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Teoria dei controlli. — Exact null controllability of structurally damped and thermo-
elastic parabolic models. Nota (*) di Irena Lasiecka e Roberto Triggiani, presentata dal
Corrisp. G. Da Prato.

Abstract. — We show exact null-controllability for two models of non-classical, parabolic partial
differential equations with distributed control: (i) second-order structurally damped equations, except for
a limit case, where exact null controllability fails; and (ii) thermo-elastic equations with hinged boundary
conditions. In both cases, the problem is solved by duality.

Key words: Exact null-controllability; Structurally damped parabolic equations; Thermo-elastic para-
bolic equations.

Riassunto. — Controllabilità esatta all’origine di equazioni fortemente smorzate e di equazioni termo-
elastiche. In questa Nota dimostriamo la proprietà di controllabilità esatta all’origine per due modelli di
equazioni alle derivate parziali, di tipo parabolico, non-classiche, con controllo distribuito: (i) equazioni del
secondo ordine fortemente smorzate, eccetto che per un caso limite dove tale proprietà di controllabilità è
falsa; (ii) equazioni termo-elastiche, con condizioni al contorno incernierate. In entrambi i casi, il problema
è risolto per dualità.

1. Two classes of parabolic-like P.D.E.’s. Statement of main results

In this article we present a preliminary study exhibiting the property of exact null-
controllability for two classes of non-classical, parabolic-like P.D.E.’s, with distributed
L2(0; T ; · )-control, along with an important limit case where this property fails. As
a motivation for our study, we recall that the notion of exact null-controllability for
deterministic parabolic-like P.D.E.’s plays an essential, critical role in connection with
corresponding stochastic parabolic differential equations. In this context, it is known, in
fact, that the notion of exact null-controllability is equivalent to the strong Feller prop-
erty of the semigroup of transition of the corresponding stochastic differential equation,
which is obtained from the deterministic one by simply replacing the deterministic
control with stochastic noise (G. Da Prato, private communication, July 1997). The
two non-classical, parabolic-like classes of P.D.E.’s studied in this article are: (i) struc-
turally damped second-order abstract equations [2, 4, 5] (subsection 1.1), and (ii) some
thermo-elastic abstract equations (subsection 1.2). Under the action of distributed con-
trol, it is proved below that each of these two classes is exactly null-controllable at any
finite time T > 0, by means of L2(0; T ; · )-controls except for the limit case α = 1 in
(1.1.1) below. This means that arbitrary initial data in the state (energy) space (or in
compatible, rougher spaces, see Remark 2.1 below) can be steered to rest over the time
interval [0; T ], 0 < T < ∞, by means of L2(0; T ; · )-distributed controls. The proof
is, for each class, by duality. It exploits special structural/spectral properties exhibited

(*) Pervenuta in forma definitiva all’Accademia il 3 ottobre 1997.
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by these two parabolic-like classes.

1.1. First class: Structurally damped second-order abstract equations.

Let X be a Hilbert space and let S : X ⊃ D(S ) → X be a strictly positive, self-
adjoint unbounded operator, with compact resolvent. In this subsection, we consider
the following second-order, structurally damped, abstract equation

(1.1.1) wtt + Sw + ρSαwt = u; w(0) = w0; wt (0) = w1; ρ > 0; 1=2 ≤ α ≤ 1 :

Here and throughout, u ∈ L2(0; T ; X ) is the control function, α is a real constant in
the range 1=2 ≤ α ≤ 1, whereby the homogeneous problem corresponding to eq. (1.1.1)
with u ≡ 0 is structurally damped [2, 4, 5]: this means, mathematically, that the
operator

A
ρα =

[
0 I
−S −ρSα

]
: E ⊃ D(Aρα) → E = D(S1=2) × X ;(1.1.2)

D(Aρα) =
{

[x1; x2] ∈ E : x1 ∈ D(S3=2−α); x2 ∈ D(S1=2); S1−αx1 +(1.1.3)

