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Teoria dei gruppi. — Some remarks on groups in which elements with the same p-
power commute. Nota di Patrizia Longobardi e Mercede Maj, presentata (*) dal Socio
G. Zappa.

Abstract. — In this paper we characterize certain classes of groups G in which, from xp = yp (x; y ∈ G; p
a fixed prime), it follows that xy = yx . Our results extend results previously obtained by other authors, in
the finite case.

Key words: p-powers; p-elements; Locally nilpotent groups.

Riassunto. — Alcune osservazioni sui gruppi in cui sono permutabili elementi con la stessa potenza p-ma.
In questa Nota si caratterizzano alcune classi di gruppi G tali che da xp = yp(x; y ∈ G; p primo fissato),
segue xy = yx . In particolare si estendono risultati precedentemente ottenuti da altri autori, nel caso finito.

1. Introduction

Let p be a prime. We will denote by Cp the class of all groups G which satisfy the
following property:

xp = yp; x; y ∈ G implies xy = yx:

Groups in the class C2 have been studied by L. Brailovsky and G.A. Freiman in [3] and
by L. Brailovsky and M. Herzog in [4]. Finite groups in Cp, with p �= 2, have been
investigated by M. Bianchi, A. Gillio and L. Verardi in [1]. They proved that a finite
p-group G , with p odd, is in Cp if and only if the elements of order p form a subgroup
Ω(G ) ≤ Z (G ). Finite p-groups with this property constitute an interesting class, studied
by many authors [2, 7-9]. A classical result due to J. Thompson (see, for instance, [6,
III, 12.2]) ensures that if G is a finite p-group, with p > 2, and any element of G of
order p is central, then d (G ) < d (Z (G )), where d (H ) denotes the minimal number of
generators of a finite group H . More recently, D. Bubboloni and G. Corsi Tani [5]
have studied the relationship between this class and the class of regular p-groups.

In [1] it is also proved that a finite group G is in Cp if and only if G possesses
a normal Sylow p-subgroup P ∈ Cp. In this paper we extend the results of [1] to not
necessarly finite groups, by proving the following theorems.

Theorem 1. Let G be a p-group, with p odd. G is in the class Cp if and only if G is
hypercentral of length ≤ ω and every element of G of order p is contained in Z (G ).

Theorem 2. Let G be a p-group, with p odd. G is in the class Cp if and only if G is

hypercentral of length ≤ ω and, for any positive integer i, every element of G of order pi is
contained in the i-centre ζi(G ).

(*) Nella seduta del 12 febbraio 1999.
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Theorem 3. Let G be a group in the class Cp, with p odd. Then for any integer i the

p-elements of G of order at most pi form a normal subgroup Pi of class ≤ i.

From Theorem 3 it easily follows

Corollary 4. A torsion group G is in the class Cp, with p odd, if and only if the p-elements
of G form a normal subgroup P in the class Cp.

We notice that there exist infinite non-hypercentral p-groups with every element of
order p in the centre, hence in Theorem 1 the condition G hypercentral is essential. For
example, A. Yu. Ol’shanskii constructed in [10] an infinite torsion-free group H with
Z (H ) infinite cyclic and H=Z (H ) isomorphic to the infinite Burnside group B(n; p)
of exponent p. Now, if we write Z (H ) = 〈z〉, and G = H=〈zp〉, from ap ∈ 〈zp〉, we
get ap = (zp)α; (a−1zα)p = 1, and a−1zα = 1, therefore a ∈ Z (H ), and every element
of G of order p is in the center of G .

We also remark that the result proved by Bianchi, Gillio, Verardi for finite p-groups
actually holds for any locally nilpotent group. In fact we have:

Theorem 5. A locally nilpotent group G is in the class Cp if and only if every element of G
of order p is contained in the centre Z (G ).

