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Analisi funzionale. — Spectral properties of weakly almost periodic cosine functions. Nota
di Valentina Casarino, presentata (*) dal Socio E. Vesentini.

Abstract. — The spectral structure of the infinitesimal generator of a strongly continuous cosine
function of linear bounded operators is investigated, under assumptions on the almost periodic behaviour
of applications generated, in various ways, by C . Moreover, a first approach is presented to the analysis of
connection between cosine functions and dynamical systems.

Key words: Cosine functions; Asymptotically almost periodic applications; Dynamical systems.

Riassunto. — Funzioni coseno debolmente quasi periodiche. Si studia la struttura spettrale del generatore
infinitesimale di una funzione coseno fortemente continua di operatori lineari limitati, sotto ipotesi sul
comportamento quasi periodico di applicazioni generate, in diversi modi, da C . È, inoltre, presentato un
primo approccio all’analisi del legame fra funzioni coseno e sistemi dinamici.

The notion of asymptotic almost periodicity, introduced by M. Fréchet in 1941
for scalar-valued functions defined on a half-line, was extended to general vector-valued
maps and afterwards applied to functions generated, in various ways, by a semigroup
T : R+ → L(E) of linear bounded operators acting on a Banach space E , by W. M.
Ruess and W. H. Summers [25].

When applied to functions defined on the entire real line, this notion can often
be reduced to the classical definition of almost periodicity; for example, E. Vesentini
proved in [28] that, if U : R → L(E) is a uniformly bounded, strongly asymptotically
almost periodic group, then U is strongly almost periodic.

In the case of a cosine operator function, H. Henriquez proved [17] that every
asymptotically almost periodic cosine function is almost periodic on R, by showing
firstly that C is almost periodic if, and only if, C is asymptotically almost periodic
in the sense of Stepanov. Since an asymptotically almost periodic function is also
asymptotically almost periodic in the sense of Stepanov, then the equivalence between
asymptotical almost periodicity and almost periodicity for cosine functions follows.

This result can be improved: indeed, by using only cosine functional equation and
some elementary properties of almost periodic functions, analogous results to that of
H. Henriquez can be stated for a single orbit of C , that is for the map t �→ C (t )x0,
for some x0 ∈ E . In particular, it turns out that also in this case periodicity or almost
periodicity in asymptotical sense entail, respectively, periodicity or almost periodicity on
the entire real line.

This is particularly interesting at the light of the results obtained by E. Vesentini
in the semigroups’ framework; in [28] he described the constraints imposed on the

(*) Nella seduta del 24 aprile 1998.
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spectrum of the infinitesimal generator of a strongly continuous semigroup T by very
weak hypotheses on the almost periodic behaviour of the semigroup, for example by
the existence of some x ∈ E and λ ∈ E ′ for which the function t �→< T (t )x;λ >
is asymptotically almost periodic. As in the semigroups’ theory, it will be shown that
the only assumption, that the map t �→< C (t )x;λ > is asymptotically almost periodic
for some x ∈ E and some λ ∈ E ′, conditions the spectral structure of the infinitesimal
generator of C . In particular, if C is uniformly bounded (so that the spectrum of
X and the spectrum of the adjoint operator X � are contained in the real negative
semiaxis), it turns out that the squares of all frequencies of the map t �→< C (t )x;λ >,
up to factor −1, belong to pσ(X �); viceversa, for every ζ ∈ pσ(X �), there exist some
x ∈ E and some λ ∈ E ′, such that < x;λ >�= 0 and

√
−ζ is a frequency of the almost

periodic map t �→< C (t )x;λ >. This result is more exhaustive than the analogous
one for semigroups; in semigroups’ framework, it can be proved only that the set of
all frequencies of an asymptotically almost periodic map t �→< T (t )x;λ > is contained
in the intersection iR ∩

(
pσ(X ) ∪ rσ(X )

)
. From a technical point of view, the more

complete information obtained for a uniformly bounded cosine function, generated by
X , depends on the inclusion pσ(X ) ⊂ pσ(X ′), proved in Theorem 2.4.

It has to be observed that, though every infinitesimal generator X of a strongly
continuous cosine function C generates also a strongly continuous semigroup T , only
few results are in this case retrievable from the semigroups’ theory, since the weak or
strong almost periodicity of C doesn’t imply the same property for the corresponding
semigroup.

Since the mean ergodic theorem for cosine functions constitutes the main technical
tool in the proofs, several extensions of this theorem are discussed below. Moreover,
almost all of the results proved in this paper hold, with only small changes in the proof,
when the non constant function t �→< C (t )x;λ > is assumed to be, for some x ∈ E
and λ ∈ E ′, asymptotically almost periodic in the sense of Stepanov (for more details on
this class of almost periodic functions, for which continuity fails, and only measurability
and integrability in the sense of Lebesgue are required, see [9]).

In the last section, a first approach to the analysis of connection between dynamical
systems and cosine functions is presented. Starting from a dynamical system (Φ; K )
(K being a Hausdorff compact space and Φ being a continuous flow defined on it),
a cosine function C is built on a Banach space intrinsecally associated to the system.
In particular, the constraints, imposed on the spectral structure of the infinitesimal
generator of C by the existence of asymptotically stable points and of periodic or
almost periodic orbits for Φ, are investigated.

1. Preliminaries and notations

Throughout the paper E will denote a complex Banach space and E ′ the topological
dual of E . For x ∈ E and λ ∈ E ′, < x;λ > will denote the value of λ in x .

A function f : R → E is called periodic if there exists a real number τ > 0 such that
f (t + τ ) = f (t ) for every t ∈ R. A function f : R+ → E is said to be asymptotically
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periodic if there is some K ≥ 0 such that the restriction of f to [K; + ∞) is periodic.
Let J be either R or R

+
. A subset Λ of J is called relatively dense in J if there exists

a number l > 0 such that every interval of length l in J contains at least one number
from Λ.

A real number τ ∈ R \ {0} is called an ε-period for f : R → E if

(1.1) ||f (t + τ ) − f (t )|| ≤ ε for all t ∈ R.

The function f is called almost periodic if, for every ε > 0, the set of all ε-periods is
relatively dense in R.

Given a function f : J → E , the ω-translate of f is defined by fω(t ) = f (ω + t );
H (f ) = {fω : ω ∈ J} will denote the set of all translates of f .

Let Cb(J; E) denote the Banach space of all continuous bounded functions from J
to E endowed with the uniform norm.

S. Bochner characterized continuous almost periodic functions defined on R:

Theorem 1.1. Let f : R → E be a continuous function. For f to be almost periodic it is
necessary and sufficient that H (f ) is relatively compact in Cb(R; E).

For every almost periodic function f the limit

(1.2) lim
t→+∞

1
t

∫ t

0
f (s)ds

exists in E . For every almost periodic function f and every θ ∈ R the function t �→
�→ e−iθt f (t ) is almost periodic. Hence, the corresponding limit

(1.3) lim
t→+∞

1
t

∫ t

0
e−iθs f (s)ds

exists; it can be proved that it does not vanish for at most a countable set of values
of θ. These values are said the frequencies of f , and the corresponding values of the
limit are called the Fourier coefficients of f . The following property of almost periodic
functions will be used:

Lemma 1.2. Let E;F be Banach space. If φ : J → E is almost periodic and ψ : E → F
is continuous on R(φ), then ψ ◦ φ : J → F is almost periodic.

A function f : R
+
→ E is called asymptotically almost periodic if H (f ) is relatively

compact in Cb(R
+

; E).
If f is asymptotically almost periodic, the limit (1.3) exists for every θ ∈ R and

vanishes for all values of θ, with the possible exception of an at most countable set.
The values of θ for which the limit is non-zero and the corresponding values of (1.3)
are called again the frequencies and the Fourier coefficients of f .

The following decomposition theorem, due, in the general case, to W. M. Ruess
and to W. H. Summers, holds:
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Theorem 1.3. A function f ∈ Cb(R
+

; E) is asymptotically almost periodic if, and only if,
one of the following two equivalent conditions is satisfied :

1) there exist a unique almost periodic function g ∈ Cb(R; E) and a unique h ∈ Cb(R+; E),
vanishing at infinity, such that f = h + g|R+

;
2) for every ε > 0 there exist Λ > 0 and K ≥ 0 such that every interval of lenght Λ

contains some τ for which

||f (t + τ ) − f (t )|| ≤ ε

holds whenever t; t + τ ≥ K .

The functions g and h are called, respectively, the principal term and the correction
term of f .

2. Some spectral properties of cosine functions

Let L(E) be the Banach algebra of the linear bounded operators on E .
A cosine operator function is an application from the real line to L(E) satisfying the

relations:
1) C (t + s) + C (t − s) = 2C (t )C (s) for every t; s ∈ R;
2) C (0) = I .
A cosine function C is said to be strongly continuous if lim

t→0
C (t )x = x for every

x ∈ E .
If C is a strongly continuous cosine function, then S : R → L(E) defined by

S (t )x =

∫ t

0
C (s)xds for every x ∈ E and t ∈ R

is called the sine function associated to C .
Throughout this paper X : D(X ) ⊂ E → E will denote the infinitesimal generator of

a strongly continuous cosine function of linear bounded operators acting on a complex
Banach space E . ρ(X );σ(X ); pσ(X ); rσ(X ) and cσ(X ) will denote, respectively, the
resolvent set, spectrum, point spectrum, residual spectrum and continuous spectrum of
the operator X .

Set C ′(t ) = C (t )′ for every t ∈ R. C ′ defines a weak-star continuous cosine function
on E ′, which is not, in general, strongly continuous. Consider now the closed subspace

E� = {λ ∈ E ′ : lim
t→0

C ′(t )λ = λ }:

From the definition it follows that E� is C ′(t )-invariant; moreover, E� is weak-star
dense in E ′ and E� = D(X ′). Set C �(t ) = C ′(t )|E� for every t ∈ R: C � defines a
strongly continuous cosine function on the Banach space E�, which will be called the
adjoint cosine function.

If E is reflexive, then E� is weak dense, and therefore, as a consequence of the
Hahn-Banach theorem, dense in norm. Since E� is closed, it holds:
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Proposition 2.1. If E is reflexive, C ′ is a strongly continuous cosine function on E ′.

If X � is the infinitesimal generator of C �, it can be shown that X � is the part of
X ′ in E�, i:e: X � is the restriction of X ′ to the linear space

D(X �) = {λ ∈ D(X ′) : X ′λ ∈ E�}:

E. Vesentini has recently proved that, if X is a linear operator with dense domain in
E , then pσ(X ′) = kσ(X ), where the compression spectrum kσ is defined by

kσ(X ) = {ζ ∈ C : R(X − ζI ) �= E}:

Moreover, he proves also that, if X generates a strongly continuous semigroup, then

(2.1) pσ(X �) = pσ(X ′) = kσ(X ):

Since, if X is the infinitesimal generator of a strongly continuous cosine function, X
is also the generator of a strongly continuous semigroup, then (2.1) a fortiori holds
when X generates a strongly continuous cosine function. The analogous relation for
pσ(C �(t )) e pσ(C ′(t )), t ∈ R, requires, on the contrary, a direct proof.

