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Analisi matematica. — On the existence of infinitely many solutions for a class of semilinear
elliptic equations in RN . Nota di Francesca Alessio, Paolo Caldiroli e Piero Montec-

chiari, presentata (*) dal Corrisp. A. Ambrosetti.

Abstract. — We show, by variational methods, that there exists a set A open and dense in {a ∈
∈ L∞(RN ) : a ≥ 0} such that if a ∈ A then the problem −∆u + u = a(x)|u|p−1u, u ∈ H 1(RN ), with p
subcritical (or more general nonlinearities), admits infinitely many solutions.

Key words: Semilinear elliptic equations; Locally compact case; Minimax arguments; Multiplicity of
solutions; Genericity.

Riassunto. — Sull’esistenza di infinite soluzioni per una classe di equazioni ellittiche semilineari su RN .
Usando metodi variazionali, si dimostra che esiste un insieme A aperto e denso in {a ∈ L∞(RN ) : a ≥ 0}
tale che per ogni a ∈ A il problema −∆u + u = a(x)|u|p−1u, u ∈ H 1(RN ), con p sottocritico (o con
nonlinearità più generali), ammette infinite soluzioni.

1. Statement of the result

In this Note we state a result concerning the existence of infinitely many solutions
for a class of semilinear elliptic problems of the form

(Pa) −∆u + u = a(x)f (u) ; u ∈ H 1(RN )

where a ∈ L∞(RN ), with ess inf a > 0, and f : R → R satisfies:

(f 1) f ∈ C 1(R),
(f 2) there exists C > 0 such that |f (t )| ≤ C (1 + |t |p) for any t ∈ R, where p ∈

∈ (1; (N + 2)=(N − 2)) if N ≥ 3 and p > 1 if N = 1; 2,
(f 3) there exists θ > 2 such that 0 < θF (t ) ≤ f (t )t for any t �= 0, where F (t ) =

=
∫ t

0 f (s) ds,
(f 4) f (t )=t < f ′(t ) for any t �= 0.

Note that f (t ) = |t |p−1t verifies (f 1)–(f 4) whenever p ∈ (1; (N + 2)=(N − 2)) if
N ≥ 3 or p > 1 if N = 1; 2.

Such kind of problem has been widely studied with variational methods and its
main feature is given by a lack of global compactness due to the unboundedness of the
domain. Indeed the imbedding of H 1(RN ) in L2(RN ) is not compact and the Palais
Smale condition fails.

The existence of nontrivial solutions of (Pa) strongly depends on the behaviour of
a. We refer to [6-9, 15, 18, 27, 28] for existence results in the case in which a is a
positive constant or a(x) → a∞ > 0 as |x | → ∞.

(*) Nella seduta del 13 marzo 1998.
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When a is periodic, the invariance under translations permits to prove existence,
[24], and also multiplicity results, as in [1, 5, 13, 22], where, applying a technique
developed in [26], infinitely many solutions (distinct up to translations) are found.

Multiplicity results have been obtained also without periodicity or asymptotic as-
sumptions on a, in some «perturbative» settings, where concentration phenomena occur
and a localization procedure can be used to get some compactness in the problem. We
mention for instance [3, 4, 10-12, 14, 17, 19, 20, 23, 25].

Although some non existence examples are known (see [16]) we show that the
existence of infinitely many solutions for the problem (Pa) is a generic property with
respect to a ∈ L∞(RN ) with a ≥ 0 a.e. in RN . Precisely we prove

Theorem 1.1. Let f : R → R satisfy (f 1)-(f 4). Then there exists a set A open and dense
in {a ∈ L∞(RN ) : a(x) ≥ 0 a:e: in RN } such that for every a ∈ A the problem (Pa) admits
infinitely many solutions.

In fact, given any a ∈ L∞(RN ), with ess inf a > 0, for all α > 0 we are able to
construct a family of functions {αω ∈ C (RN ) : ω ∈ (0;ω̂)} with 0 ≤ αω(x) ≤ α in RN

for which the problem (Pa+αω
) admits infinitely many solutions. Then we show that

this class of solutions is stable with respect to small L∞-perturbations of the functions
a + αω.

Let us note that the condition ess inf a ≥ 0 can be weakened by requiring just
lim inf|x|→∞ a(x) ≥ 0. We refer to [2] for the complete proof of the result.