+ ρx2 ∈ D(Sα)
}

is the generator of a s.c. contraction semigroup eAραt : {w0; w1} → {w(t ); wt (t )} with
u ≡ 0 on the energy space E above, which, moreover, is analytic (holomorphic) here,
t > 0 [4, 5]. Setting z(t ) ≡ [w(t ); wt (t )], we may rewrite the second-order equation
(1.1.1) as a first-order problem,

(1.1.4) zt = Aραz + Bu; z(0) = {w0; w1}; B =

[
0
I

]
:

The extreme cases α = 1=2 and α = 1 are the two most important ones in applications.
The main result of the present subsection is, perhaps, surprising in the split between a
positive result for 1=2 ≤ α < 1 on the one hand, and a negative result for α = 1 on
the other.

Theorem 1.1.1. With reference to problem (1.1.1), let T > 0, and let ρ2 �= 4µ1−2α
n for

all n = 1; 2; 3; : : : , where the µn are the eigenvalues of the positive self-adjoint operator S ; in
particular, let ρ �= 2 for α = 1=2.

(i) Let 1=2 ≤ α < 1. Then: Given arbitrary initial conditions {w0; w1} ∈ E , there
exists a control function u ∈ L2(0; T ; X ), such that the corresponding solution {w(t ); wt (t )} ∈
∈ L2(0; T ;D(A

ρα
)) ∩ C ([0; T ];D(−A

ρα
)1=2), D((−A

ρα
)1=2) = D(S1−α=2) × D(Sα=2) [8,

6] of (1.1.1) satisfies the terminal rest condition: w(T ) = 0; wt (T ) = 0. In short: system
(1.1.1) is exactly null controllable on the energy state space E , over any [0; T ], by means of
L2(0; T ; X )-controls.

(ii) Let α = 1. Then, system (1.1.1) is not exactly null controllable on the energy state space
E , within the class of L2(0; T ; X )-controls [but is exactly null controllable on E within the larger
class of L2(0; T ; [D(S1=2)]′)-controls].
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Remark 1.1.1. For ρ2 = 4µ1−2α
n∗ for some n∗, in particular for ρ = 2 and α = 1=2,

we refer to Remark 2.2 at the end of Section 2.

Remark 1.1.2. The above results complement very recent investigations in S. A. Av-
donin and S. A. Ivonov’s manuscript, 1997, entitled Controllability of the wave equation
with structural damping on reachability/controllability properties of a one-dimensional sys-
tem of type (1.1.1), where S = −d 2=dx2, with right-hand side u replaced, however, by
the term b(·)u(t ) with separated space and time variables, b ∈ X and u(t ) ∈ L2(0; T ) a
scalar control. By using the classical moment problem (which requires one-dimensional
scalar controls, and hence cannot apply to (1.1.1)), and sharp non-harmonic analy-
sis properties of families of exponential functions [1], this manuscript shows that for
1=2 ≤ α ≤ 1 the structurally damped equation there considered is not exactly null
controllable by scalar L2(0; T )-controls u(t ). Our results with distributed controls
u ∈ L2(0; T ; X ) are, by contrast, positive for 1=2 ≤ α < 1; moreover, for α = 1 they
are still negative as in Avdonin-Ivanov’s work, but with a much larger class L2(0; T ; X )
of controls, while they are positive with the even larger class L2(0; T ; [D(S1=2)]′) of
controls. It should be possible to re-obtain the aforementioned negative results of
Avdonin-Ivanov by using the approach of this article, which is based on the character-
ization (2.13).