Proposition 2.2. If C is a strongly continuous cosine function, then

pσ(C �(t )) = pσ(C ′(t )) for every t ∈ R:

Proof. Since C �(t ) is the restriction of C ′(t ) to E�, then pσ(C �(t )) ⊂ pσ(C ′(t ))
for every t ∈ R. Conversely, let ζ ∈ C be such that C ′(t )λ = ζλ, for some λ ∈ E ′ \{0}.
Let τ ∈ R be such that τ 2 is in r(X ), and therefore in r(X ′). Then (τ 2I − X ′)−1λ =

= [(τ 2I − X )−1]′λ ∈ D(X ′) ⊂ E�. For every x ∈ E it holds:

< x; C ′(t )(τ 2I − X ′)−1λ > =< (τ 2I − X )−1C (t )x;λ >=

=< C (t )(τ 2I − X )−1x;λ >=< x; (τ 2I − X ′)−1C ′(t )λ >;

whence C ′(t )(τ 2I − X ′)−1λ = (τ 2I − X ′)−1C ′(t )λ for every t ∈ R.
Hence C ′(t )(τ 2I − X ′)−1λ = ζ(τ 2I − X ′)−1λ; whence the thesis follows since

C �(t ) = C ′(t ) on E�.

B. Nagy proved [22] that

cosh(t
√

pσ(X )) = pσ(C (t )) for every t ∈ R;

which, combined with (2.1), yields the following

Proposition 2.3. If X is the infinitesimal generator of a strongly continuous cosine function
C , then

cosh(t
√

kσ(X )) = kσ(C (t )) for all t ∈ R:

If X is the infinitesimal generator of a strongly continuous, uniformly bounded
semigroup of linear bounded operators on E , J. van Neerven [23] has recently proved
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that

pσ(X ) ∩ iR ⊆ pσ(X ′) ∩ iR:

An analogous, stronger result will now be obtained in the framework of cosine functions.

Consider the space BUC (R) consisting of all complex-valued, bounded, uniformly
continuous functions, endowed with the sup-norm.

Fix θ ∈ R. Let Ψo be a functional in BUC (R)′ such that

< cos(•θ); Ψo >= 1:

For every n = 1; 2; ::: define

< f;ψn > =
1
n

∫ n

0
<

f (· + s) + f (· − s)
2

; Ψo > ds if θ = 0 and

< f;ψn > =
2
n

∫ n

0
cos(θs) <

f (· + s) + f (· − s)
2

; Ψo > ds if θ �= 0.

ψn belong to BUC (R)′ and, moreover, they satisfy ||ψn|| ≤ 2||Ψo|| for every n =

= 1; 2; :::, if θ �= 0 and ||ψn|| ≤ ||Ψo|| for every n = 1; 2; :::, if θ = 0.
It holds

< 1;ψn >=
1
n

∫ n

0
<

1(· + s) + 1(· − s)
2

; Ψo > ds = 1

for θ = 0, while, for every n = 1; 2; ::: and θ �= 0, one gets:

< cos(θ·);ψn > =
2
n

∫ n

0
cos(θs) <

cos θ(· + s) + cos θ(· − s)
2

; Ψo > ds =

=
2
n

∫ n

0
cos(θs) < cos(θ·) cos(θs); Ψo > ds =

=
2
n

∫ n

0
cos2(θs) < cos(θ·); Ψo > ds =

=
2
n

∫ n

0
cos2(θs)ds = 1 +

sin(θn) cos(θn)
θn

:

Since the unit ball of a dual Banach space is weak* compact, there exists a subsequence
{ψnk

} such that ψnk
+ Ψ. If θ �= 0, the weak*-cluster point Ψ is such that

< cos(θ·); Ψ >= lim
k→+∞

< cos(θ·);ψnk
>= lim

k→+∞

(
1 +

sin(θnk) cos(θnk)
θnk

)
= 1:

If θ = 0 the equality < 1; Ψ >= 1 follows trivially from the definition of ψnk
.
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Moreover, for every f ∈ C(K ), θ ∈ R and t ∈ R one has

<
f (· + t ) + f (· − t )

2
; Ψ >= lim

k→+∞
<

f (· + t ) + f (· − t )
2

;ψnk
>=

= lim
k→+∞

1
2nk

∫ nk

0
cos(θs) < f (· + t + s) + f (· + t − s) +

+ f (· − t + s) + f (· − t − s); Ψo > ds =

= lim
k→+∞

1
2nk

[∫ nk+t

t

cos[θ(s − t )] < f (· + s); Ψo > ds +

+

∫ nk−t

−t

cos[θ(s + t )] < f (· + s); Ψo > ds +

−
∫ t−nk

t

cos[θ(t − s)] < f (· + s); Ψo > ds +

−
∫ −t−nk

−t

cos[θ(s + t )] < f (· + s); Ψo > ds

]
=

lim
k→+∞

1
2nk

[∫ t+nk

t−nk

cos[θ(s − t )] < f (· + s); Ψo > ds +

+

∫ −t+nk

−t−nk

cos[θ(s + t )] < f (· − s); Ψo > ds

]
=

= lim
k→+∞

1
2nk

· cos(θt )
∫ t+nk

t−nk

cos(θs) < f (· + s) + f (· − s); Ψo > ds =

= lim
k→+∞

cos(θt ) < f;ψnk
>= cos(θt ) < f; Ψ > :

A functional Ψ ∈ BUC (R)′, such that < cos(θ·); Ψ >= 1 and fulfilling the property

<
f (· + t ) + f (· − t )

2
; Ψ >= cos(θt ) < f; Ψ >

for every f ∈ C(K ) and t ∈ R will be called a cosine invariant mean, in analogy to the
definition of left or right invariant means.

Theorem 2.4. Let C be a strongly continuous uniformly bounded cosine function on a
Banach space E . Then

pσ(X ) ⊂ pσ(X ′) and rσ(X ) ∪ pσ(X ) = pσ(X ′):

Proof. Let −θ2 ∈ R− belong to pσ(X ). It will be assumed θ �= 0; the case in which
θ = 0 is very similar and easier.

Let x0 ∈ D(X ) be such that Xx0 = −θ2x0. Suppose θ > 0. That implies [10] that
C (t )x0 = cos(θt )x0 for every t ∈ R.

Let λ0 ∈ E ′ \ {0} be such that < x0;λ0 >= 1.
Consider a cosine invariant mean Ψ ∈ BUC (R)′; let µ0 ∈ E ′ be a form defined by

< x;µ0 >= Ψ
(

< C (·)x;λ0 >
)
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for all x ∈ E . Observe that the map t �→< C (·)x;λ > belongs to BUC (R) for every
x ∈ E and λ ∈ E ′.

Then for all x ∈ E from the invariance property satisfied by Ψ it follows

< x; C ′(t )µ0 > =< C (t )x;µ0 >=

= Ψ
(

< C (t )C (·)x;λ0 >
)

=

= Ψ
(

<
C (· + t ) + C (· − t )

2
x;λ0 >

)
=

= cos(θt )Ψ(< C (·)x;λ0 >) = cos(θt ) < x;µ0 > :

Thus C ′(t )µ0 = cos(θt )µ0 for every t ∈ R, and therefore µ0 ∈ D(X ′) with X ′µ0 =

= −θ2µ0. Finally, µ0 does not vanish identically, since

< x0;µ0 > = Ψ
(

< C (·)x0;λ0 >
)

=

= Ψ
(

< cos(θ·)x0;λ0 >
)

= Ψ
(

cos(θ·)
)

= 1;

and that proves the first part of thesis. The last equality follows from the first one and
from the inclusions

rσ(X ) ⊂ pσ(X �) ⊂ pσ(X ) ∪ rσ(X ):

Theorem 2.4 implies, in particular, that, if −θ2 is, for some θ ∈ R, an eigenvalue
of X , then the operator X − θ2I , which is not injective, can neither be surjective.

3. Almost periodic orbits

A strongly continuous cosine function is said to be strongly asymptotically periodic or
strongly asymptotically almost periodic if for every x ∈ E the function, from R+ to E ,
t �→ C|R+

(t )x is, respectively, asymptotically periodic or asymptotically almost periodic.
The function t �→< C (t )x;λ >, for some x ∈ E and λ ∈ E ′, is said to be asymp-

totically almost periodic if its restriction to R+ is asymptotically almost periodic.
As remarked in the introduction, H. Henriquez proved [17] that every asymptotically

almost periodic cosine function is almost periodic on R. Now, the same equivalence
will be shown for a single orbit of C .

Proposition 3.1. Let C be a strongly continuous cosine function.
1) If the function t �→ C (t )x0 is asymptotically periodic for some x0 ∈ E , then the map

t �→ C (t )x0 is periodic.
2) If the function t �→ C (t )x0 is asymptotically almost periodic for some x0 ∈ E , then

t �→ C (t )x0 is almost periodic.

Proof. By hypothesis there are some K ≥ 0 and τ > 0 such that the function
t �→ C (t )x0 is periodic on [K; + ∞) with period τ . Let t ∈ [0; + ∞) and let s > K
be fixed. Then:

C (t )x0 = 2C (s)C (t + s)x0 − C (t + 2s)x0

C (t + τ )x0 = 2C (s)C (t + s + τ )x0 − C (t + 2s + τ )x0:
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The second equation is equivalent to

C (t + τ )x0 = 2C (s)C (t + s)x0 − C (t + 2s)x0;

whence the equality C (t )x0 = C (t + τ )x0 for every t ≥ 0 follows. Since C is even as
function of t , the function t �→ C (t )x0 is periodic.

2) For every ε > 0 there is some K = K (ε; x) such that the restriction to [K; + ∞)
of the function t �→ C (t )x is almost periodic. Fix s > K . The functional equation

C (t )x = 2C (s)C (t + s)x − C (t + 2s)x

and a standard application of Lemma 1.2 show that it is possible to choose K = 0.
Then, since C is even, the function t �→ C (t )x is almost periodic.

Point 1) of Proposition 3.1 shows, in particular, that the theory of asymptotically
periodic cosine functions is reduced to that of periodic cosine functions, which is treated
in [14].

In the weak framework, stronger assumptions must be assumed in order to get
analogous results.

Proposition 3.2. Let C be a strongly continuous cosine function and let λ0 ∈ E ′ \ {0}.
1) If the function t �→< C (t )x;λ0 > is asymptotically periodic for every x ∈ D(X ), then

t �→< C (t )x;λ0 > is periodic for every x ∈ D(X ).
2) If the function t �→< C (t )x;λ0 > is asymptotically almost periodic for every x ∈ D(X ),

then t �→< C (t )x;λ0 > is almost periodic for every x ∈ D(X ).
3) If the function t �→< C (t )x;λ0 > is asymptotically almost periodic for every x ∈ D(X )

and if C is uniformly bounded, then t �→< C (t )x;λ0 > is almost periodic for every x ∈ E .

Proof. 1) If x ∈ D(X ), then C (t )x ∈ D(X ) for every t ∈ R. To get the thesis, it
suffices to apply the functional equation as in Proposition 3.1 and to recall that C is
even.

2) The proof is very similar to that of point 1).

3) Let x be in E . Then there is a sequence {xn} ⊂ D(X ), such that xn → x . Thus

| < C (t )x;λ > − < C (t )xn;λ > | ≤ M ||λ|| · ||x − xn||;

if ||C (t )|| ≤ M for every t ∈ R, and therefore the function t �→< C (t )x;λ >, as
uniform limit on R of the sequence of almost periodic functions < C (t )xn;λ >, is
almost periodic.