2. Outline of the proof of Theorem 1.1

Let us fix α > 0 and a ∈ L∞(RN ) with ess inf a > 0 and let us denote F = {b ∈
∈ L∞(RN ) : a0 ≤ b(x) ≤ a1 a:e: in RN } where a0 = 1

2 ess inf a and a1 = 2(‖a‖L∞ + α).

Let X = H 1(RN ) be endowed with its standard norm ‖u‖ = (
∫
RN (|∇u|2 + u2)dx)1=2

and, for every b ∈ F let us introduce the functional

ϕb(u) = 1
2‖u‖2 −

∫

RN

b(x)F (u(x)) dx:

By (f 2) and (f 3), ϕb ∈C 1(X;R) for all b∈F and ϕ′
b(u)v =〈u;v〉−

∫
RN b(x)f (u(x))v(x)dx

where 〈u; v〉 =
∫
RN (∇u · ∇v + uv) dx . The critical points of ϕb are solutions of the

problem (Pb) and we set Kb = {u ∈ X : ϕ′
b(u) = 0; u �= 0}.

Moreover let us denote 〈u; v〉Ω =
∫
Ω

(∇u · ∇v + uv) dx and ‖u‖Ω = 〈u; u〉1=2
Ω for

all u; v ∈ X and Ω measurable subset of RN .

We start by describing the behavior of any functional ϕb near the origin.

Lemma 2.1. ϕb(u) = ‖u‖2=2 + o (‖u‖2) and ϕ′
b(u) = 〈u; ·〉 + o (‖u‖) as u → 0,

uniformly with respect to b ∈ F .
Moreover there exists ρ ∈ (0; 1) such that if Ω is a regular open subset of RN satisfying the

uniform cone property with respect to the cone {x = (x1; : : : ; xN ) ∈ B1(0) : x1 > |x |=2} and
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if supy∈Ω ‖u‖B1(y) ≤ 2ρ then
∫

Ω

b(x)F (u) dx ≤ 1
4‖u‖2

Ω and |
∫

Ω

b(x)f (u)v dx | ≤ 1
2‖u‖Ω‖v‖Ω

for every b ∈ F and for every u; v ∈ X .

According to Lemma 2.1, 0 is a strict local minimum for ϕb . Moreover, by (f 3),
for any u ∈ X \ {0} there exists s(u) > 0 such that ϕb(s(u)u) < 0 for every b ∈ F .
Hence, any functional ϕb has the mountain pass geometry with mountain pass level

c(b) = inf
γ∈Γ

sup
s∈[0;1]

ϕb(γ(s))

where Γ = {γ ∈ C ([0; 1]; X ) : γ(0) = 0; ϕb(γ(1)) < 0 ’ b ∈ F}.

Note that c(b1) ≥ c(b2) if b1; b2 ∈ F with b1(x) ≤ b2(x) a.e. in RN . In particular
0 < c(a1) ≤ c(b) ≤ c(a0) for every b ∈ F .

Remark 2.1. By (f 4) for every u ∈ X \ {0} there exists a unique su > 0 such that
d
dsϕb(su)|s=su

= 0 and hence c(b) = inf
‖u‖=1

sup
s≥0

ϕb(su) and inf
Kb

ϕb ≥ c(b) for any b ∈ F .

Now we state some properties of sequences (un) ⊂ X such that ϕbn
(un) → l and

ϕ′
bn

(un) → 0 for some sequence (bn) ⊂ F (generalized Palais Smale sequences for the
class F).

Remark 2.2. Letting λ = (1 − 2
θ
)ρ2, by Lemma 2.1 if (un) ⊂ X is a generalized

Palais Smale sequence for the class F , then

(i) (un) is bounded and limϕbn
(un) ≥ 0;

(ii) if limϕbn
(un) ∈ [0;λ) then un → 0;

(iii) if limϕbn
(un)≥λ then there exists a sequence (yn)⊂RN such that lim inf‖un‖B1(yn)≥

≥ ρ.

Let us note that (i) follows by the fact that, thanks to (f 3), for every b ∈ F

(2.1) ( 1
2 − 1

θ
)‖u‖2 ≤ ϕb(u) + 1

θ
‖ϕ′

b(u)‖ ‖u‖ ’ u ∈ X:

Now, the following characterization holds for the generalized Palais Smale sequences
for the class F .