1.2. Second class: An abstract thermo-elastic equation (hinged mechanical B.C./ Dirichlet
thermal B.C.).

In this subsection we consider a special abstract thermo-elastic equation, which cor-
responds, in particular, to a «concrete» thermo-elastic plate equation with hinged me-
chanical B.C./Dirichlet thermal B.C. [3]. The distributed control may either be a
«mechanical» control, or else a «thermal» control, see eq. (1.2.3) below. Let throughout
X be a Hilbert space and A : X ⊃ D(A) → X a (strictly) positive, self-adjoint operator
with compact resolvent. The equation here considered is

(1.2.1) yt = Ay + Bu; y = [Aw; wt ; θ] ;

A =




0 A 0
−A 0 A

0 −A −A


 : H ≡ X × X × X ⊃ D(A) ≡(1.2.2)

≡ D(A) ×D(A) ×D(A) → H ;

and the operator B is

(1.2.3) either B = Bm = [0; I; 0]; or else B = Bθ = [0; 0; I ];

corresponding to the mechanical control or the thermal control, respectively. Physically,
with reference to the three components of the vector y in (1.2.1), we have that w is
the mechanical displacement, wt its corresponding velocity, and θ the temperature. The
main result of the present subsection is
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Theorem 1.2.1. With reference to problem (1.2.1), let T > 0. Given arbitrary initial
conditions y0 ∈ H , there exists a control function u ∈ L2(0; T ; X ), such that the corresponding
solution y(t ) ∈ L2(0; T ;D(A)) ∩ C ([0; T ];D(A1=2)); D(A1=2) = D(A1=2) × D(A1=2) ×
×D(A1=2) [6] of (1.2.1) with either B = Bm, or else B = Bθ, as in (1.2.3) satisfies the terminal
rest condition y(T ) = 0. In short: problem (1.2.1) is exactly null controllable on the space H
within the class of L2(0; T ; X )-controls.

Remark 1.2.1. The above result complements the very recent paper [7] which shows
exact null controllability in the case of a one-dimensional thermo-elastic equation, with
hinged B.C., under some restrictions which exclude our model (1.2.2), by means of a
scalar boundary control. Reference [7] uses a moment problem approach.

2. Proof of Theorem 1.1.1.

The case α = 1=2: Factorization and diagonalization

Even though it is possible to give a proof of Theorem 1.1.1 which is valid for all
values of α, 1=2 ≤ α < 1, see the approach of the subsequent Section 3, it is, however,
enlightening to single out the (important) case α = 1=2, as it exhibits the simplifying
structural/spectral properties of factorization followed by diagonalization (see eq. (2.2)
below), which are not shared by the other values of 1=2 < α ≤ 1. A proof based –
ultimately – on the diagonalization of the infinitesimal generator A in (2.2) (hence of
the analytic semigroup eAt ) is given here when α = 1=2. In this special case, we rewrite
more conveniently eq. (1.1.1) with S1=2 = A: positive, self-adjoint, unbounded operator
on X , with compact resolvent, as

(2.1) wtt + A2w + ρAwt = u; w(0) = w0; wt (0) = w1; ρ > 0:

The specialization of Theorem 1.1.1 to the dynamics (2.1) is then

Theorem 2.1. With reference to (2.1), let T > 0, and let ρ �= 2. Given arbitrary initial
conditions {w0; w1} ∈ E ≡ D(A) × X , there exists a control function u ∈ L2(0; T ; X ), such
that the corresponding solution {w(t ); wt (t )} ∈ C ([0; T ];D(A3=2) × D(A1=2)) of problem
(2.1) satisfies the terminal rest condition w(T ) = 0, wt (T ) = 0.

Proof of Theorem 2.1.

Step 1. Setting y = [Aw; wt ] ∈ H = X × X , we rewrite eq. (2.1) as a first-order
equation on H as:

ẏ = Ay + Bu on H = X × X; A =

[
0 A

−A −ρA

]
= AM ; B =

[
0

I

]
;(2.2)

M =

[
0 1

−1 −ρ

]
; det(zI − M ) = z2 + ρz + 1 = (z + r1)(z + r2) =(2.3)

= z2 + (r1 + r2)z + r1r2;
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r1r2 = 1; r1 + r2 = ρ;
√

r1r2=(r1 + r2) = 1=ρ;(2.4)

−r1;2 =

[
−ρ±

√
ρ2 − 4

]
=2; real, if ρ ≥ 2;

−r1;2 =

[
−ρ± i

√
4 − ρ2

]
=2; if 0 < ρ < 2:(2.5)