In particular, if C is a weakly asymptotically almost periodic cosine function, i.e. if
the functions t �→< C (t )x;λ > are asymptotically almost periodic for all x ∈ E and
all λ ∈ E ′, C is weakly almost periodic. As a consequence of Proposition 3 in [10],
under the additional hypothesis that E is weakly sequentially complete, C is an almost
periodic function.
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4. Ergodic properties

Some ergodic properties of cosine functions will now be discussed, mainly in four
situations: in the general case of a Banach space E , in the framework of a weakly
sequentially complete Banach space E , in the case of a dual of a Banach space, and,
finally, in the case in which the range of the infinitesimal generator is closed.

Let C : R → L(E) be a strongly continuous, uniformly bounded cosine function, i.e.
||C (t )|| ≤ M for all t ∈ R and a finite M ≥ 1.

Let θ be a real number. Set

Fθ = {x ∈ E : lim
t→+∞

1
t

∫ t

0
cos (θs)C (s)xds exists in E}:

It is possible to prove that the linear space Fθ is closed for all θ ∈ R. For every x ∈ Fθ

define

(4.1) P
θ =





lim
t→+∞

1
t

∫ t

0
C (s)xds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos (θs)C (s)xds if θ �= 0:

Observe that, for any b ∈ R and x ∈ Fθ:

lim
t→+∞

1
t

∫ t

b

cos (θs)C (s)xds = lim
t→+∞

1
t

(∫ t

0
−
∫ b

0

)
cos(θs)C (s)xds =

= lim
t→+∞

1
t

∫ t

0
cos (θs)C (s)xds;

and therefore for any b ∈ R and x ∈ Fθ it results

Pθ
x =





lim
t→+∞

1
t

∫ t

b

C (s)xds if θ = 0

lim
t→+∞

2
t

∫ t

b

cos (θs)C (s)xds if θ �= 0.

The following theorem collects some known facts about Pθ
, which will be useful in

the following and which are only recalled, and some new results.

Theorem 4.1. Let C : R → L(E) be a strongly continuous, uniformly bounded cosine
function on a complex Banach space E . Let P

θ
and F

θ
be defined as above. Then

1) C (t )Fθ ⊂ Fθ and PθC (t ) = cos(θt )Pθ = C (t )Pθ on Fθ ;
2) Pθ is a linear projection operator in Fθ, with ||Pθ|| ≤ 2M ;

3) R(X + θ2I ) ⊂ kerPθ ;
4) RPθ = ker(X + θ2I ) and Pθ |ker(X +θ2I ) = I ;

5) F
θ

= ker(X + θ2I ) ⊕R(X + θ2I ) and kerP
θ

= R(X + θ2I ).
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Proof. 1) It is proved in [10].
2) First of all, for every x ∈ F0 it holds ||P0x || ≤ M ||x || and 1) implies

P0
2x = lim

t→+∞

1
t

∫ t

0
C (s)P0xds = P0x ;

if θ �= 0, then ||P
θ
x || ≤ 2M ||x || for every x ∈ F

θ
and

Pθ
2x = lim

t→+∞

2
t

∫ t

0
cos (θs)PθC (s)xds = lim

t→+∞

2
t

∫ t

0
cos2(θs)Pθxds = Pθx;

so that for every θ ∈ R Pθ is a projection in Fθ and Pθ ∈ L(Fθ; E).
3) For θ = 0, it is proved in [16], for θ �= 0 a proof can be found in [24].
4) First of all, it shall be proved that ker(X + θ2I ) ⊂ RPθ. In the case θ = 0 this

fact was proved in [16]. It will be shown now in the case θ �= 0.
If u ∈ ker(X + θ2I ), I. Cioranescu proved that:

(4.2) C (t )u = cos(θt )u for all t ∈ R and for all θ ∈ R.

Therefore, if u ∈ ker(X + θ2I ), with θ �= 0, it holds:

P
θu = lim

t→+∞

2
t

∫ t

0
cos2(θs)uds = u:

If y ∈ R(Pθ) with y = Pθx for some x ∈ Fθ, the same computations as in [24] show
that (X + θ2I )Pθx = 0, i:e: R(Pθ) ⊂ ker(X + θ2I ).

5) From 3) and 4) it follows that ker(X + θ2I ) ⊕R(X + θ2I ) is contained in Fθ.
To prove the converse inclusion, suppose, by contradiction, that there exists x ∈ Fθ, x �∈
�∈ ker(X + θ2I ) ⊕R(X + θ2I ). By the Hahn-Banach theorem there is some λ∈E ′ such

that <x;λ>�= 0 and λ = 0 on ker(X + θ2I )⊕R(X + θ2I ). Since < (X + θ2I )x;λ>=0
for all x ∈ D(X ), one has λ ∈ D(X ′ + θ2I ) and < x; X ′λ + θ2λ>= 0 for all x ∈ D(X ),
i:e: X ′λ = −θ2λ.

Then X ′λ = −θ2λ ∈ D(X ′), whence λ ∈ D(X �) and X �λ = −θ2λ:

Suppose θ > 0. Since C �(t )λ = cosh t
√

−θ2λ = cos(θt )λ, it results:

< Pθx;λ >= lim
t→+∞

2
t

∫ t

0
cos(θs) < C (s)x;λ > ds =

= lim
t→+∞

2
t

∫ t

0
cos(θs) < x; C �(s)λ > ds = lim

t→+∞

2
t

∫ t

0
cos2(θs) < x;λ > ds =< x;λ > :

From 4) the equality < P
θx;λ >= 0 follows; this yields a contradiction, since

< x;λ >�= 0 by hypothesis.
Finally, since Pθ is a projector in Fθ, it holds: Fθ = R(Pθ) ⊕ kerPθ. It has been

proved that R(Pθ) = ker(X + θ2I ) and Fθ = ker(X + θ2I ) ⊕ R(X + θ2I ); it results,

therefore, kerP
θ = R(X + θ2I ).
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For a strongly continuous and uniformly bounded semigroup T generated by X ,
it is possible to prove the mean ergodic theorem for T and then to apply it to the
semigroup T (t ) = e−iθt T (t ), generated by X − iθI , for every θ ∈ R, which is also
uniformly bounded. If C is a strongly continuous, uniformly bounded cosine function
generated by X , then X + θ2I generates a strongly continuous cosine function, whose
uniform boundedness cannot be guaranteed; therefore, an explicit proof of the ergodic
theorem for the cosine function generated by X + θ2I is necessary.

3) and 4) of Theorem 4.1 imply, in particular, that

(4.3) ker(X + θ2I ) ∩R(X + θ2I ) = {0}:

It is well known that, if X is the infinitesimal generator of a strongly continuous, uni-
formly bounded semigroup, then kerX ∩RX = {0}: Observe that (4.3) isn’t retrievable
from the analogous result for the semigroups, since the semigroup generated by X + θ2I
isn’t uniformly bounded.

Let now E be a complex, weakly sequentially complete Banach space and let the
strongly continuous cosine function C : R → L(E) be uniformly bounded. The integral∫ t

0 cos (θs) < C (s)x;λ > ds is, for all θ and t in R, x ∈ E , λ ∈ E ′, a Riemann integral.
Fix θ ∈ R. If the limit

(4.4) lim
t→+∞

1
t

∫ t

0
cos (θs) < C (s)x;λ > ds

exists for all λ ∈ E ′, then there is some Q θx ∈ E such that

< Q
θx;λ >=





lim
t→+∞

1
t

∫ t

0
< C (s)x;λ > ds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos (θs) < C (s)x;λ > ds if θ �= 0

for every λ ∈ E ′. Let

G
θ

= {x ∈ E : lim
t→+∞

1
t

∫ t

0
cos (θs) < C (s)x;λ > ds exists for every λ ∈ E ′}:

The properties of Q θ are illustrated in the following theorem.

Theorem 4.2. Let C : R → L(E) be a strongly continuous, uniformly bounded cosine
function on a weakly sequentially complete complex Banach space E . Let Q θ and Gθ be defined
as above. Then for every θ ∈ R it holds :
1) C (t )Gθ ⊂ Gθ and Q θC (t ) = cos(θt )Q θ = C (t )Q θ on Gθ for all t ∈ R;
2) Q θ is a linear projection operator in Gθ, with ||Q θ|| ≤ 2M ;

3) R(X + θ2I ) ⊂ kerQ
θ
, ker(X + θ2I ) ⊂ G

θ
and Q

θ |ker(X +θ2I ) = I ;

4) RQ θ = ker(X + θ2I );

5) Gθ = ker(X + θ2I ) ⊕R(X + θ2I ) and kerQ θ = R(X + θ2I );
6) Pθ = Q θ on Gθ.
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Proof. 1) If x ∈ G
θ
, then

< C (τ )Q θx;λ >=< Q θx; C (τ )′λ >= lim
t→+∞

2
t

∫ t

0
cos(θs) < C (s)x; C (τ )′λ > ds =

= lim
t→+∞

1
t

∫ t

−t

e−iθs < C (τ )C (s)x;λ > ds =

= lim
t→+∞

1
2t

∫ t

−t

e−iθs < [C (s + τ ) + C (s − τ )]x;λ > ds =

= lim
t→+∞

1
2t

[
eiθτ

∫ τ+t

τ−t

e−iθu < C (u)x;λ > du + e−iθτ

∫ t−τ

−t−τ

e−iθu < C (u)x;λ > du
]

=

= (eiθτ + e−iθτ )=2 < Q θx;λ >= cos(θτ ) < Q θx;λ >

for all λ ∈ E ′, and therefore

(4.5) C (τ )Q θx = cos(θτ )Q θx

for all τ and θ ∈ R. Analogously

< Q θC (τ )x;λ >= lim
t→+∞

2
t

∫ t

0
cos(θs) < C (s)C (τ )x;λ > ds = cos(θτ ) < Q θx;λ >

and therefore, if the limit (4.4) exists for every λ ∈ E ′, then Q θC (τ )x exists and
Q

θC (τ )x = cos(θτ )Q θx:
2) It follows from 1) and the uniform boundedness of C .
3) On ker(X + θ2I )⊕R(X + θ2I ) Pθ exists, so that Q θ exists also and it coincides

with P
θ, whence 3) follows.

4) Q
θx ∈ D(X ) and (X + θ2I )Q θx = 0, since, if τ ∈ R \ {0} it results

(2=τ 2)
(
C (τ ) − I

)
Q θx = (2=τ 2)

(
cos(θτ ) − 1

)
Q θx;

which tends to −θ2Q θx when τ → 0. The other inclusion is given by 3).

5) It will now be shown that ker(X + θ2I ) ⊕ R(X + θ2I ) is the set of all x ∈
∈ E for which the limit (4.4) exists for all λ ∈ E ′. If there exists x ∈ Gθ, x �∈
�∈ ker(X + θ2I ) ⊕R(X + θ2I ), then there is some λ ∈ E ′ such that < x;λ >�= 0 and
λ vanishes on ker(X + θ2I ) ⊕R(X + θ2I ). Hence, exactly as in 5) of Theorem 4.1, it
results λ ∈ D(X �) with X �λ = −θ2λ; and therefore

< Q
θx;λ >= lim

t→+∞

2
t

∫ t

0
cos2(θs) < x;λ > ds =< x;λ >;

which yields a contradiction, since Q θx ∈ ker(X + θ2I ) and λ vanishes on ker(X + θ2I ).
6) Obvious by 5).