Lemma 2.2. Let (bn) ⊂ F , (un) ⊂ X and (yn) ⊂ RN be such that ϕbn
(un) → l ,

ϕ′
bn

(un) → 0 and lim inf ‖un‖B1(yn) ≥ ρ. Then there exists u ∈ X with ‖u‖B1(0) ≥ ρ such that,
up to a subsequence,

(i) un(· + yn) → u weakly in X , ϕb(u) ≤ l and ϕ′
b(u) = 0, where b = lim bn(· + yn) in the

w∗-L∞ topology,
(ii) ϕbn

(un − u(· − yn)) → l − ϕb(u) and ϕ′
bn

(un − u(· − yn)) → 0.
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According to the above result, it is convenient to introduce some definitions con-
cerning the problems «at infinity» associated to any functional ϕb . Given b ∈ F , let us
denote

H∞(b) = {h ∈ L∞(RN ) : ∃ (yn) ⊂ RN s:t: |yn| → ∞; b (· + yn) → h w∗-L∞}

and c∞(b) = infh∈H∞(b) c(h).
Using the fact that H∞(b) is sequentially closed with respect to the w∗-L∞ topology,

it is possible to prove that the value c∞(b) is attained. In fact we have:

Lemma 2.3. For every b ∈ F there exist b∞ ∈ H∞(b) and u∞ ∈ X \ {0} such that
ϕb∞

(u∞) = c (b∞) = c∞(b) and ϕ′
b∞

(u∞) = 0.

In particular we are interested in applying the above result with b = a + α as
follows.

By Lemma 2.3, since H∞(a + α) = H∞(a) + α, there exist a∞ ∈ L∞(RN ) and a
sequence (xj ) ⊂ RN such that a(· + xj ) → a∞ w∗-L∞ |xj+1| − |xj | ↑+ ∞ and c∞(a +

+ α) = c(a∞ + α). Then, for ω ∈ (0; 1) we define j(ω) = inf{j ∈ N : |xj | − |xj−1| ≥
≥ 4=ω} and

αω(x) =

{
α(1 − ω2|x − xj |

2=4) for |x − xj | ≤ 2=ω ; j ≥ j(ω)

0 otherwise.

Note that maxx∈RN αω(x) = α = α(xj ) for all j ≥ j(ω) and αω(x) ≤ 15
16α for every

x ∈ RN \
⋃

j∈N B 1
2ω

(xj ).

To simplify the notation, for ω ∈ (0; 1) we set ϕω = ϕa+αω
, Kω = Ka+αω

. In
addition we denote ϕ∞ = ϕa∞+α and c∞ = c∞(a + α).

Remark 2.3. By definition of c∞, if b ∈ H∞(a) and β ∈ L∞(RN ) with 0 ≤ β ≤ α

a.e. in RN , then c(b + β) ≥ c(b + α) ≥ c∞. Moreover, if β ∈ (0;α), then c∞(a +

+ β) > c∞(a + α) = c∞. This is proved using suitable estimates on the critical points
of the functionals ϕb∞

, being b ∈ F .

In the following lemmas we state some properties concerning the sequences (un) ⊂ X
such that ϕ′

ωn
(un) → 0 and that «carry mass» at infinity, i.e., for which ‖un‖B1(yn) ≥ ρ

for some sequence |yn| → ∞.
First, we give an estimate from below of the level of such sequences:

Lemma 2.4. Let (ωn) ⊂ (0; 1), (un) ⊂ X and (yn) ⊂ RN be such that ϕ′
ωn

(un) → 0,
|yn| → ∞ and ‖un‖B1(yn) ≥ ρ for every n ∈ N. Then c∞ ≤ lim infϕωn

(un).

Secondly, a compactness result holds for those sequences (un) ⊂ X at a level close
to c∞ and such that ϕ′

ωn
(un) → 0 and every un has a «mass» located in B 1

ωn
(xjn

).

Lemma 2.5. There exist h0 > 0 and ω0 ∈ (0; 1) such that if (ωn) ⊂ (0;ω0), (un) ⊂ X
and (yn) ⊂ RN satisfy ϕ′

ωn
(un) → 0, ‖un‖B1(yn) ≥ ρ, yn ∈ B 1

ωn
(xjn

) with jn ≥ j(ωn), and

lim supϕωn
(un) ≤ c∞ + h0, then (un(· + yn)) is precompact in X .
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The above Lemma suggests to introduce the following sets

Aj (ω; h; ν) = {u ∈ X : ϕ
ω

(u) ≤ c∞ + h; ‖ϕ′
ω

(u)‖ ≤ ν and sup
y∈B 1

2ω
(xj )

‖u‖B1(y) ≥ ρ}

defined for every ω ∈ (0; 1), h > 0, ν > 0 and j ≥ j(ω). Let us note that, by
Lemma 2.5, for ω ∈ (0;ω0) the functional ϕ

ω
satisfies the Palais Smale condition in

each set Aj (ω; h; ν) with j ≥ j(ω) and 0 < h ≤ h0.
Hence, the next goal will be to construct a pseudogradient flow which leaves invariant

suitable localized minimax classes, in order to get the existence of Palais Smale sequences
for ϕω in each set Aj (ω; h; ν).