Now let p be an odd prime and write �2;p the class of groups G such that the
subgroup generated by two p-elements is a finite p-group. Then, by Theorem 3, the
class Cp is a subclass of the class �2;p. Conversely, if H is a subclass of �2;p, closed
under subgroups and homomorphic images and G is a group in H with no p-elements,
then it is easy to prove that G is in the class Cp. On the other hand, there exist
torsion-free groups that are not in the class Cp. In fact, let H be the group constructed
by Ol’shanskii, and mentioned before. If a; b are elements of H non-commuting mod
Z (G ), then we have ap = zα and bp = zβ , for some integers α;β and obviously p
does not divide α;β, since H is torsion-free, therefore aβp = bαp, with [aβ; bα] �= 1.

Our final result is the following

Theorem 6. Let G be a group such that every finitely generated subgroup of G has finite
abelian subgroup rank. Then G is in the class Cp if and only if the p-elements of G form
a normal subgroup P in the class Cp such that G=P is in the class Cp and every nilpotent
subgroup of G is in the class Cp.

2. Preliminary results

Throughout this Section p is an odd prime. In order to prove the results stated in
the Introduction we shall require the following lemmas.

Lemma 1. Let G ∈ Cp be a locally nilpotent group. Then the p-elements of G of order at
most p form a subgroup Ω(G ) ≤ Z (G ) such that G=Ω(G ) ∈ Cp.
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Proof. We will show that any element of G of order p is in Z (G ). Let a ∈ G
be of order p, g ∈ G and a ∈ ζ2(〈a; g 〉); we claim that a ∈ Z (〈a; g 〉). In fact,
from a ∈ ζ2(〈a; g 〉), we get [a; g ] ∈ Z (〈a; g 〉), and 1 = [ap; g ] = [a; g ]p, therefore
(ga)p = g pap[a; g ]p(p−1)=2 = g p, and [ga; g ] = 1 = [a; g ]. Now let b ∈ G be of order
p, x ∈ G , and assume [b; x] �= 1. Then 〈b; x〉 is nilpotent of class i > 1. Hence
[b;i−2 x] ∈ ζ2(〈b; x〉) has order p, and [b;i−2 x] ∈ Z (〈b; x〉), by the previous remark.
Thus 〈b; x〉 is nilpotent of class i−1 , a contradiction. Therefore the p-elements of G of
order p form a subgroup Ω(G ) contained in Z (G ). Now let xpΩ(G ) = ypΩ(G ); x; y ∈
∈ G , then we have xp = ypc ∈ Ω(G ) ≤ Z (G ) and (xy)p = (xp)y = (ypc)y = ypc = xp.
Hence [xy; x] = 1, from which [[x; y]; x] = 1. Thus 1 = [xp; y] = [x; y]p, and
[x; y] ∈ Ω(G ), as required.

Lemma 2. Let G be a group in the class Cp. If a; b are elements in G such that a p n
= b p n

,
then 〈a; b〉 is nilpotent of class ≤ n.

Proof. We argue by induction on n. If n = 1, the result is true since G ∈ Cp. Now

assume n > 1 and apn
= bpn

, then (apn−1
)p = (bpn−1

)p, and apn−1
bpn−1

= bpn−1
apn−1

, since
G ∈ Cp. Write c = apn−1

(b−1)pn−1
. Then |c | = p if c �= 1 and apn−1

= bpn−1
c . From

(abpn−1

)pn−1
= apn−1

, we get by induction that the subgroup 〈a; abpn−1

〉 is nilpotent
of class ≤ n − 1. Hence 〈[a; bpn−1

]; a〉 is nilpotent of class ≤ n − 1, and similarly
〈[apn−1

; b]; b〉 is nilpotent of class ≤ n−1. Hence 1 = [apn−1
; b;n−1 b] = [c; b;n−1 b] =

= [c;n b] = 1. From 〈c〉G abelian, we easily get 〈c; b〉 nilpotent of class ≤ n − 1. But
|c | = p, then [b; c] = 1, by Lemma 1. Arguing similarly on a, we get that 〈c; a〉 is
nilpotent and [a; c] = 1. Therefore c ∈ Z (〈a; b〉) and 〈a; b〉=〈c〉 ∈ Cp, by Lemma

1. Moreover, apn−1〈c〉 = bpn−1〈c〉, hence, by induction, 〈a; b〉=〈c〉 is nilpotent of class
≤ n − 1; and 〈a; b〉 is nilpotent of class ≤ n, as required.

