangle)$, and $1 = [a^p, g] = [a, g]^p$, therefore $(ga)^p = g^p a^p [a, g]^{p(p-1)/2} = g^p$, and [ga, g] = 1 = [a, g]. Now let $b \in G$ be of order p, $x \in G$, and assume $[b, x] \neq 1$. Then $\langle b, x \rangle$ is nilpotent of class i > 1. Hence $[b,_{i-2}x] \in \zeta_2(\langle b, x \rangle)$ has order p, and $[b,_{i-2}x] \in Z(\langle b, x \rangle)$, by the previous remark. Thus $\langle b, x \rangle$ is nilpotent of class i-1, a contradiction. Therefore the p-elements of G of order p form a subgroup $\Omega(G)$ contained in Z(G). Now let $x^p\Omega(G) = y^p\Omega(G), x, y \in$ $\in G$, then we have $x^p = y^p c \in \Omega(G) \leq Z(G)$ and $(x^y)^p = (x^p)^y = (y^p c)^y = y^p c = x^p$. Hence $[x^y, x] = 1$, from which [[x, y], x] = 1. Thus $1 = [x^p, y] = [x, y]^p$, and $[x, y] \in \Omega(G)$, as required.

LEMMA 2. Let G be a group in the class C_p . If a, b are elements in G such that $a^{p^n} = b^{p^n}$, then $\langle a, b \rangle$ is nilpotent of class $\leq n$.

PROOF. We argue by induction on *n*. If n = 1, the result is true since $G \in C_p$. Now assume n > 1 and $a^{p^n} = b^{p^n}$, then $(a^{p^{n-1}})^p = (b^{p^{n-1}})^p$, and $a^{p^{n-1}} b^{p^{n-1}} = b^{p^{n-1}} a^{p^{n-1}}$, since $G \in C_p$. Write $c = a^{p^{n-1}} (b^{-1})^{p^{n-1}}$. Then |c| = p if $c \neq 1$ and $a^{p^{n-1}} = b^{p^{n-1}} c$. From $(a^{b^{p^{n-1}}})^{p^{n-1}} = a^{p^{n-1}}$, we get by induction that the subgroup $\langle a, a^{b^{p^{n-1}}} \rangle$ is nilpotent of class $\leq n - 1$. Hence $\langle [a, b^{p^{n-1}}], a \rangle$ is nilpotent of class $\leq n - 1$, and similarly $\langle [a^{p^{n-1}}, b], b \rangle$ is nilpotent of class $\leq n - 1$. Hence $1 = [a^{p^{n-1}}, b, _{n-1} b] = [c, b, _{n-1} b] =$ $= [c, _n b] = 1$. From $\langle c \rangle^G$ abelian, we easily get $\langle c, b \rangle$ nilpotent of class $\leq n - 1$. But |c| = p, then [b, c] = 1, by Lemma 1. Arguing similarly on a, we get that $\langle c, a \rangle$ is nilpotent and [a, c] = 1. Therefore $c \in Z(\langle a, b \rangle)$ and $\langle a, b \rangle / \langle c \rangle \in C_p$, by Lemma 1. Moreover, $a^{p^{n-1}} \langle c \rangle = b^{p^{n-1}} \langle c \rangle$, hence, by induction, $\langle a, b \rangle / \langle c \rangle$ is nilpotent of class $\leq n - 1$, and $\langle a, b \rangle$ is nilpotent of class $\leq n$, as required.

3. Proofs

PROOF OF THEOREM 1. Assume $G \in C_p$ and let $a, b \in G$, with |a| = p. By Lemma 2, $\langle a, b \rangle$ is nilpotent and Lemma 1 applies. Therefore $\Omega(G) \leq Z(G)$. Moreover, arguing as in the proof of Lemma 1, we obtain that $G/Z(G) \in C_p$. Conversely, let G be hypercentral, and assume $\Omega(G) \leq Z(G)$. Then, for any $x, y \in G, \langle x, y \rangle$ is a finite *p*-group with every element of order *p* in the centre and the result follows from [1, Theorem 1]. \Box

PROOF OF THEOREM 2. If $G \in C_p$, then $\Omega(G) \leq Z(G)$, and $G/\Omega(G) \in C_p$, by Lemma 1. Assume, by induction, $\Omega_i(G/\Omega(G)) = \Omega_{i+1}(G)/\Omega(G) \leq \zeta_i(G/\Omega(G))$, then we get easily $\Omega_{i+1}(G) \leq \zeta_{i+1}(G)$, and the result follows. The converse follows from Theorem 1. \Box

PROOF OF THEOREM 3. The result is true if i = 1, by Lemma 1. Assume i > 1 and argue by induction on i. Let $a, b \in G$, with $|a| = |b| = p^i$ and write $H = \langle a, b \rangle$.

Then $a^{p^i} = b^{p^i} = 1$, and H is a nilpotent p-group of class $\leq i$ by Lemma 2. Thus $a^{p^{i-1}}$, $b^{p^{i-1}} \in \Omega(H) \leq Z(H)$ and $H/\Omega(H) \in C_p$, by Lemma 1. Hence, by induction, $H/\Omega(H)$ has exponent p^{i-1} , and H has exponent p^i .