In virtue of the fact that the dual of a Banach space E ′ is always sequentially weak-
star complete (as a consequence of the Banach-Steinhaus theorem), a version of the
mean ergodic theorem on the dual space of E can be proved. Set

H′
θ =

{
λ ∈ E ′ : lim

t→+∞

1
t

∫ t

0
cos (θs) < C (s)x;λ > ds exists for every x ∈ E

}
:
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Observe that H′
θ

= H′
−θ

for every θ ∈ R.
If λ ∈ H′

θ for some θ ∈ R, then there is Rθλ ∈ E ′ such that:

< x; Rθ
λ >=





lim
t→+∞

1
t

∫ t

0
< C (s)x;λ > ds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos (θs) < C (s)x;λ > ds if θ �= 0

for every x ∈ E .

Theorem 4.3. Let C : R → L(E) be a strongly continuous, uniformly bounded cosine
function on a complex Banach space E . Let Rθ and H′

θ be defined as above, for any real
number θ. Then
1) R

θC (t )′λ = C (t )′Rθλ = cos(θt )Rθλ for every λ ∈ H′
θ ;

2) R
θ is a linear projection operator in H′

θ, with ||Rθλ|| ≤ 2M ||λ|| for every λ ∈ H′
θ ;

3) RRθ = ker(X � + θ2I ) ;
4) H′

θ = R(Rθ) ⊕ kerRθ and R(Rθ) ∩ kerRθ = {0} ;

5) ker(X � + θ2I ) ⊕R(X � + θ2I ) ⊂ H′
θ and

Rθλ =





lim
t→+∞

1
t

∫ t

0
C �(s)λds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos(θs)C �(s)λds if θ �= 0

on ker(X � + θ2I ) ⊕R(X � + θ2I ).

Proof. 1) The proof is very similar to that of 1) in Theorem 4.2.
2) If λ ∈ H′

θ, θ �= 0, 1) implies that

< x; R
θλ >= lim

t→+∞

2
t

∫ t

0
cos(θs) < x; C ′(s)Rθλ > ds =

= lim
t→+∞

2
t

∫ t

0
cos(θs) < C (s)x; Rθλ > ds for every x ∈ E ,

and therefore Rθλ ∈ H′
θ and R2

θ = Rθ. A similar computation shows that, if λ ∈ H′
0,

then R0λ ∈ H ′
0 and R2

0 = R0.
Finally, the uniform boundedness of C yields the estimate ||R

θ
|| ≤ 2M for every

θ ∈ R.
3) Let x ∈ D(X ) and λ ∈ H′

θ, for some θ �= 0. Then, for every t �= 0 it results:

(2=t 2) < C (t )x − x; Rθλ >= (2=t 2)(cos(θt ) − 1) < x; Rθλ >;

and therefore, by passing to the limit for t → 0, it results < (X + θ2I )x; Rθλ >= 0
for every x ∈ D(X ). Thus Rθλ ∈ D(X ′ + θ2I ) and < x; (X ′ + θ2I )Rθλ >= 0 for all
x ∈ D(X ), whence R

θ
λ ∈ D(X �) and (X � + θ2I )R

θ
λ = 0. Viceversa, if (X �+θ2I )λ =0

for some λ ∈ D(X �) \ {0}, then, by supposing θ �= 0, C �(t )λ = cos(θt )λ for every
t ∈ R, and therefore

lim
t→+∞

2
t

∫ t

0
cos(θs) < C (s)x;λ > ds =< x;λ >
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for every x ∈ E . Thus λ ∈ H′
θ

and R
θ
λ = λ. An analogous computation for the case

θ = 0 concludes the proof of 3).
4) Obvious, since R

θ is a projector in H′
θ.

5) It is obvious, since C � is a strongly continuous, uniformly bounded cosine
function on E�.

It is worth noticing that, in the particular case of a reflexive Banach space E , R
θ

is
the projection operator defined in E ′ by

R
θλ =





lim
t→+∞

1
t

∫ t

0
C ′(s)λds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos(θs)C ′(s)λds if θ �= 0.

Corollary 4.4. If the limit (4:4) exists for every x ∈ E and λ ∈ E�, then H′
θ = E� and

R
θ ∈ L(E�).

Finally, a situation will be illustrated, in which the operator Pθ, introduced at the
beginning of this section, converges uniformly.

Lemma 4.5. For every ζ ∈ ρ(X + θ2I ) it holds

[I − ζR(ζ; X + θ2I )]E = R(X + θ2I ):

Proof. Since [ζI − (X + θ2I )]R(ζ; X + θ2I )y = y for every ζ ∈ ρ(X + θ2I ) and for
every y ∈ E , then

[I − ζR(ζ; X + θ2I )]y = −(X + θ2I )R(ζ; X + θ2I )y:

Conversely, if y = (X + θ2I )x for some x ∈ D(X ), then

y = [ζI − (X + θ2I )]R(ζ; X + θ2I )y = [ζI − (X + θ2I )](ζR(ζ; X + θ2I )x − x) =

= −[I − ζR(ζ; X + θ2I )][ζI − (X + θ2I )]x:

Theorem 4.6. Let C : R → L(E) be a strongly continuous, uniformly bounded cosine
function on a complex Banach space E , generated by X . Let θ be a real number. If
R(X + θ2I ) is closed, then E = ker(X + θ2I ) ⊕R(X + θ2I ).

If, in addition, θ is such that

(4.6) lim
n→∞

||ζnR(ζ; X + θ2I )n||
n

= 0;

then the operator P
θ

defined by (4:1) converges uniformly on E .

Proof. First of all, it will be shown that E = ker(X + θ2I ) ⊕R(X + θ2I ). Observe
that

(4.7) ker(X ′ + θ2I ) ∩R(X ′ + θ2I ) ⊂ ker(X � + θ2I ) ∩R(X � + θ2I ):
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In fact, if λ ∈ ker(X ′ + θ2I ), then X ′λ = −θ2λ, so that λ ∈ D(X �) and X �λ = −θ2λ:

Let now µ ∈ D(X ′) be such that λ = (X ′ + θ2I )µ: Since µ ∈ D(X ′ + θ2I ) and
(X ′ + θ2I )µ ∈ D(X ′ + θ2I ), µ belongs to D(X � + θ2I ), and, moreover, λ = (X � +

+ θ2I )µ, whence (4.7) follows.

Now, by the closed range theorem of S. Banach, one deduces:
(
ker(X + θ2I ) ⊕R(X + θ2I )

)⊥ ⊂ ker(X + θ2I )⊥ ∩R(X + θ2I )⊥ =

= R(X ′ + θ2I ) ∩ ker(X ′ + θ2I ) = {0};

since X � is the infinitesimal generator of a strongly continuous, uniformly bounded
cosine function and therefore (4.3) can be applied. This implies E = ker(X + θ2I ) ⊕
⊕R(X + θ2I ):

Suppose now that (4.6) holds. If u ∈ ker(X + θ2I ), then point 4) of Theorem 4.1
implies P

θu = u. It will now be proved the uniform convergence of Pθ on R(X + θ2I ).

X + θ2I is the infinitesimal generator of a strongly continuous cosine function,
which will be denoted by C̃ .

Since C̃ (t )(R(X + θ2I )) ⊂ R(X + θ2I ), then {C̃ (t )|R(X +θ2I )}, t ∈ R, defines a
strongly continuous cosine function on the Banach space R(X + θ2I ), generated by the
operator Y

θ = (X + θ2I )|D(X )∩R(X +θ2I ).

It is easy to check that Yθ is a closed operator. It will now be proved that Yθ is
one-to-one.

Suppose Yθy = 0 for some y ∈ D(Yθ). Let ζ be a real number in ρ(Yθ). Since
(ζI − Yθ)R(ζ; Yθ)y = y, then [I − ζR(ζ; Yθ)]y = 0.

Lemma 4.5 entails that R(I − ζR(ζ; X + θ2I )) is closed. Under this hypothesis, it
is well known from the proof of the uniform ergodic theorem in the discrete case [19],
that the operator I − ζR(ζ; X + θ2I ) is invertible, in virtue of (4.6), on R(X + θ2I ).

Since [I −ζR(ζ; Y
θ
)]y = 0 implies [I −ζR(ζ; (X + θ2I )|R(X +θ2I ))]y = 0, then y = 0

by the consideration above, and therefore Y
θ is one-to-one.

It will now be proved that R(Yθ) = R(X + θ2I ). First of all, observe that

[I − ζR(ζ; X + θ2I )]R(X + θ2I ) ⊂ R(Y
θ
);

since, if y = [I −ζR(ζ; X + θ2I )](X + θ2I )x for some x ∈ D(X ), then y ∈ R(X + θ2I ).
Lemma 4.5 implies [I − ζR(ζ; X + θ2I )]x ∈ R(X + θ2I ), and therefore y ∈ R(Yθ).
Now, since Y

θ is a restriction of X + θ2I , it holds:

R(X + θ2I ) ⊇ R(Yθ) ⊇ [I − ζR(ζ; X + θ2I )]R(X + θ2I ) ⊇ R(X + θ2I );

where the last inclusion follows from the invertibility of I −ζR(ζ; X + θ2I ) on R(X +

+ θ2I ). Thus R(Yθ) = R(X + θ2I ) and therefore, by the closed graph theorem, the
operator Y

θ
−1, which is closed since Yθ is closed, is continuous on R(X + θ2I ).

Let v ∈ R(X + θ2I ); there exists some z ∈ D(Yθ) such that v = (X + θ2I )z = Yθz .
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Since, if z ∈ D(X ), then S (s)z ∈ D(X ) and
d
ds

C (s)z = XS (s)z = S (s)Xz , one has:

1
t

∫ t

0
cos(θs)C (s)vds =

1
t

∫ t

0
cos(θs)C (s)(X + θ2I )zds =

=
1
t

∫ t

0

{
d
ds

[
d
ds

C (s)z cos(θs)
]

+ θ sin(θs)XS (s)z + cos(θs)θ2C (s)z
}

ds =

=
1
t

(
XS (t )z cos(θt )

)
+

1
t

∫ t

0

[
θ sin(θs)XS (s)z + cos(θs)θ2C (s)z

]
ds =

=
1
t

(
XS (t )z cos(θt )

)
+

1
t

∫ t

0

[
d
ds

(
C (s)z · θ · sin(θs)

)]
=

=
1
t

(
XS (t )z cos(θt )

)
+

1
t
θ sin(θt )C (t )z;

whence

||1
t

∫ t

0
cos(θs)C (s)vds|| ≤ 1

t
||XS (t )z || + |θ|

t
||C (t )z ||:

Now, the Kallmann and Rota’s inequality (1) [18] yields the estimate

sup
t≥0

||XS (t )z || ≤ 2sup
t≥0

||C (t )Xz ||1=2 · sup
t≥0

||C (t )z ||1=2 ≤

≤ 2sup
t≥0

[
||C (t )v|| + θ2||C (t )z ||

]1=2
sup
t≥0

||C (t )z ||1=2;

(1) This inequality asserts, in principle, that, if a function is small and its second derivative is small,
then its first derivative is necessarily small. For complex-valued functions, defined on (0; + ∞), E. Landau
proved firstly that:

||f ′||2∞ ≤ 4 ||f ′′||∞ · ||f ||∞;

afterwards Hardy, Littlewood and Pólya extended this result to the norm L2. Finally, Kallman and Rota
generalized, as much as possible, the Banach space norm, with respect to which the inequality holds; they
proved, moreover, the following result: if T be a strongly continuous contraction semigroup on a Banach
space, then, for every x ∈ D(X 2), it holds:

||Xx ||2 ≤ 4 ||X 2x || · ||x ||:

By applying this result to the infinitesimal generator of the translations group on BUC (R; E) (i:e: on the
space of all uniformly continuous, bounded maps on R, with values in E), one gets the following inequality
[18]:

(
sup
t≥0

||X S (t )x ||
)2 ≤ 4

(
sup
t≥0

||C (t ) Xx ||
)
·
(
sup
t≥0

||C (t )x ||
)

for every x ∈ D(X ):
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whence

||1
t

sup
t≥0

∫ t

0
cos(θs)C (s)vds|| ≤ 2

t
sup
t≥0

[
||C (t )v|| + θ2||C (t )z ||

]1=2
sup
t≥0

||C (t )z ||1=2 +

+
|θ|
t

sup
t≥0

||C (t )z || ≤ M
t

[
2||Y

θ

−1||1=2 ·
√

1 + θ2||Y
θ

−1|| + |θ| · ||Y
θ

−1||
]
||v||;

and therefore P
θ converges to zero uniformly on R(X + θ2I ).

