ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

GIUSEPPE ZAMPIERI

Non-solvability of the tangential $\bar{\partial}_M$ -systems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 9 (1998), n.2, p. 111–114.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1998_9_9_2_111_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1998.

Geometria. — Non-solvability of the tangential $\bar{\partial}_M$ -systems. Nota di Giuseppe Zampieri, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — We prove that for a real analytic generic submanifold M of \mathbb{C}^n whose Levi-form has constant rank, the tangential $\bar{\partial}_M$ -system is non-solvable in degrees equal to the numbers of positive and negative Levi-eigenvalues. This was already proved in [1] in case the Levi-form is non-degenerate (with M non-necessarily real analytic). We refer to our forthcoming paper [7] for more extensive proofs.

KEY WORDS: CR manifolds; Tangential Cauchy-Riemann Complexes; Real/Complex symplectic structures.

RIASSUNTO. — Non risolubilità del sistema $\bar{\partial}_M$ tangenziale. Si prova che per una sottovarietà analitica reale generica M di \mathbb{C}^n la cui forma di Levi ha rango costante, il complesso $\bar{\partial}_M$ tangenziale è non risolubile nei gradi corrispondenti ai numeri di autovalori positivi e negativi. Per forme non-degeneri il risultato era già stato stabilito in [1] (senza l'ipotesi che M sia analitica reale).

1. Notations and basic language on derived categories [3, 5]

Let X be a complex analytic manifold of dimension $n, M \subset X$ a real submanifold of codimension $l, \pi : T^*X \to X$ and $\pi : T^*_M X \to M$ the cotangent bundle to X and the conormal bundle to M respectively. By \dot{T}^*X we shall denote the cotangent bundle with the 0-section removed. Let $D^b(X)$ denote the derived category of the category of complexes of sheaves with bounded cohomology, and $D^b(X; p)$ (p a point of T^*X) its localization at p in the sense of [3].

Let \mathcal{O}_X be the sheaf of germs of holomorphic functions on X, \mathbb{Z}_M the constant sheaf along M, $\mu_M(\mathcal{O}_X) := \mu \hom(\mathbb{Z}_M, \mathcal{O}_X)$ (resp. $\mathbb{R}\Gamma_M(\mathcal{O}_X) := \mathbb{R}\mathcal{H}\operatorname{om}_{\mathbb{Z}_X}(\mathbb{Z}_M, \mathcal{O}_X)$) the complexes of Sato's microfunctions and hyperfunctions along M respectively (up to a shift l). We recall that $\mathbb{R}\pi_*\mu_M(\mathcal{O}_X) = \mathbb{R}\Gamma_M(\mathcal{O}_X)$ (π_* being the direct image) and $\mathbb{R}\Gamma_{T^*_*M}\mu_M(\mathcal{O}_X)[l] = \mathcal{O}_X|_M$. This gives rise to the following (Sato's) triangle in $D^b(X)$:

$$\mathcal{O}_X|_M \to \mathbb{R}\Gamma_M(\mathcal{O}_X)[l] \to \mathbb{R}\dot{\pi}_*\mu_M(\mathcal{O}_X)[l] \stackrel{+1}{\to} .$$

When M is real analytic, one can consider its complexification $M^{\mathbb{C}}$ (a 2n-l-dimensional complex manifold) and define $\mathcal{B}_M := \mathbb{R}\Gamma_M(\mathcal{O}_{M^{\mathbb{C}}})[2n-l]$. If M is in addition generic (*i.e.* the embedding $M^{\mathbb{C}} \to X \times \bar{X}$ is non-characteristic for $\bar{\partial}_X$), then $\bar{\partial}_X$ induces a complex $\bar{\partial}_M$ on $M^{\mathbb{C}}$ and it turns out that the complex $\bar{\partial}_M$ over forms with coefficients in \mathcal{B}_M is quasi-isomorphic (*i.e.* isomorphic in $D^b(X)$) to the complex $\mathbb{R}\Gamma_M(\mathcal{O}_X)[l]$.