Henceforth, unless otherwise stated, we shall take 0 < ρ, ρ �= 2, so that the matrix M
has two distinct eigenvalues −r1 and −r2 (real if ρ > 2; complex conjugate if 0 < ρ < 2)
with corresponding eigenvectors [1;−r1] and [1;−r2]. Then M is diagonalizable, with
diagonalizing matrix P ,

(2.6) P−1MP =

[−r1 0

0 −r2

]
; P =

[
1 1

−r1 −r2

]
:

We define the operator Π ≡ P (Identity on X ) ∈ L(H ) and obtain by (2.2), (2.6),

(2.7) A=

[
0 A

−A −ρA

]
= ΠÃΠ−1; Ã =

[−Ar1 0

0 −Ar2

]
; Π=

[
I I

−r1I −r2I

]
;

(2.8) eAt = ΠeÃtΠ−1; eÃt =

[
e−Ar1t 0

0 e−Ar2t

]
; Re ri > 0:

To proceed with the proof of Theorem 2.1, it is convenient to distinguish between
real distinct eigenvalues (ρ > 2) and complex conjugate distinct eigenvalues (0 < ρ < 2).

2.1. Continuation of proof of Theorem 2.1 for ρ > 2: Distinct negative roots.

Step 2. In this case the eigenvalues −r1;−r2 are real negative and distinct and we
have

(2.9) Ã = Ã ∗ =

[−Ar1 0

0 −Ar2

]
; eÃt = eÃ∗t =

[
e−Ar1t 0

0 e−Ar2t

]
;

(2.10)
√

r1r2=(r1 + r2) = 1=ρ < 1=2;

recalling (2.7), (2.8), (2.4). Applying Π−1 on both sides of equation ẏ = Ay + Bu in
(2.2) yields

(2.11) ỹ t = Ã ỹ + B̃ u; ỹ = Π−1y = Π−1
[Aw

wt

]
;

B̃ = Π−1B = Π−1
[

0

I

]
=

1
r2 − r1

[
I

−I

]
; B̃ ∗

[
y1

y2

]
=

1
r2 − r1

(y1 − y2);

B̃ ∈ L(X ; H ); B̃ ∗ ∈ L(H ; X ):(2.12)

The ỹ -problem in (2.11) on H represents the diagonalized version of the original
y-equation in (2.2), through the bounded, boundedly invertible operator Π in H .
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Accordingly, the exact null-controllability on H , over [0; T ], of the original dynamics
yt = Ay + Bu in (2.2) is equivalent to the same property for the diagonalized dynamics
ỹ t = Ã ỹ + B̃ u in (2.11).

Step 3. It is well known that, via functional analytic arguments, exact null-controlla-
bility in H for the ỹ -dynamics in (2.11) within the class of L2(0; T ; X )-controls, is
equivalent to the following inequality: there exists a constant CT > 0 such that

(2.13)

T∫

0

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

U
dt ≥ CT

∥∥∥eÃ∗T x
∥∥∥

2

H
; ’ x ∈ H;

where, in the present distributed case, U = H . Thus, the crux of our proof consists in
verifying the validity of inequality (2.13).

Step 4. Let, at first, the positive self-adjoint operator A have simple eigenvalues {µn}
with corresponding eigenvectors {en} forming an orthonormal basis in X ,

(2.14) Aen = µnen; 0 < µn →+ ∞:

For the multiple eigenvalue case, see Step 9 below. Then, by (2.14), we obtain

e−Ar1t x1 =
∞∑

n=1

e−µnr1t (x1; en)X en; x1 ∈ X ;(2.15)

e−Ar2t x2 =
∞∑

n=1

e−µnr2t (x2; en)X en; x2 ∈ X ;(2.16)

e−Ar1t x1 − e−Ar2t x2 =
∞∑

n=1

[
e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

]
en:(2.17)

Thus, by recalling B̃ ∗ from (2.12), eÃ∗t from (2.9), as well as (2.15), (2.16), we
obtain with x = [x1; x2] ∈ H :