To this extent, we need suitable estimates in neighborhoods of the sets Aj (ω; h; ν).
In fact the following holds:

Lemma 2.6. There exist ω ∈ (0;ω0), h ∈ (0; h0) and ν > 0 such that :

(i) if u ∈ B4ρ0
(Aj (ω)) for some ω ∈ (0;ω) and j ≥ j(ω), then ‖u‖RN \B 1

2ω −1
(xj )

≤ 6ρ0 ;

(ii) if u ∈ (B4ρ0
(Aj (ω)) \ Aj (ω)) ∩ {ϕω ≤ c∞ + h} for some ω ∈ (0;ω) and j ≥ j(ω), then

‖u‖RN \B 1
2ω −1

(xj )
< ρ0 and ‖ϕ′

ω(u)‖ > ν,

where Aj (ω) = Aj (ω; h; ν) and ρ0 = ρ=8.

By the above listed properties of the sets Aj (ω), we can state the existence of a
pseudogradient vector field acting in Aj (ω). Precisely:

Lemma 2.7. There exist ε > 0 and µ > 0 such that for any ε ∈ (0; ε) there is
ω

ε
∈ (0;ω) for which if Aj (ω) ∩ K

ω
= ∅ for some ω ∈ (0;ω

ε
) and j ≥ j(ω), then there exist

µjω > 0 and a locally Lipschitz continuous function Vjω: X → X verifying :

(i) ‖Vjω(u)‖≤1, ϕ′
ω(u)Vjω(u)≥0 for all u∈X and Vjω(u)=0 for all u∈X \ B4ρ0

(Aj (ω)),

(ii) ϕ′
ω(u)Vjω(u) ≥ µjω if u ∈ Bρ0

(Aj (ω)) ∩ {ϕω ≤ c∞ + h=2},

(iii) ϕ′
ω

(u)Vjω(u) ≥ µ if u ∈ (B2ρ0
(Aj (ω)) \ B

ρ0
(Aj (ω))) ∩ {ϕ

ω
≤ c∞ + h=2},

(iv) 〈u; Vjω(u)〉RN \B 1
ω

(xj )
≥ 0 if ‖u‖RN \B 1

ω

(xj )
≥ ε:

Now we construct infinitely many minimax classes of mountain pass type for any
functional ϕω with ω > 0 sufficiently small.

First, we point out that, by Lemma 2.3, there exists u∞ ∈ X such that ϕ∞(u∞) = c∞
and ϕ′

∞(u∞) = 0. Moreover, by Remark 2.1, there exists γ∞ ∈ Γ, with range γ∞ ⊂
⊂ {su∞ : s ≥ 0}, satisfying:

(i) maxs∈[0;1] ϕ∞(γ∞(s)) = ϕ∞(u∞),
(ii) for every r > 0 there is hr > 0 such that ϕ∞(u) ≤ c∞ − hr for any u ∈ range γ∞

with ‖u − u∞‖ ≥ r .

Let us fix M > 0 such that supu∈B4ρ0
(Aj (ω)) ‖u‖ ≤ M for all ω ∈ (0;ω), j ≥ j(ω) and

maxs∈[0;1] ‖γ∞(s)‖ ≤ M . This is possible because of (2.1).
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Then, fixing ε̂ > 0 small enough (precisely ε̂ < (1=8) min{ε; h
ρ0

;µρ0} where h
ρ0

is
defined in the above property (ii) and µ and ε in Lemma 2.7), let us define

Γj (ω) = {γ ∈ Γ : ‖γ(s)‖ ≤ M and ‖γ(s)‖RN \B 1
ω

(xj )
≤ ε̂ ’ s ∈ [0; 1]}:

The classes of mountain pass paths Γj (ω) satisfy the following properties:

Lemma 2.8. There exists ω̂ ∈ (0;ω
ε̂
) such that for all ω ∈ (0;ω̂) and j ≥ j(ω), setting

γj (s) = γ∞(s)(· − xj ) for all s ∈ [0; 1], there results :

(i) γj ∈ Γj (ω),
(ii) maxs∈[0;1] ϕω(γj (s)) ≤ c∞ + ε̂,
(iii) if γj (s) �∈ B

ρ0
(Aj (ω)) then ϕ

ω
(γj (s)) ≤ c∞ − h

ρ0
=2.