3. Proofs

Proof of Theorem 1. Assume G ∈ Cp and let a; b ∈ G , with |a| = p. By Lemma 2,
〈a; b〉 is nilpotent and Lemma 1 applies. Therefore Ω(G ) ≤ Z (G ). Moreover, arguing
as in the proof of Lemma 1, we obtain that G=Z (G ) ∈ Cp. Conversely, let G be
hypercentral, and assume Ω(G ) ≤ Z (G ). Then, for any x; y ∈ G; 〈x; y〉 is a finite
p-group with every element of order p in the centre and the result follows from [1,
Theorem 1].

Proof of Theorem 2. If G ∈ Cp, then Ω(G ) ≤ Z (G ), and G=Ω(G ) ∈ Cp, by
Lemma 1. Assume, by induction, Ωi(G=Ω(G )) = Ωi+1(G )=Ω(G ) ≤ ζi(G=Ω(G )), then
we get easily Ωi+1(G ) ≤ ζi+1(G ), and the result follows. The converse follows from
Theorem 1.

Proof of Theorem 3. The result is true if i = 1, by Lemma 1. Assume i > 1 and
argue by induction on i. Let a; b ∈ G , with |a| = |b| = pi and write H = 〈a; b〉.
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Then api
= bpi

= 1, and H is a nilpotent p-group of class ≤ i by Lemma 2. Thus

api−1
; bpi−1 ∈ Ω(H ) ≤ Z (H ) and H=Ω(H ) ∈ Cp, by Lemma 1. Hence, by induction,

H=Ω(H ) has exponent pi−1, and H has exponent pi .

Proof of Theorem 5. If G ∈ Cp, then the result is true by Lemma 1. Conversely,
assume that G is locally nilpotent and Ω(G ) ≤ Z (G ), we show that G ∈ Cp. Assume
that there exist a; b ∈ G , with ap = bp and [a; b] �= 1, and choose a; b such that the
nilpotent class n > 1 of 〈a; b〉 is minimal. Then ap = (ab)p, and 〈a; ab〉 is nilpotent
of class < n, hence [a; ab] = 1, by minimality of n. Similarly, [b; ba] = 1, and n = 2.
Therefore, from ap = bp, we get (a−1b)p[a; b]p(p−1)=2 = 1, and (a−1b)p = 1. Then
a−1b ∈ Z (G ), and 〈a; b〉 is abelian, a contradiction.

Proof of Theorem 6. Assume G ∈ Cp. Then, by Theorem 3, the p-elements of
G form a normal subgroup P . We show that G=P ∈ Cp. For, let a; b ∈ G , and

assume apP = bpP . Then ap = bpc , with c ∈ P . Write |c | = pi , and H = 〈a; b〉.
Then N = 〈c〉H is a nilpotent p-group, of class ≤ i, and exponent pi , by Theorem 2.
Moreover, N has finite abelian subgroup rank, hence N is finite (see, for example, [11,
Corollary 2, p. 38]). Then H=CH (N ) is finite. Write |H=CH (N )| = m = phk, where p

does not divide k. Then (ap)m = (bp)md , with d ∈ N and (am)pi+1
= (bm)pi+1

. Hence
(ak)pi+1+h

= (bk)pi+1+h
and 〈ak; bk〉 is nilpotent, by Lemma 2. Then, by Lemma 1,

〈ak; bk〉P=P ∈ Cp, and from apP = bpP we get [ak; bk] ∈ P , and [a; b] ∈ P since p
and k are coprime.

Conversely, let ap = bp; a; b ∈ G . Then [a; b] ∈ P and 〈a; b〉′ is a finite p-group,
by Theorem 2. Then 〈a; b〉=Z (〈a; b〉) is a finite p-group, and 〈a; b〉 is nilpotent.
Hence 〈a; b〉 ∈ Cp, and [a; b] = 1.

Dedicated to Professor Mario Curzio on the occasion of his 70th birthday.
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