Remark 4.7. Observe that for θ = 0 condition (4.6) is trivially satisfied.

Proposition 4.8. Let C be a strongly continuous cosine function on a Banach space E . If
R(X + θ2I ) is closed for some θ ∈ R, then R(X � + θ2I ) is closed.

Proof. It suffices to prove that R(X � + θ2I ) ⊂ R(X � + θ2I ).

Let λ ∈ R(X � + θ2I ), i:e: λ = lim
n→∞

(X � + θ2I )µn, with µn ∈ D(X �) for every

n ∈ N.
Thus λ = lim

n→∞
(X ′ + θ2I )µn and, since R(X ′ + θ2I ) is closed by the closed range

theorem, then there exists µ ∈ D(X ′) such that λ = (X ′ + θ2I )µ: Now µ ∈ D(X ′ +

+ θ2I ) and (X ′ + θ2I )µ ∈ D(X ′ + θ2I ), and therefore µ ∈ D(X � + θ2I ) and λ =

= (X � + θ2I )µ:

The uniform convergence of Pθ entails, in some cases, uniform convergence for the
projection operators Q

θ and Rθ.

Corollary 4.9. Let E be a weakly sequentially complete complex Banach space. Let C be
a strongly continuous, uniformly bounded cosine function on E , generated by X . Let θ be a
real number such that R(X + θ2I ) is closed and condition (4:6) holds. Then the operator Q θ

converges uniformly on E .

From Corollary 4.4 and Proposition 4.8 the following result immediately follows:

Corollary 4.10. If R(X + θ2I ) is closed for some θ ∈ R and if the limit (4:4) exists for
every x ∈ E and λ ∈ E�, then

H′
θ = ker(X � + θ2I ) ⊕R(X � + θ2I ):

If, in addition, θ is such that

lim
n→∞

||ζnR(ζ; X � + θ2I )n||
n

= 0;

then the operator Rθ converges uniformly on E� = H′
θ.

If C is a uniformly continuous cosine function, then, from the equality ||C ′(t )−I || =
= ||C (t )−I ||, the uniform continuity of C ′ follows, so that, in particular, C ′ is strongly
continuous and E ′ = E�. Thus Corollary 4.10 yields
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Corollary 4.11. If the following conditions hold :
1) C is a uniformly continuous cosine function ;
2) R(X + θ2I ) is closed for some θ ∈ R ;
3) the limit (4:4) exists for every x ∈ E and λ ∈ E� ;

then

E ′ = ker(X � + θ2I ) ⊕R(X � + θ2I ):

Recall that every strongly continuous cosine function on a Grothendieck space with
the Dunford-Pettis property is uniformly continuous [26]. Indeed, a little stronger result
can be proved; in particular, that, if C is a strongly continuous cosine function on a
Grothendieck space, then E ′ = E� and also E ′′ = E++. Thus the condition that E is a
Grothendieck space, combined with 2) and 3) of Corollary 4.10, suffices to decompose
the dual space E ′ as ker(X � + θ2I ) ⊕R(X � + θ2I ):

5. The reflexive case

For a strongly continuous, uniformly bounded semigroup T generated by X it is
well known [27] that, if the Banach space E is reflexive, then rσ(X ) ∩ iR = ∅:

An analogous result will now be shown for the intersection between the residual
spectrum of the infinitesimal generator X of a strongly continuous, uniformly bounded
cosine function and the real negative semiaxis. Since the spectrum of the infinitesimal
generator of a uniformly bounded cosine function is entirely contained in the real
negative semiaxis, this result will imply that the residual spectrum of X is empty.

Since the residual spectrum of X consists of all ζ ∈ C for which the operator ζI −X
is invertible, but its range is not dense, if −θ2 belongs to rσ(X ) for some θ ∈ R, then

ker(X + θ2I ) = {0} and R(X + θ2I ) �= E , whence the following result follows:

Lemma 5.1. Let X be a linear, densely defined operator on E .

If ker(X + θ2I ) ⊕R(X + θ2I ) = E , then −θ2 �∈ rσ(X ).
If, in addition, X generates a uniformly bounded cosine function, then rσ(X ) = ∅:

Goldstein, Radin and Showalter [16] proved that, if E is reflexive and X is the
infinitesimal generator of a strongly continuous, uniformly bounded semigroup, then

(5.1) E = kerX ⊕RX :

Under the above assumptions, for every θ ∈ R X −iθI generates the strongly continuous,
uniformly bounded semigroup {e−iθt T (t )}, and therefore it holds also E = ker(X −
−iθI ) ⊕R(X − iθI ). If X generates a strongly continuous, uniformly bounded cosine
function, then it generates also a strongly continuous, uniformly bounded semigroup, so
that (5.1) holds. However, since the semigroup generated by X + θ2I is not uniformly
bounded, in order to prove a formula like (5.1) for X + θ2I a direct proof is necessary;
the technique is, however, very similar to that of [16].
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Lemma 5.2. If X is the infinitesimal generator of a strongly continuous, uniformly bounded
cosine function C : R → L(E), and if E is reflexive, then for every θ ∈ R it results

ker(X + θ2I ) ⊕R(X + θ2I ) = E :

Proof. By identifying E ′′ with E one obtains the following equalities:

R(X + θ2I )
⊥

= ker(X ′ + θ2I );

R(X ′ + θ2I )
⊥

= ker(X + θ2I );

R(X ′ + θ2I ) = ker(X + θ2I )⊥;

where R(X + θ2I )
⊥

denotes the annihilator of R(X + θ2I ).
Consider now

(
ker(X + θ2I ) ⊕R(X + θ2I )

)⊥ ⊂ ker(X + θ2I )⊥ ∩R(X + θ2I )
⊥

=

= R(X ′ + θ2I ) ∩ ker(X ′ + θ2I ):

Since E is reflexive, then X ′ generates a strongly continuous and uniformly bounded co-

sine function. If ker(X + θ2I )⊕R(X + θ2I ) �= E , then R(X ′ + θ2I )∩ ker(X ′ + θ2I ) �=
�= {0}, which, combined with (4.3) applied to X ′, yields a contradiction.

Lemma 5.2 and Theorem 4.6 imply the following

Proposition 5.3. Let X be the infinitesimal generator of a strongly continuous, uniformly
bounded cosine function C on a Banach space E .

If θ ∈ R is such that R(X + θ2I ) is closed, then −θ2 �∈ rσ(X ):

6. Spectrum and frequencies

The mean ergodic theorems proved in n. 3 will now be applied in order to relate
the spectrum of X and the frequencies of the asymptotical almost periodic functions
associated to a cosine function C .

If X represents the infinitesimal generator of a strongly continuous, uniformly
bounded cosine function, the following notations will be used:

±
√

−pσ(X ) = {ζ ∈ R : −ζ2 ∈ pσ(X ) } and

±
√(

− pσ(X )
)
∪
(
− rσ(X )

)
= {ζ ∈ R : −ζ2 ∈ pσ(X ) ∪ rσ(X ) }:

Theorem 6.1. Let C be a strongly continuous, uniformly bounded cosine function.
1) If there are x ∈ E and λ ∈ E ′ such that the function t �→< C (t )x;λ > is a non

constant, asymptotically almost periodic function, then the set of frequencies of this function is

contained in ±
√(

− pσ(X �)
)
.
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2) Conversely, for every −θ2 ∈ pσ(X �), with θ ∈ R, there are x ∈ D(X ) and λ ∈ E ′,
such that < x;λ >�= 0 and θ and −θ are frequencies of the periodic function t �→
�→< C (t )x;λ >.

Proof. 1) Let θ ∈ R be a frequency of some asymptotically almost periodic function

t �→< C (t )x;λ >. If −θ2 ∈ cσ(X )∪ρ(X ) for some θ ∈ R \ {0}, then R(X + θ2I ) = E .
Since for every θ ∈ R ker(X + θ2I ) ∩R(X + θ2I ) = {0}, it results ker(X + θ2I ) = {0}
and therefore also R(Pθ) = {0}. Now:

lim
t→+∞

1
t

∫ t

0
cos(θs)<C (s)x;λ >ds =< lim

t→+∞

1
t

∫ t

0
cos(θs)C (s)xds;λ>=

1
2

<Pθx;λ>= 0;

and therefore θ cannot be a frequency of the function t �→< C (t )x;λ >. An analogous
computation for θ = 0 shows that the set of frequencies of this function is contained

in ±
√(

− pσ(X )
)
∪
(
− rσ(X )

)
, and therefore, by Theorem 2.4, it is contained in

±
√(

− pσ(X �)
)
.

2) If θ ∈ R is such that −θ2 ∈ pσ(X �), then there is some λ ∈ D(X �) \ {0} such
that X �λ = −θ2λ, and, therefore, if θ > 0 C �(t )λ = cos(θt )λ for every t ∈ R. Hence
the function t �→ C �(t )λ is either constant (if θ = 0) or periodic of period 2π=θ:

Since the set {y ∈ E :< y;λ >�= 0} is open and non empty and since D(X )
is dense in E , there exists x ∈ D(X ) such that < x;λ >�= 0. Now the map t �→
�→< C (t )x;λ >=< x; C (t )′λ >=< x; C �(t )λ > is either a scalar valued periodic
function with period 2π=θ, if θ �= 0, or a constant.

In virtue of Theorem 2.4 and of Lemma 5.2, the first part of Theorem 6.1 can be
slightly improved when E is reflexive:

Theorem 6.2. If E is reflexive, C is uniformly bounded and for some x ∈ E and λ ∈ E ′

the function t �→< C (t )x;λ > is a non constant asymptotically almost periodic function, then
the set of the frequencies of this function is a subset of ±

√
−pσ(X ).