PROOF OF THEOREM 5. If $G \in C_p$, then the result is true by Lemma 1. Conversely, assume that G is locally nilpotent and $\Omega(G) \leq Z(G)$, we show that $G \in C_p$. Assume that there exist $a, b \in G$, with $a^p = b^p$ and $[a, b] \neq 1$, and choose a, b such that the nilpotent class n > 1 of $\langle a, b \rangle$ is minimal. Then $a^p = (a^b)^p$, and $\langle a, a^b \rangle$ is nilpotent of class < n, hence $[a, a^b] = 1$, by minimality of n. Similarly, $[b, b^a] = 1$, and n = 2. Therefore, from $a^p = b^p$, we get $(a^{-1}b)^p[a, b]^{p(p-1)/2} = 1$, and $(a^{-1}b)^p = 1$. Then $a^{-1}b \in Z(G)$, and $\langle a, b \rangle$ is abelian, a contradiction.

PROOF OF THEOREM 6. Assume $G \in C_p$. Then, by Theorem 3, the *p*-elements of G form a normal subgroup P. We show that $G/P \in C_p$. For, let $a, b \in G$, and assume $a^p P = b^p P$. Then $a^p = b^p c$, with $c \in P$. Write $|c| = p^i$, and $H = \langle a, b \rangle$. Then $N = \langle c \rangle^H$ is a nilpotent *p*-group, of class $\leq i$, and exponent p^i , by Theorem 2. Moreover, N has finite abelian subgroup rank, hence N is finite (see, for example, [11, Corollary 2, p. 38]). Then $H/C_H(N)$ is finite. Write $|H/C_H(N)| = m = p^b k$, where p does not divide k. Then $(a^p)^m = (b^p)^m d$, with $d \in N$ and $(a^m)^{p^{i+1}} = (b^m)^{p^{i+1}}$. Hence $(a^k)^{p^{i+1+b}} = (b^k)^{p^{i+1+b}}$ and $\langle a^k, b^k \rangle$ is nilpotent, by Lemma 2. Then, by Lemma 1, $\langle a^k, b^k \rangle P/P \in C_p$, and from $a^p P = b^p P$ we get $[a^k, b^k] \in P$, and $[a, b] \in P$ since p and k are coprime.

Conversely, let $a^p = b^p$, $a, b \in G$. Then $[a, b] \in P$ and $\langle a, b \rangle'$ is a finite *p*-group, by Theorem 2. Then $\langle a, b \rangle / Z(\langle a, b \rangle)$ is a finite *p*-group, and $\langle a, b \rangle$ is nilpotent. Hence $\langle a, b \rangle \in C_p$, and [a, b] = 1. \Box

Dedicated to Professor Mario Curzio on the occasion of his 70th birthday.

References

- [1] M. BIANCHI A. GILLIO BERTA MAURI L. VERARDI, Groups in which elements with the same p-power commute. Le Matematiche, Supplemento vol. LI, 1996, 53-62.
- [2] N. BLACKBURN, Generalizations of certain elementary theorems on p-groups. Proc. London Math. Soc., 11, 1961, 1-22.
- [3] L. BRAILOVSKY G. A. FREIMAN, On two-element subsets in groups. Ann. of the New York Academy of Sciences, 373, 1981, 183-190.
- [4] L. BRAILOVSKY M. HERZOG, *Counting squares of two-subsets in finite groups*. Ars Combinatoria, to appear.
- [5] D. BUBBOLONI G. CORSI, Finite p-groups in which every element of order p is central. To appear.
- [6] B. HUPPERT, Endliche Gruppen I. Springer-Verlag, Berlin 1967.
- [7] T. J. LAFFEY, A lemma on finite p-groups and some consequences. Proc. Camb. Phil. Soc., 75, 1974, 133-137.
- [8] T. J. LAFFEY, Centralizers of Elementary Abelian Subgroups in Finite p-groups. J. Algebra, 51, 1978, 88-96.
- [9] MINGYAO XU, The power structure of finite p-groups. Bull. Austral. Math. Soc., 36, 1987, 1-10.

- [10] A. YU. OL'SHANSKII, Geometry of Defining Relations in Groups. Nauka, Moscow 1989 (English translation: Kluwer Academic Publisher, Dordrecht 1991).
- [11] D. J. S. ROBINSON, Finiteness conditions and generalized soluble groups. Springer-Verlag, Berlin 1972.

P. Longobardi: Dipartimento di Matematica e Applicazioni «Renato Caccioppoli» Via Cintia - Complesso Monte S. Angelo - 80126 NAPOLI longobar@matna2.dma.unina.it

> M. Maj: Dipartimento di Matematica e Informatica Via Salvador Allende - 84081 BARONISSI SA maj@matna2.dma.unina.it

Pervenuta il 26 ottobre 1998,

in forma definitiva il 9 febbraio 1999.