B̃ ∗eÃ∗t x = [r2 − r1]−1 [e−Ar1t x1 − e−Ar2t x2

]
(2.18)

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

H
= |r2 − r1|

−2 ∥∥e−Ar1t x1 − e−Ar2t x2

∥∥2

X
(2.19)

(by (2.17)) = |r2 − r1|
−2

∞∑

n=1

∣∣e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

∣∣2 :(2.20)

Hence, setting for xi ∈ X ,

(2.21) αn ≡ (x1; en)X ∈ ‘2; βn = (x2; en)X ∈ ‘2;

we obtain from (2.20), (2.21) the expression for the left-hand side of (2.13):

(2.22)

T∫

0

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

H
dt = |r2 − r1|

−2
∞∑

n=1

T∫

0

∣∣e−µnr1tαn − e−µnr2tβn

∣∣2 dt:
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Similarly, from eÃ∗T in (2.9) and (2.15), (2.16), we obtain

∥∥∥eÃ∗T x
∥∥∥

2

H
=
∥∥∥e−Ar1T x1

∥∥∥
2

X
+
∥∥∥e−Ar2T x2

∥∥∥
2

X
(2.23)

(by (2.15), (2.16)) =
∞∑

n=1

[
e−2µnr1T |(x1; en)X |

2 + e−2µnr2T |(x2; en)X |
2
]

(2.24)

(by (2.21)) =
∞∑

n=1

[
e−2µnr1T |αn|

2 + e−2µnr2T |βn|
2
]

;(2.25)

where in the last step we have recalled (2.21). Using (2.22) and (2.25) in inequality
(2.13), we obtain

Lemma 2.2. When A has simple eigenvalues, the characterization for exact null-controllabi-
lity in H with L2(0; T ; X )-controls of the ỹ -dynamics in (2.11), equivalently of the original
y-dynamics in (2.2); i.e., of (2.1), is via (2.21) rewritten as the following inequality:

(2.26)
∞∑

n=1

T∫

0

∣∣e−µnr1tαn − e−µnr2tβn

∣∣2dt ≥ CT

∞∑

n=1

[
e−2µnr1T |αn|

2 + e−2µnr2T |βn|
2]:

Step 5. Thus, the crux of our proof consists in showing the validity of inequality
(2.26). To this end, the following lemma is fundamental.

Lemma 2.3. Let a; b > 0 be two positive constants, α and β two possibly complex constants.
Assume that k ≡

√
ab=(a + b) < 1=2. Then, the following inequalities hold true:

(i)
T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2

dt ≥ 1
2

(1 − 2k)
[∣∣∣ α√

a

∣∣∣
2
+
∣∣∣ β√

b

∣∣∣
2
]

+(2.27)

−1
2

(1 + 2k)
[

e−2aT
∣∣∣ α√

a

∣∣∣
2
+ e−2bT

∣∣∣ β√
b

∣∣∣
2
]

;

(ii)

T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2

dt ≥ 1
2

{
(1 − 2k)e2aT

a
− (1 + 2k)

a

}
e−2aT |α|2 +(2.28)

+
1
2

{
(1 − 2k)e2bT

b
− (1 + 2k)

b

}
e−2bT |β|2:

Proof. We have, using |z |2 = z · z̄ :

(2.29) |e−atα− e−btβ|2 = e−2at |α|2 + e−2bt |β|2 − e−(a+b)t 2 Re(αβ):

Setting

(2.30) α̃ ≡ e−aT α; β̃ ≡ e−bT β; hence α = eaT α̃; β = ebT β̃ ;
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and integrating (2.29) over [0; T ] yields

T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2

dt =
(1 − e−2aT )

2

∣∣∣∣
α√
a

∣∣∣∣
2

+
(1 − e−2bT )

2

∣∣∣∣
β√
b

∣∣∣∣
2

+(2.31)

− 2
(

1 − e−(a+b)T
) √

ab
a + b

Re
[(

α√
a

)(
β√
b

)]

(by (2.30))