Theorem 4.6 also yields

Corollary 6.3. If C is uniformly bounded, if for some x ∈ E and λ ∈ E ′ the function
t �→< C (t )x;λ > is a non constant, asymptotically almost periodic function and if θ ∈ R is a
frequency of this map such that R(X + θ2I ) is closed, then θ ∈ ±

√
−pσ(X ).

Suppose now C weakly asymptotically almost periodic (and therefore weakly almost
periodic). By a routine application of the Banach-Steinhaus theorem, C is uniformly
bounded. Moreover the limit

lim
t→+∞

1
t

∫ t

0
cos (θs) < C (s)x;λ > ds

exists for all x ∈ E and λ ∈ E ′. By the mean ergodic theorem in weakly sequentially
complete Banach spaces, one gets

E = ker(X + θ2I ) ⊕R(X + θ2I )
for every θ ∈ R.
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Thus it holds:

Theorem 6.4. If E is weakly sequentially complete and C is a strongly continuous, weakly

asymptotically almost periodic function, then for every θ ∈ R E = ker(X + θ2I )⊕R(X + θ2I ).

In that case, Lemma 5.1 entails that rσ(X ) = ∅.
Suppose the function t �→< C (t )x;λ > be asymptotically almost periodic (and

therefore almost periodic) for every x ∈ E and λ ∈ E�. From Corollary 4.4 the
following result follows:

Proposition 6.5. If C is uniformly bounded and t �→< C (t )x;λ > is asymptotically
almost periodic for every x ∈ E and λ ∈ E�, then the frequencies of t �→< C (t )x;λ > are

contained in ±
√

−pσ(X �).

The definition of index of a complex number with respect to an operator yields
a criterion, establishing if a real number can be a frequency for some asymptotically
almost periodic map, associated to a cosine function C .

A complex number ζ is said to be of index ν (where ν is a positive integer) with
respect to a linear operator X in case (X − ζI )ν+1 ≡ 0 implies (X − ζI )ν ≡ 0 and there
is x0 such that (X − ζI )νx0 = 0 and (X − ζI )ν−1x0 �= 0.

ζ has index zero if , by definition, X − ζI has an inverse. If no such integer ν

exists, ζ is said to be of infinite index.

Theorem 6.6. Let C be a strongly continuous and uniformly bounded cosine function on a

complex Banach space E and let E = ker(X + θ2I ) ⊕ R(X + θ2I ) for some θ ∈ R. Then
−θ2 is of index 0 or 1 with respect to X + θ2I .

If −θ2 is of index 0, then ±θ cannot be a frequency for any asymptotically almost periodic
function t �→< C (t )x;λ >, with x ∈ E and λ ∈ E ′.

If −θ2 has index 1, then −θ2 belongs to pσ(X ) and θ or −θ is a frequency of t �→ C (t )x ,
for some x ∈ E .

Proof. If (X + θ2I )2x = 0 for some x ∈ D(X 2), then (X + θ2I )x ∈ ker(X +

+ θ2I ) ∩R(X + θ2I ), so that from (4.3) (X + θ2I )x = 0 follows.
Suppose now that −θ2 is of index 0. Then X + θ2I has an inverse, and therefore

ker(X + θ2I ) = {0}. Since E = ker(X + θ2I ) ⊕R(X + θ2I ), then −θ2 doesn’t belong
to rσ(X ), and therefore −θ2 ∈ cσ(X ) ∪ ρ(X ). Theorem 6.1 yields now the thesis.

If −θ2 has index 1, then −θ2 ∈ pσ(X ) and there is some x ∈ E such that θ or −θ
is a frequency of a periodic function t �→ C (t )x .

7. Harmonic analysis of cosine functions

It will now be shown that, in some cases, it is possible to bound from below the
distance between eigenvalues of X and X ′.

Lemma 7.1. Let C be a strongly continuous cosine function on a Banach space E , generated
by X . Let ζ be a complex number. If :
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(i ) there exist x0 ∈ D(X ) and λ0 ∈ D(X �) such that < x0;λ0 >�= 0, and either x0 is an
eigenvector of X with eigenvalue ζ or λ0 is an eigenvector of X � with eigenvalue ζ ;

(ii ) the function t �→< C (t )x0;λ0 > is asymptotically almost periodic with inclusion length Λ ;

then ζ is a real negative number and, if ζ = −θ2 for some θ ∈ R, then

(7.1) θ2 > π2=Λ2:

Proof. By hypothesis, the function t �→< C (t )x0;λ0 > is asymptotically almost
periodic. i:e: for every ε > 0 there are Λ = Λ(x0;λ0; ε) and K = K (x0;λ0; ε) ≥ 0
such that, for all s ≥ 0, the interval [s; s + Λ] contains some τ for which:

(7.2) | < C (t + τ )x0;λ0 > − < C (t )x0;λ0 > | ≤ ε

whenever t; t + τ ≥ K .
For ε > 0 and s ∈ [0; + ∞) let τ ∈ [s; s + Λ] be such that (7.2) holds, i.e.:

(7.3) | cosh[(t + τ )
√
ζ] − cosh(t

√
ζ)| ≤ ε

| < x0;λ0 > | for all t ≥ K :

Setting
√
ζ = α + iβ, for some real α and β, then the condition (7.3) is equivalent

to:

e2(t+τ )α + e−2(t+τ )α + e2tα + e−2tα + 2 cos[2(t + τ )β] +

+ 2 cos(2tβ) − 2eτα{e2tα cos(τβ) + cos[(2t + τ )β]} +

−2e−τα{e−2tα cos(τβ) + cos[(2t + τ )β]} ≤ 4ε2| < x0;λ0 > |−2

which yields:

|e2(t+τ )α − 2eτα{e2tα cos(τβ) + cos[(2t + τ )β]}| ≤ 4ε2| < x0;λ0 > |−2 +

+ 2e−τα{e−2tα cos(τβ) + cos[(2t + τ )β]} +

− 2e−2(t+τ )α− e2tα− e−2tα− 2 cos[2β(t + τ )] − 2 cos[2tβ]:

Now suppose α > 0; if t ≥ K is fixed and s (and therefore also τ ) tends to + ∞, the
right member of the inequality is bounded, while, since for τ sufficiently great one has:

e2(t+τ )α ≥ 2eτα
∣∣e2tα cos(τβ) + cos[(2t + τ )β]

∣∣;
the left one increases to infinity; this yields a contradiction. The same argument works
also in the case α < 0, so that α = 0 and therefore ζ ∈ R−:

Set ζ = −θ2, for some θ ∈ R. There is no loss of generality by taking θ > 0. Then
(7.3) becomes

| cos[(t + τ )θ] − cos(tθ)| ≤ ε| < x0;λ0 > |−1 for all t; t + τ ≥ K :

If N is the least positive integer for which 2Nπ=θ > K , the last inequality yields

| cos τθ − 1| ≤ ε| < x0;λ0 > |−1;

which, exactly as in [28], by choosing 0 < ε <
√

2| < x0;λ0 > |, leads to the estimate
θ > π=Λ, whence θ2 > π2=Λ2:



200 v. casarino

Let now the infinitesimal generator of a strongly continuous cosine function C be
such that for any ϕ ∈ R the operator X + ϕ2I generates a strongly continuous cosine
function C

ϕ for which every application

t �→< Cϕ(t )x;λ >

is asymptotically almost periodic for every x ∈ D(X ) and λ ∈ D(X �).
This entails that for every ϕ ∈ R and for every ε > 0 an inclusion length Λ =

= Λ(ε; x;λ;ϕ) is determined. The following result shall be proved:

Proposition 7.2. Let C be a strongly continuous, uniformly bounded cosine function on
E , generated by X , fulfilling condition i) of Lemma 7.1. Suppose, moreover :

1) for every ϕ such that −ϕ2 ∈ pσ(X �) the map t �→< Cϕ(t )x;λ > is asymptotically
almost periodic for every x ∈ D(X ) and λ ∈ D(X �) ;

2) for some 0 < ε <
√

2| < x0;λ0 > | it holds

sup{Λ(ε; x0;λ0;ϕ) : ϕ ∈ pσ(X �)} <+ ∞:

Then pσ(X �) (and therefore also pσ(X )) has no accumulation point.

Proof. Since i ) of Lemma 7.1 holds, −θ2 + ϕ2 is an eigenvalue of X � + ϕ2 with
eigenvector λ0. Since, moreover, the map t �→< Cϕ(t )x0;λ0 > is asymptotically almost
periodic, from Lemma 7.1 the constraint ϕ2 − θ2 < 0 follows.

Now, by applying Lemma 7.1 to X � + ϕ2, whose point spectrum is the image of
pσ(X �) under the translation by ϕ2, the thesis follows.

Observe that, if the set pσ ( X � ) has no accumulation point, then pσ ( X � ) =

= pσ(X ) ∪ (rσ(X )) is discrete. That implies that also pσ(X ) ∪ (rσ(X )) is discrete, and,
in particular, that it is at most countable. It will be seen in the following which
constraints on the spectral structure of X are imposed by the enumerability of the set
pσ(X ) ∪ (rσ(X )).

From now on, it will be assumed that pσ(X ) ∪ (rσ(X )) is at most enumerable;
in particular, under that hypothesis the harmonic analysis of cosine functions can be
studied; the main tool is the convergence theorem that Harald Bohr proved at the end
of his book [7]: if f : R → C is an almost periodic function with Fourier spectrum
{θn} linearly independent over the rational numbers, then the Fourier series

+∞∑

n=0

aneiθn•

of f converges to f uniformly on R.
Let C be a strongly continuous cosine function such that C is weakly asymptotically

almost periodic, and therefore weakly almost periodic. If θn is a frequency for the
function t �→< C (t )x;λ >, for some x ∈ E and λ ∈ E ′, then also −θn is a frequency
for the same map and the Fourier coefficients corresponding to the frequencies are
equal. From what has been proved in n. 6, if {θ0; θ1; :::} is an ordering of the set(√

−pσ(X ) ∪ (−rσ(X ))
)
∩ R+, then the Fourier series of the almost periodic function
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t �→< C (t )x;λ > is, for every x ∈ E and every λ ∈ E�:

(7.4)
+∞∑

n=0

< x; R
θn
λ > cos (θnt );

so that the following result holds:

Corollary 7.3. If the set
√

−pσ(X ) ∪ (−rσ(X )) is linearly indipendent over the rational
numbers, then the Fourier series (7:4) converges uniformly on R to the almost periodic function
t �→< C (t )x;λ > for every x ∈ E and λ ∈ E�.

A. G. Baskakov [7] showed with a counterexample that the convergence theorem
of Harald Bohr cannot be extended, in its original form, to the case of functions with
values in infinite-dimensional Hilbert spaces. Nevertheless, E. Vesentini showed that, in
the case of a group of linear bounded operators on a Banach space E , the original proof
of H. Bohr can be adapted to the vectorial framework, at least when E is reflexive.

In the case of cosine functions, suppose E reflexive and C strongly almost periodic.
The Fourier series of t �→ C (t )x is given by

+∞∑

n=1

cos θntPθn
x for every x ∈ E :

Suppose that the set
√

−pσ(X ) is linearly independent over the rationals. Then the
same calculations as in [28] lead to the estimate

N∑

n=0

||Pθn
x || < 2M ||x ||;

which, combined with the uniqueness theorem for Banach space-valued functions, yields:

Theorem 7.4. If E is reflexive, C is strongly almost periodic and the set +
√

−pσ(X ) is
linearly independent over the rationals, then the Fourier series

+∞∑

n=1

cos θntPθn
x

converges uniformly on R to t �→ C (t )x .