In particular Γj (ω) �= ∅ for all ω ∈ (0;ω̂) and j ≥ j(ω), and we can define the
corresponding minimax values

cj (ω) = inf
γ∈Γj (ω)

max
s∈[0;1]

ϕω(γ(s)):

These mountain pass levels are close to the mountain pass level c∞ in the sense explained
by the following Lemma.

Lemma 2.9. For all ω ∈ (0;ω̂) there exists ̂ (ω) ≥ j(ω) such that |cj (ω) − c∞| ≤ ε̂ for all
j ≥ ̂ (ω).

Now we can prove that for ω > 0 sufficiently small, the functional ϕω admits
infinitely many critical points. More precisely we show that:

Lemma 2.10. If ω ∈ (0;ω̂) then Aj (ω) ∩ K
ω
�= ∅ for every j ≥ ̂ (ω).

Proof. Arguing by contradiction, suppose that there exist ω ∈ (0;ω̂) and j ≥ ̂ (ω)
such that Aj (ω)∩K

ω
= ∅. Let Vjω: X → X be the pseudogradient vector field given by

Lemma 2.7 and let η ∈ C (R × X; X ) be the associated flow, given by the solution of
the Cauchy problem

{ dη(t; u)
dt

= −Vjω(η(t; u))

η(0; u) = u :

Note that η is well defined and continuous in R×X because the field Vjω is a bounded,
locally Lipschitz continuous function. Moreover, by the properties of Vjω stated in
Lemma 2.7, for a fixed τ > 0 large enough, the function ηjω(u) = η(τ; u) satisfies:

(i) ηjω(u) = u for all u ∈ X \ B4ρ0
(Aj (ω)),

(ii) ϕ
ω

(ηjω(u)) ≤ ϕ
ω

(u) for all u ∈ X ,

(iii) ϕω(ηjω(u)) ≤ ϕω(u) − µρ0 if u ∈ Bρ0
(Aj (ω)) ∩ {ϕω ≤ c∞ + h=2},

(iv) ‖ηjω(u)‖RN \B 1
ω

(xj )
≤ ε if ‖u‖RN \B 1

ω

(xj )
≤ ε.

Let now γ̂j (s) = ηjω(γj (s)) for s ∈ [0; 1], where γj ∈ Γj (ω) is defined as in Lemma 2.8.
By the above listed properties (i) and (iv) of ηjω, the class Γj (ω) is invariant under the
deformation ηjω and then γ̂j ∈ Γj (ω). We claim that maxs∈[0;1] ϕω(γ̂j (s)) ≤ cj (ω) − ε̂
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and therefore we get a contradiction with the definition of cj (ω). Indeed, if γj (s) �∈
�∈ Bρ0

(Aj (ω)), by the property (ii) of ηjω and by Lemma 2.8 (iii), we have ϕω(γ̂j (s)) ≤
≤ ϕω(γj (s)) ≤ c∞ − hρ0

=2 ≤ c∞ − 2ε̂, since ε̂ < h
ρ0

=4. On the other hand, if γj (s) ∈
∈ Bρ0

(Aj (ω)), by the property (iii) of ηjω and by Lemma 2.8 (ii), we have ϕω(γ̂j (s)) ≤
≤ ϕ

ω
(γj (s))−µρ0 ≤ c∞ + ε̂−µρ0 ≤ c∞−2ε̂, since ε̂≤ µρ0=9. Therefore, by Lemma 2.9,

for all s ∈ [0; 1] we conclude that ϕω(γ̂j (s)) ≤ c∞ − 2ε̂≤ cj (ω) − ε̂.

We remark that by the arbitrariness of α > 0 and a ∈ L∞(RN ) with ess inf a > 0,
the above result shows that the problem (Pa) admits infinitely many solutions whenever
a belongs to a dense subset of {a ∈ L∞(RN ) : a ≥ 0}.