Let $\chi : \dot{T}^* X \to \dot{T}^* X$ be a germ of a complex symplectic homogeneous transformation. According to [3], we may let χ *act on sheaves* through a quantization

^(*) Nella seduta del 13 febbraio 1998.

by a kernel Φ_K . In particular if in a neighborhood of a point $q \in \hat{T}^*X$ we have $\chi(T_M^*X) = T_{\tilde{M}}^*X$ (for a new real manifold \tilde{M}), then we get an isomorphism in $D^b(X; q)$: $\chi_*\mu_M(\mathcal{O}_X) = \mu_{\tilde{M}}(\mathcal{O}_X)[\tilde{l} - l + s_{\tilde{M}}^- - s_M^-]$ (where s_M^- and $s_{\tilde{M}}^-$ are the numbers of negative eigenvalues of the Levi form of M and \tilde{M} respectively.

2. Statement and proof

Let M be a real analytic generic submanifold of $X = \mathbb{C}^n$ of codimension l. Let \mathcal{B}^j_M denote the forms on M of bidegree (0, j) with coefficients hyperfunctions, consider the tangential $\bar{\partial}$ -complex:

(1)
$$0 \to \mathcal{B}_{M}^{0} \xrightarrow{\bar{\partial}_{M}} \mathcal{B}_{M}^{1} \xrightarrow{\bar{\partial}_{M}} \dots \xrightarrow{\bar{\partial}_{M}} \mathcal{B}_{M}^{n} \to 0,$$

and denote by $H^{j}_{\overline{\partial}_{M}}$ its cohomology in degree *j*. As we have already pointed out in §1, the genericity of *M* implies that $H^{j}_{\overline{\partial}_{M}} = H^{j}\mathbb{R}\Gamma_{M}(\mathcal{O}_{X})[l]$ where \mathcal{O}_{X} are the holomorphic functions on *X*. For $p \in \dot{T}^{*}_{M}X$ (the conormal bundle to *M* in *X*), let $s^{+}_{M}(p)$ and $s^{-}_{M}(p)$ denote the numbers of positive and negative eigenvalues respectively of the «microlocal» Levi-form of *M* at *p*. Let $z = \pi(p)$.

THEOREM. In the above situation, assume $s_M^{\pm} \equiv \text{const in a neighborhood of } p$. Then (2) $(H_{\bar{\partial}_M}^j)_z \neq 0 \text{ for } j = s_M^-(p) \text{ , } s_M^+(p) \text{ , } 0.$

PROOF. We first collect some classical tools for our proof.

(a) (cf. [3]) We can find a complex symplectic homogeneous transformation χ from a neighborhood of p to a neighborhood of $q := \chi(p)$, which interchanges T_M^*X with T_M^*X where \tilde{M} is a pseudoconvex hypersurface in the side -q (*i.e.* the open half-space \tilde{M}^- with inward conormal -q is pseudoconvex). By quantization (cf. §1), we get a correspondence:

(3)
$$\mu_M(\mathcal{O}_X)_p[l+s_M^-] \xrightarrow{\sim} \mathbb{R}\Gamma_{\widetilde{M}^+}(\mathcal{O}_X)_p[1],$$

where $(y = \pi(q))$ and $\mu_M(\mathcal{O}_X)$ is the Sato's microlocalization of \mathcal{O}_X along M (cf. §1). In particular $\mathcal{F} := \mu_M(\mathcal{O}_X)[l + s_M^-]$ is concentrated in degree 0 [3, Th. 11.3.1] and, since \widetilde{M} is a hypersurface, $\operatorname{H}^0(\mathcal{F}) \xrightarrow{\sim} \varinjlim_B \frac{\mathcal{O}_X(\widetilde{M}^- \cap B)}{\mathcal{O}_X(B)}$ (where $\{B\}$ is a system of neighborhoods of γ).

(For this statement only the constancy of s_M^- and not necessarily of s_M^+ at p is required).

(b) (cf. [6]) We may assume that by the above transformation T^*X is transformed to $T^*X' \times T^*Y$ and $T^*_{\tilde{M}}X$ to $T^*_{\tilde{M}'}X' \times Y$. In other words the integral leaves of the Levi-kernel can be straightened in suitable complex symplectic coordinates of T^*X (not of X).

(c) (cf. [7]) Let $V = V' \times Y$ be an open neighborhood of p s.t. (a) and (b) hold in $V_1 = V' \times Y_1$ for $Y_1 \supset \supset Y$ open, and take $Z = Z' \times Y$ with Z' closed and $Z' \subset \subset V'$.

Let $f \in \Gamma(V_1, H^0(\mathcal{F}))$; then for any open neighborhood $W = W' \times Y$ of p with $W' \subset \subset \operatorname{int} Z'$, there exists $\tilde{f} \in \Gamma_Z(V, \mathcal{F})$ such that $\tilde{f}|_W = f|_W$.