8. Uniform almost periodicity

Let the uniformly bounded cosine function C be such that the family of functions
{t �→< C (t )x;λ >: x ∈ E; λ ∈ E�} is uniformly asymptotically almost periodic, i:e:
for every ε > 0 there is some Λ > 0 such that for every s ≥ 0 the interval [s; s + Λ]
contains some τ for which

| < C (t + τ )x;λ > − < C (t )x;λ > | ≤ ε

for every x ∈ E , λ ∈ E�, t; t + τ ≥ K , for some K = K (ε; x;λ).
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A similar reasoning as in n.2 shows that if C is uniformly bounded and such that
the family {t �→< C (t )x;λ >: x ∈ E; λ ∈ E�} is uniformly asymptotically almost
periodic, then this family is uniformly almost periodic.

If θ ∈ R is a frequency and τε is an ε-period of t �→< C (t )x;λ >, then, as a
consequence of Theorem 6.1, −θ2 ∈ pσ(X �). Thus there is some µ ∈ D(X �) \ {0}
such that

(8.1) | cos(τεθ) − 1| ≤ ε=| < y;µ > |−1

is fulfilled for every x ∈ E .
(8.1) yields:

(8.2) |eiτεθ − 1|2 = |eiτεθ + e−iτεθ − 2| = 2| cos(τεθ) − 1| ≤ 2ε| < y;µ > |−1:

A subset of real numbers Λ is called harmonious if for each ε > 0 the set
∩λ∈Λ{τ : |eiτλ − 1| ≤ ε} is relatively dense in R.

From (8.2) and from the fact that the set of all ε-periods is relatively dense, it
follows the following

Theorem 8.1. If C is a uniformly bounded cosine function and if the family {t �→
�→< C (t )x;λ >: x ∈ E; λ ∈ E�} is uniformly asymptotically almost periodic, the set√

−pσ(X �) (and, therefore, also the set
√

−pσ(X )) is harmonious.

Suppose now E be weakly sequentially complete; let C be a weakly asymptoti-
cally almost periodic cosine function, and therefore strongly almost periodic, such that√

−pσ(X ) is a harmonious set. I. Cioranescu has proved that an almost periodic cosine
function such that

√
−pσ(X ) is harmonious is uniformly almost periodic. Therefore

the following result holds:

Theorem 8.2. Let E be weakly sequentially complete and let the strongly continuous cosine
function C be weakly asymptotically almost periodic. If

√
−pσ(X ) is a harmonious set, then

the function t �→ C (t ) from R to L(E) is almost periodic. Moreover, its spectrum consists of
simple poles of the resolvent function of X .

In the particular context of Hilbert spaces, in analogy to what E. Vesentini proved
[28] for strongly continuous semigroups, it is possible to weaken the hypothesis on
the harmoniousity of the point spectrum of X , in order to prove the uniform almost
periodicity of C .

Let H be a complex Hilbert space, endowed with an inner product ( | ) and let
C be a strongly continuous cosine function such that the function t �→ (C (t )x |x) is
asymptotically almost periodic for all x ∈ H.

The identity

4
(
C (t )x |y

)
=
(
C (t )(x + y)|(x + y)

)
+

(
C (t )(x − y)|(x − y)

)
+

+ i
((

C (t )(x + iy)|(x + iy)
)
−
(
C (t )(x − iy)|(x − iy)

))

shows that C is weakly asymptotically almost periodic and therefore strongly almost
periodic, i:e: the functions t �→ C (t )x are a.p. for all x ∈ H and the set of eigenvectors
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of the infinitesimal generator X is total in H, that is it spans a dense subset in H.
H. Fattorini [11] investigated the structure of almost periodic cosine functions in

Hilbert spaces and he proved the representation

C (t )x =
∑

θ≥0

cos t
√
θP

θ
x

for every x ∈ H. The spectral projections Pθ are mutually orthogonal. If H is separable,
the projectors P

θ don’t vanish only for at most a countable set of values of θ and,
therefore, by the Baire theorem there is a dense subset D ⊂ H such that, if x ∈ D, then
P
θx �= 0 for all θ, i.e.:

(Pθx |x) = (P 2
θ x |x) = (Pθx |Pθx) = ||Pθx ||2 > 0:

Assume, as in [28], the following condition:

j1) there is an open, non empty set A ⊂ H such that, if x ∈ A, then the set of the frequencies
of the almost periodic function t �→ (C (t )x |x) is harmonious.

Since A∩D �= ∅,
√

−pσ(X ) is a harmonious set. By Theorem 6.2 for every x ∈ H
the set of frequencies of the E-valued almost periodic functions t �→ C (t )x is contained
in ±

√
−pσ(X ), which is a harmonious set. Bart and Goldberg proved that if Λ is an

harmonious set, then every bounded subset of the Banach space of the vector-valued
almost periodic functions, whose frequencies are contained in Λ, is uniformly almost
periodic. Since C is uniformly bounded, the set

{t �→ C (t )x : ||x || ≤ 1}

is bounded, hence, by the result above, it is uniformly almost periodic, i.e. the function
t �→ C (t ) from R to L(H) is a.p.

Therefore the following result can be stated:

Theorem 8.3. Let H be a separable Hilbert space. If C : R → L(H) is a strongly
continuous, uniformly bounded cosine function such that t �→ (C (t )x |x) is asymptotically
almost periodic for all x ∈ H and if j1) holds, then

1) the function t �→ C (t ) from R to L(H) is an almost periodic function ;

2) the set
√

−pσ(X ) is harmonious ;

3) every point of σ(X ) is a simple pole of the resolvent operator.

9. Dynamical systems and cosine functions

Let K be a compact metric space. Let Φ : R×K → K be a continuous flow, i:e: for
every t ∈ R the mapping Φt defined by Φt (x) = Φ(t; x) for every x ∈ K is continuous
and satisfies:

1) Φs ◦ Φt = Φs+t for every s; t ∈ R;
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2) Φ0(x) = x for every x ∈ K .

Φ defines a strongly continuous cosine operator function C : R → L(C(K )), acting
on the Banach space C(K ) of all complex-valued continuous functions on K , endowed
with the sup-norm. C is expressed by:

C (t )f = (f ◦ Φt + f ◦ Φ−t )=2

for every f ∈ C(K ) and t ∈ R.

Some definitions of topological dynamics will now be collected.
Let x ∈ K . The set

O(x) = {Φt (x) : t ∈ R}

is called the orbit of x . The set

O+(x) = {Φt (x) : t ∈ R+}

is called the forward orbit of x .
If, given x ∈ K , there exists τ > 0 for which Φτ (x) = x and Φt (x) �= x for every

t ∈ (0; τ ), x is said to be a periodic point of Φ with period τ . If Φt (x) = x for every
t ≥ 0, x is called a fixed point of Φ.

If, given x ∈ K , there is some t0 > 0 for which Φt0
(x) is a periodic point of Φ, x

is called a preperiodic point or an eventually periodic point .
A point x ∈ K is said to be asymptotically periodic for the restriction of Φ to R+ if

there exists a periodic point y ∈ K for which

lim
t→+∞

d (Φt (x); Φt (y)) = 0:

The point x ∈ K is called asymptotically stable for the restriction of the flow Φ to R+

if, for every ε > 0 and K > 0 there exists some τ > K for which

d (Φτ (x); x) ≤ ε:

The non-wandering set Ω(Φ) of Φ consists of all points x ∈ K such that, for every
neighbourhood U of x and every K > 0, there exists some τ ≥ K for which

Φτ (U ) ∩ U �= ∅:

Let now d be a distance defining the metric topology of K . Consider the restriction
of the flow Φ to R

+
.

A point x ∈ K is said to be asymptotically almost periodic for that restriction if for
every ε > 0 there are t0 ≥ 0 and l > 0, for which every interval of length l in R

+

contains some τ such that

d (Φt+τ (x); Φt (x)) < ε

for all t ≥ t0.
The point x is said to be almost periodic for Φ if the condition above holds with

t0 = 0.
The previous definitions can be partially related [29, 30]:
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(1) every periodic point of Φ belongs to Ω(Φ);

(2) every preperiodic point is asymptotically periodic;

(3) all fixed points of Φ and all almost periodic points are asymptotically stable;

(4) every asymptotically stable point is non-wandering and the converse is true if Φ

is C -contractive, i:e: if there exists some C > 0 such that

d (Φt (u); Φt (v)) ≤ Cd (u; v)

for all t ∈ R and u; v ∈ K .

Let x ∈ K be such that the maps

t �→< C (t )f; δx >= (f (Φt (x)) + f (Φ−t (x)))=2

are asymptotically almost periodic on R+ for every f ∈ C(K ). In virtue of Proposi-
tion 3.2, the applications above are almost periodic on R for all f ∈ C(K ). For every
θ ∈ R the limit

lim
t→+∞

1
t

∫ t

0
cos (θs)

f (Φs(x)) + f (Φ−s(x))
2

ds

exists for all f ∈ C(K ), so that δx ∈ H′
θ.

As observed in n. 3, the weak-star sequential completeness of C(K )′ entails the
existence of a linear projector R

θ : H′
θ → C(K )′; in particular, let Rθδx ∈ C(K )′ be

defined by

< f; R
θδx >=





lim
t→+∞

1
t

∫ t

0
< C (s)f; δx > ds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos (θs) < C (s)f; δx > ds if θ �= 0

for every f ∈ C(K ).

Observe that R
θδx can be identified with a Borel measure on K , i:e:

∫
f dRθδx =





lim
t→+∞

1
t

∫ t

0
< C (s)f; δx > ds if θ = 0

lim
t→+∞

2
t

∫ t

0
cos (θs) < C (s)f; δx > ds if θ �= 0.

The following invariance result can be stated also by invoking properties of R
θ, illustrated

in Theorem 4.3. Here a more direct proof is presented.