=
1
2

{∣∣∣ α√
a

∣∣∣
2
+
∣∣∣ β√

b

∣∣∣
2
− 4

√
ab

a + b
Re
[(

α√
a

)(
β√
b

)]}
+(2.32)

−1
2

{∣∣∣ α̃√
a

∣∣∣
2
+
∣∣∣ β̃√

b

∣∣∣
2
− 4

√
ab

a + b
Re

[(
α̃√
a

)(
β̃√
b

)]}

(by (2.34) below)

≥ (1 − 2k)
2

[∣∣∣ α√
a

∣∣∣
2
+
∣∣∣ β√

b

∣∣∣
2
]
− (1 + 2k)

2

[∣∣∣ α̃√
a

∣∣∣
2
+
∣∣∣ β̃√

b

∣∣∣
2
]

;(2.33)

where, in the last step from (2.32) to (2.33), we have recalled k ≡ [
√

ab=(a + b)] < 1=2;
and, moreover, we have used the inequalities

(2.34) |p|2 + |q|2 − 2k · 2 Re(pq̄ )

{
≥ (1 − 2k)[|p|2 + |q|2];

≤ (1 + 2k)[|p|2 + |q|2];

twice, once with p = α=
√

a, q = β=
√

b ; and once with p = α̃=
√

a and q = β̃ =
√

b.
Then, (2.33) shows (2.27), as desired, via ã and β̃ in (2.30). Then (2.27) readily yields
(2.28).

Step 6. We apply Lemma 2.3(ii), eq. (2.28) with

(2.35)





a = µnr1 > 0; b = µnr2 > 0;

k =
√

ab=(a + b) =
√

r1r2=(r1 + r2) = 1=ρ < 1=2;

α = (x1; en)X ≡ αn; β = (x2; en)X ≡ βn;

where we have recalled (2.10), and obtain by (2.28), (2.35),

T∫

0

∣∣e−µnr1tαn − e−µnr2tβn

∣∣2 dt ≥(2.36)

≥ 1
2

{(
1 − 2

ρ

)
e2µnr1T

µnr1
−
(

1 +
2
ρ

)
1

µnr1

}[
e−2µnr1T |αn|

2
]

+

+
1
2

{(
1 − 2

ρ

)
e2µnr2T

µnr2
−
(

1 +
2
ρ

)
1

µnr2

}[
e−2µnr2T |βn|

2
]

:
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Step 7. Given T > 0 fixed (but arbitrary), there exists a positive integer N = NT ,
depending on T (as well as on ρ, which is fixed), such that

1
2

{(
1 − 2

ρ

)
e2µnri T

µnri

−
(

1 +
2
ρ

)
1

µnri

}
≥ CT ρN > 0;(2.37)

’ n ≥ NT ; i = 1; 2;

where we recall that 2=ρ < 1 by (2.35): this is possible, since µnri →+ ∞ as n →+ ∞,
i = 1; 2. Then, inequality (2.37) used in (2.36) yields (recalling α and β in (2.35)),

T∫

0

∣∣e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

∣∣2 dt ≥(2.38)

≥ CT ρN

[
e−2µnr1T |(x1; en)X |

2 + e−2µnr2T |(x2; en)X |
2
]

; ’ n ≥ NT :

A fortiori, (2.38) implies for N = NT :

∞∑

n=N

T∫

0

∣∣e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

∣∣2 dt ≥(2.39)

≥ CT ρN

∞∑

n=N

[
e−2µnr1T |(x1; en)X |

2 + e−2µnr2T |(x2; en)X |
2
]

:

Eq. (2.39) is the «right» sought-after inequality (2.26), only from n = NT on, however.

Step 8. We now analyze the same inequality (2.39) up to any positive integer N .