(d) We are ready to conclude. We identify T_M^*X to $M \times \mathbb{R}^l$ (by a choice of a system of l independent equations for M). We take $f \in \mathrm{H}^0(\mathcal{F})_p$, $f \neq 0$ by (a), and modify to $\tilde{f} \in \Gamma_Z(V, \mathrm{H}^0(\mathcal{F}))$ according to (c). Since the complex leaves of the microlocal foliation of T_M^*X are transversal to the fibers of π , then for suitable Z and for $U_o \subset \mathrm{int} Z$ (U_o open neighborhood of $z = \pi(p)$) we have that $Z \cap (U_o \times \mathbb{R}^l)$ is closed in $U_o \times \mathbb{R}^l$. This enables us to identify \tilde{f} to a section of $\Gamma(U_o \times \mathbb{R}^l, \mathrm{H}^0(\mathcal{F})) \simeq \mathrm{H}^0 \mathbb{R} \Gamma(U_o \times \mathbb{R}^l, \mathcal{F})$. Let $\{U_\nu\}$ (resp. $\{W_\nu\}$) be a system of neighborhoods of z (resp. p), with $U_\nu \subset U_o$ and $W_\nu \subset (U_\nu \times \mathbb{R}^l) \cap \mathrm{int} Z$. Note now that we have morphisms:

(4)
$$\mathrm{H}^{0}\mathbb{R}\Gamma(U_{o}\times\dot{\mathbb{R}}^{l},\mathcal{F}) \to \mathrm{H}^{0}\mathbb{R}\Gamma(U_{\nu}\times\dot{\mathbb{R}}^{l},\mathcal{F}) \to \mathrm{H}^{0}\mathbb{R}\Gamma(W_{\nu},\mathcal{F}).$$

Since $\tilde{f} \neq 0$ in W_{ν} (*i.e.* in the third term of (4)), then $\tilde{f} \neq 0$ in:

$$\begin{split} \underset{\nu}{\lim} H^{0} \mathbb{R}\Gamma(U_{\nu} \times \dot{\mathbb{R}}^{l}, \mathcal{F}) \simeq \underset{\nu}{\lim} H^{s_{M}} \mathbb{R}\Gamma(U_{\nu} \times \dot{\mathbb{R}}^{l}, \mu_{M}(\mathcal{O}_{X}))[l] \\ \simeq \underset{\nu}{\lim} H^{s_{M}} \mathbb{R}\Gamma(U_{\nu}, \mathbb{R}\Gamma_{M}(\mathcal{O}_{X})[l]) \simeq (H^{s_{M}}_{\bar{\partial}_{M}})_{z}, \end{split}$$

where the isomorphism between the two lines comes from $(H_{\bar{\partial}_{X}}^{j})_{z} = 0 \ \forall j \ge 1$. Thus $(H_{\bar{\partial}_{M}}^{s_{M}})_{z} \neq 0$. (Similarly one proves that $(H_{\bar{\partial}_{M}}^{s_{M}})_{z} \neq 0$). \Box

Acknowledgements

I wish to thank Professor P. Schapira for useful advices.

References

- A. ANDREOTTI G. FREDRICKS M. NACINOVICH, On the absence of Poincaré Lemma in tangential Cauchy-Riemann complexes. Ann. S.N.S. Pisa, 27, 1981, 365-404.
- [2] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudodifferential operators. Comm. Pure Appl. Math., 27, 1974, 585-639.
- [3] M. KASHIWARA P. SCHAPIRA, Microlocal study of sheaves. Astérisque, 128, 1985.
- [4] C. REA, Levi flat submanifolds and holomorphic extension of foliations. Ann. SNS Pisa, 26, 1972, 664-681.
- M. SATO M. KASHIWARA T. KAWAI, Hyperfunctions and pseudodifferential operators. Springer Lect. Notes in Math., 287, 1973, 265-529.
- [6] G. ZAMPIERI, Microlocal complex foliation of R-Lagrangian CR submanifolds. Tsukuba J. Math., 21 (1), 1997.

[7] G. ZAMPIERI, Nonsolvability of the tangential $\bar{\partial}$ -system in manifolds with constant Levi-rank. To appear.

Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova Via Belzoni, 7 - 35131 PADOVA zampieri@math.unipd.it

Pervenuta il 7 agosto 1997, in forma definitiva il 10 gennaio 1998.