Lemma 9.1. Fix θ ∈ R. For every t ∈ R, λ ∈ H′
θ

and f ∈ C(K ) it results

<
f ◦ Φt + f ◦ Φ−t

2
; Rθλ >= cos(θt ) < f; Rθλ > :
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Proof. Let f be in C(K ), t ∈ R and λ ∈ H′
θ
. If θ �= 0, it holds:

<
f ◦ Φt + f ◦ Φ−t

2
; Rθ

λ >=

= lim
a→+∞

1
a

∫ a

0
cos(θs) <

[
f ◦ Φt + f ◦ Φ−t

2
◦ Φs +

f ◦ Φt + f ◦ Φ−t

2
◦ Φ−s

]
;λ >ds =

= lim
a→+∞

1
2a

∫ a

0
cos(θs) < f ◦ Φt+s + f ◦ Φs−t + f ◦ Φt−s + f ◦ Φ−t−s;λ > ds =

= lim
a→+∞

1
2a

[∫ a+t

t

cos[θ(s−t )] <f ◦ Φs;λ> ds +

∫ a−t

−t

cos[θ(s + t )] <f ◦ Φs;λ>ds +

−
∫ t−a

t

cos[θ(t − s)] < f ◦ Φs;λ > ds −
∫ −t−a

−t

cos[θ(s + t )] < f ◦ Φs;λ > ds

]
=

= lim
a→+∞

1
2a

[∫ t+a

t−a

cos[θ(s − t )] < f ◦ Φs;λ > ds +

+

∫ −t+a

−t−a

cos[θ(s + t )] < f ◦ Φs;λ > ds

]
=

= lim
a→+∞

1
2a

[∫ t+a

t−a

cos[θ(s − t )] < f ◦ Φs + f ◦ Φ−s;λ > ds

]
=

= lim
a→+∞

1
2a

[
cos(θt )

∫ t+a

t−a

cos(θs) < f ◦ Φs + f ◦ Φ−s;λ > ds +

+ sin(θt )
∫ t+a

t−a

sin(θs) < f ◦ Φs + f ◦ Φ−s;λ > ds

]
=

= lim
a→+∞

1
2a

[
cos(θt )

∫ a

−a

cos(θs) < f ◦ Φs + f ◦ Φ−s;λ > ds +

+ sin(θt )
∫ a

−a

sin(θs) < f ◦ Φs + f ◦ Φ−s;λ > ds

]
=

= lim
a→+∞

1
a

cos(θt )
∫ a

−a

cos(θs) < C (s)f;λ > ds = cos(θt ) < f; R
θ
λ >;

where the last two equalities hold, since s �→ sin(θs) and s �→ cos(θs) are, respectively,
an odd and an even function.

A similar, easier computation for the case θ = 0 concludes the proof.

In particular, for every f ∈ C(K ), t ∈ R and θ ∈ R it holds

<
f ◦ Φt + f ◦ Φ−t

2
; Rθδx >= cos(θt ) < f; Rθδx > :

Observe that Rθ
δx is different from zero if, and only if, there exists some f ∈ C(K )\{0}

such that the application t �→< f; R
θ
δx > is asymptotically almost periodic, with θ as

a frequency. Theorem 6.1 entails that −θ2 ∈ pσ(X ) ∪ rσ(X ).
In the dynamical systems’ language, if the flow Φ satisfies the invariance property

< f ◦ Φt0
;µ >=< f;µ >
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for every f ∈ C(K ), for some t0 ∈ R \ {0} and for only one Borel probability measure,
Φt0

is said to be uniquely ergodic . Lemma 9.1 suggests a different invariance property
for Φ, from which some informations about the largest number of periodic orbits of Φ

will be deduced.

Theorem 9.2. Let Φ be a continuous flow on the compact Hausdorff space K . If, for some
t0 ∈ R \ {0}, there exists only one Borel probability measure µ on K satisfying the following
invariance property :

<
f ◦ Φt0

+ f ◦ Φ−t0

2
;µ >=< f;µ >

for every f ∈ C(K ), then Φ admits at most two periodic orbits.

Proof. First of all, observe that, if the maps t �→< C (t )f; δx > are asymptotically
almost periodic on R+ for every f ∈ C(K ), for some x ∈ K , then R0δx is a Borel
probability measure, such that

<
f ◦ Φs + f ◦ Φ−s

2
; R0δx >=< f; R0δx >;

for every s ∈ R, f ∈ C(K ). Moreover, the support of R0δx is the closure of the orbit of
x , O(x).

Suppose that there are x1 and x2 in K , x1 �= x2, such that Φτi
(xi) = xi , for some

τi > 0, i = 1; 2. Then the maps t →< C (t )f; δxi
>, i = 1; 2, are periodic for

every f ∈ C(K ) and the support of R0δxi
is O(xi), i = 1; 2. By hypothesis it results

R0δx1
= R0δx2

= µ, and therefore O(x1) = O(x2).

It will now be shown which constraints on the point spectrum of the infinitesimal
generator X of C are imposed by topological transitivity and by density of periodic
points of the flow Φ.

Recall that a flow Φ is said to be topologically transitive if there exists some x0 ∈ K ,
for which the orbit O(x0) is dense in K ; Φ is said to be one -sided topologically transitive
if 0+(x0) = K for some x0 ∈ K .

Proposition 9.3. Let Φ : R×K → K be a continuous flow on a compact Hausdorff space
K . If the restriction of Φ to R+ is topologically one-sided transitive and if the set of its periodic
points is dense in K , then, if there exist eigenvalues ζ of X for which dimCker(X − ζI ) = 1,
then they are rational multiples of some point in R−.

Proof. Suppose that the set of eigenvalues ζ of X for which dimCker(X − ζI ) = 1
is not empty. If ζ = −θ2 for some θ ∈ R, if f ∈ ker(X + θ2I ) and x0 is a periodic
point of X of period τ , then it results

f (x0) =
f (Φ

τ
(x0)) + f (Φ−τ

(x0))
2

= cos(τθ)f (x0);

and therefore either f (x0) = 0 or cos(τθ) = 1, i:e: τθ = 2n0π for some n0 ∈ Z.
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If −λ2 ∈ R− is another eigenvalue of X , such that dimCker(X − λI ) = 1, with
eigenfunction g , then it results:

g (x0) =
g (Φτ (x0)) + g (Φ−τ (x0))

2
= cos(τλ)g (x0);

so that either g (x0) = 0 or τλ = 2m0π for some m0 ∈ Z.
From the hypothesis that Φ is topologically transitive, it follows that the sets {x ∈ K :

f (x) �= 0} and {x ∈ K : g (x) �= 0} are open, dense subsets of K , so that f (x)g (x) �= 0
on a dense set of K , and therefore θ=λ = m0=n0, implying the thesis.

Observe that, in the particular case in which
√

pσ(X ) = pσ
√

X , the assumption that
dimCker(X −ζI ) = 1 is verified by every eigenvalue ζ of X . Indeed, the operator

√
X is

the infinitesimal generator of the strongly continuous group U on C(K ), expressed by

U (t )f = f ◦ Φt for every f ∈ C(K );

and E. Vesentini has proved [29] that, if k is an eigenvalue of
√

X , then dimCker(
√

X −
−kI ) = 1.

Theorem 9.4. Let Φ : R × K → K be a continuous flow. Let the following conditions
hold :

1) there is some x ∈ K for which the maps t �→< C (t )f; δx > are asymptotically almost
periodic (and therefore almost periodic) for every f ∈ C(K ) ;

2) there exists t0 �= 0 such that every eigenfunction of C (t0) generates a dense subspace of
C (t0).

Then, if θ is a frequency of the application t �→< C (t )f; δx >, for some f ∈ C(K ), there
exists n0 ∈ Z such that the point −(θ + 2πn0=s)2 belongs to pσ(X ).

Proof. Let θ ∈ R be frequency of the almost periodic application

t �→ (f (Φt (x)) + f (Φ−t (x)))=2

for some f ∈ C(K ): Thus Theorem 6.1 implies that −θ2 ∈ pσ(X ) ∪ rσ(X ).
Suppose that that there is s, which can be assumed without loss of generality, greater

than 0, such that

cos(θs) �∈ pσ(C (s)):

Let now ζ ∈ pσ(X ) and let g be a corresponding eigenvector, different from zero. The
invariance property of Lemma 9.1 and the spectral mapping theorem for cosine operator
functions imply:

cos(tθ) < g; Rθδx > =<
g (Φt (x)) + g (Φ−t (x))

2
; Rθδx >=

= cosh(t
√
ζ) < g; R

θ
δx >;

whence (cos tθ − cosh t
√
ζ) < g; Rθδx >= 0 for every t ∈ R. Hence either ζ = −θ2

or < g; Rθδx >= 0. Observe that −θ2 �∈ pσ(X ), since, by hypothesis, there is some
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s ∈ R \ {0} for which cos(θs) �∈ pσ(C (s)). Thus < g; R
θ
δx >= 0, this equality holding

for every eigenfunction of X . Now, condition 2) implies that R
θδx vanishes on a dense

subspace of C(K ), and therefore Rθδx = 0. That is absurd and therefore cos(θs) ∈
∈ pσ(C (s)) for every s ∈ R. Now fix s ∈ R. The spectral mapping theorem proved
by B. Nagy shows that there exists some n0 ∈ Z such that the point −(θ + 2πn0=s)2

belongs to pσ(X ).

Theorem 2.4 implies the following result.

Corollary 9.5. Under the same hypotheses of Theorem 9.4, if θ is a frequency of the
application t �→< C (t )f; δx >, for some f ∈ C(K ), there exists n0 ∈ Z such that the point
−(θ + 2πn0=s)2 belongs to pσ(X ′).

It is well known [29] that, if Φ is a C − contractive flow and if the point x
is asymptotically almost periodic for the restriction of Φ to R+, then x is an al-
most periodic point for the flow Φ. Thus Proposition 3.2 entails that the maps t �→
�→< C (t )f; δx > are almost periodic for every f ∈ C(K ). A direct proof of this fact is
given in the following

Lemma 9.6. Let x ∈ K be an asymptotically almost periodic point for the restriction to R+

of a continuous, C-contractive flow Φ. Then the maps

t �→
f ◦ Φt (x) + f ◦ Φ−t (x)

2

from R to C are almost periodic for every f ∈ C(K ).

Proof. Consider

|f (Φt+τ (x)) +f (Φ−t+τ (x)) − f (Φt (x)) − f (Φ−t (x))| ≤
≤ |f (Φt+τ (x)) − f (Φt (x))| + |f (Φ−t+τ (x)) − f (Φ−t (x))|:

Since K is compact, for every ε > 0 there exists δ > 0 such that for every x1; x2 ∈ K
with d (x1; x2) < δ, then |f (x1) − f (x2)| < ε: The first term in the inequality above is
obviously less then an arbitrarily small δ > 0 if t ≥ 0, since x is an almost periodic
point for Φ; since, moreover, d (Φ−t+τ

(x); Φ−t (x)) ≤ Cd (Φ
τ
(x); Φ(x)); also the second

one is less then δ, so that the thesis follows.

Lemma 9.7. Let x ∈ K be such that the maps

t �→
f ◦ Φt (x) + f ◦ Φ−t (x)

2

from R to C are almost periodic for every f ∈ C(K ). Then x is an asymptotically stable point
(and therefore x ∈ Ω(Φ)).

Proof. If x is not asymptotically stable, then there exists ε0 > 0 and K0 > 0 such
that for every t ≥ K0 it holds

d (Φt (x); x) > ε0:
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Let B the ball centered in x , with radius min(ε0; ε0=C ): Take a function f ∈ C(K )
such that Supp f ⊂ B and there exists some y ∈ B for which f (y) �= 0.

Observe that

d (Φ−t (x); x) ≥ 1
C

d (Φt ◦ Φ−t (x); Φt (x)) =

=
1
C

d (Φt (x); x) >
ε0

C

for every t ≥ K . Thus

lim
a→+∞

1
a

∫ a

0
cos (θt )

f ◦ Φt (x) + f ◦ Φ−t (x)
2

dt = 0

for every θ ∈ R, entailing that the frequencies of the almost periodic function t �→
�→ (f ◦ Φt (x) + f ◦ Φ−t (x))=2 vanish. Then f is constant, yielding a contradiction.

Corollary 9.8. If the cosine function C is weakly almost periodic, then every point of K
is asymptotically stable.
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