Then Theorem 1.1 follows by the next final Lemma.

Lemma 2.11. If ω ∈ (0;ω̂), there exists β0 > 0 such that if ‖β‖L∞(RN ) ≤ β0 then the
problem (Pa+αω+β) admits infinitely many solutions.

Proof. Given β ∈ L∞(RN ) we denote ϕωβ(u) = ϕω(u)−
∫
RN β(x)F (u) dx and Kωβ =

= {u ∈ X \ {0} : ϕ′
ωβ(u) = 0}. We note that a + αω + β ∈ F whenever ‖β‖L∞(RN ) ≤

≤ a0.
Letting M be the constant fixed before the definition of Γj (ω), there exists C = C (M ) >
> 0 such that

sup
‖u‖≤M

|ϕωβ(u) − ϕω(u)| ≤ C ‖β‖L∞(RN ) ;(2.2)

sup
‖u‖≤M

‖ϕ′
ωβ(u) − ϕ′

ω(u)‖ ≤ C ‖β‖L∞(RN ) :(2.3)

We claim that if ω ∈ (0;ω̂) and j ≥ ̂ (ω) then Kωβ ∩Aj (ω) �= ∅ whenever ‖β‖L∞ ≤ β0,
being β0 = (1=2) min{a0; ε̂=C } with ε̂ > 0 fixed above.
Indeed, arguing by contradiction, assume that Kωβ ∩ Aj (ω) = ∅ for some ω ∈ (0;ω̂)
and j ≥ ̂ (ω). Then, using (2.2) and (2.3), one can see that

(1) there exists νj > 0 such that ‖ϕ′
ωβ(u)‖ ≥ νj for all u ∈ Aj (ω)∩{ϕω ≤ c∞ + 2h=3}.

(2) ‖ϕ′
ωβ(u)‖ ≥ ν=2 for all u ∈ (B4ρ0

(Aj (ω)) \ Aj (ω)) ∩ {ϕω ≤ c∞ + h}.

By (1) and (2), since a + αω + β ∈ F , it is possible to show the existence of a
pseudogradient vector field Ṽ j : X → X satisfying:

(i) ‖Ṽ j (u)‖ ≤ 1, ϕ′
ωβ(u)Ṽ j (u) ≥ 0 for all u ∈ X and Ṽ j (u) = 0 for all u ∈ X \

B4ρ0
(Aj (ω)),

(ii) ϕ′
ωβ(u)Ṽ j (u) ≥ µj > 0 if u ∈ Bρ0

(Aj (ω)) ∩ {ϕω ≤ c∞ + h=2},

(iii) ϕ′
ωβ

(u)Ṽ j (u) ≥ µ=2 if u ∈ (B2ρ0
(Aj (ω)) \ B

ρ0
(Aj (ω))) ∩ {ϕ

ω
≤ c∞ + h=2},

(iv) 〈u; Ṽ j (u)〉RN \B 1
ω

(xj )
≥ 0 if ‖u‖RN \B 1

ω

(xj )
≥ ε̂.

Considering the flow associated to the field Ṽ j , we obtain the existence of a continuous
function ηj : X → X which verifies:

(i)′ ηj (u) = u for all u ∈ X \ B4ρ0
(Aj (ω)),

(ii)′ ϕωβ(ηj (u)) ≤ ϕωβ(u) for all u ∈ X ,
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(iii)′ ϕ
ωβ

(ηj (u)) ≤ ϕ
ωβ

(u) − µρ0=2 if u ∈ B
ρ0

(Aj (ω)) ∩ {ϕ
ω
≤ c∞ + h=2},

(iv)′ ‖ηj (u)‖RN \B 1
ω

(xj )
≤ ε if ‖u‖RN \B 1

ω

(xj )
≤ ε.

Then, considering the path γ̃ j (s)=ηj (γ∞(s)(·−xj )), s∈ [0; 1], by (i)′ and (iv)′ γ̃ j ∈Γj (ω).
Then, by (2.2), (ii)′ and (iii)′, since ε̂< (1=8) min{hρ0

;µρ0}, using Lemma 2.9, we
get maxs∈[0;1] ϕω

(γ̃ j (s)) ≤ maxs∈[0;1] ϕωβ
(γ̃ j (s)) + ε̂=2 ≤ max{c∞ − h

ρ0
=2 + ε̂; c∞ −

−µρ0=2 + 2ε̂} < cj (ω), a contradiction.
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