Lemma 2.4. Let T > 0 and let N be any positive integer. Then, there exists a positive
constant εTN > 0, such that:

KTN ≡
N−1∑

n=1

T∫

0

∣∣e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

∣∣2 dt ≥(2.40)

≥ εTN

N−1∑

n=1

[
e−2µnr1T |(x1; en)X |

2 + e−2µnr2T |(x2; en)X |
2
]

:

Proof. First, for the left-hand side KTN of inequality (2.40), the following alternative
holds true: (i) either KTN = 0, in which case – due to the linear independence of the
exponentials e−µnr1t and e−µnr2t with r1 �= r2 under present assumption (ρ > 2) – it
would follow that (x1; en)X = (x2; en)X ≡ 0; ’ n = 1; : : : ; N −1, and then the right-
hand side of (2.40) would vanish as well; and (2.40) would hold true as an equality
for all εTN > 0; (ii) or else KTN > 0, in which case there surely exists some constant
εTN > 0, such that (2.40) holds true.
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Step 9. We apply Lemma 2.4 for N = the positive integer NT provided by (2.39).
Summing up (2.39) and (2.40) for such N = NT , then yields inequality (2.26), as
desired. Thus, the exact null-controllability inequality (2.13) is proved: problem (2.11) in
ỹ , equivalently problem (2.2) in y, or (2.1) in w, is exactly null controllable in H , with
L2(0; T ; X )-controls, at least in the present case ρ > 2, where A is assumed to have
simple eigenvalues.

However, in general, if ρ > 2 and the eigenvalues µn > 0 of the positive, self-
adjoint operator A have eigenvectors enk , n = 1; 2; : : : ; k = 1; : : : ; Kn, forming an
orthonormal basis on X , then expansions (2.15), (2.16), (2.18), (2.22), and (2.25)
become

e−Ari t xi =
∞∑

n=1

Kn∑

k=1

e−µnri t (xi; enk)X enk; i = 1; 2;(2.41)

B̃ ∗eÃ∗t x = [r2 − r1]−1
∞∑

n=1

Kn∑

k=1

[
e−µnr1t (x1; enk)X − e−µnr2t (x2; enk)X

]
enk ;(2.42)

T∫

0

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

X
dt =(2.43)

= |r2 − r1|
−2

∞∑

n=1

Kn∑

k=1

T∫

0

∣∣e−µnr1t (x1; enk)X − e−µnr2t (x2; enk)X

∣∣2 dt ;

∥∥∥eÃ∗T x
∥∥∥

2

H
=
∥∥∥e−Ar1T x1

∥∥∥
2

X
+
∥∥∥e−Ar2T x2

∥∥∥
2

X
=(2.44)

=
∞∑

n=1

Kn∑

k=1

[
e−µnr1T |(x1; enk)X |

2 + e−2µnr2T |(x2; enk)X |
2
]

:

Then, the above argument for simple eigenvalues of A, centered on Lemma 2.3 and
Lemma 2.4, extends to the multiple eigenvalue case for A. The proof for ρ > 2 is
complete.

Remark 2.1. Theorem 2.1 continues to hold true even if we take ‘rough’ (compatible)
initial data; say,

(2.45) y0 ≡ {w0; w1} ∈ [D(As−1)]′ × [D(As)]′ ≡ Es for any s > 0;

rather than y0 ≡ {w0; w1} ∈ E ≡ D(A) × X . In (2.45), we have taken duality with
respect to the pivot space X . This extension can be seen in two ways:

(1) in one approach, we first take control u ≡ 0 on 0 ≤ t ≤ ε, with ε > 0 arbitrary,
during which time the solution y(t ) = eAt y0 is regularized by the analytic semigroup
(extended to Es), so that y(ε) = eAεy0 ∈ E ≡ D(A) × X . Next, we use the above
argument of exact null-controllability on the interval [ε; T + ε].
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(2) Alternatively, we can draw the same conclusion from the same estimates above:
we return to (2.36), multiply and divide its right-hand side by µ2s

n , s > 0 arbitrary but
fixed, whereby then (2.37) is replaced by

1
2

{(
1 − 2

ρ

)
e2µnri T

µ2s+1
n ri

−
(

1 +
2
ρ

)
1

µ2s+1
n ri

}
≥ CT ρNs > 0;(2.46)

’ n ≥ NT ; i = 1; 2;

and (2.38) then becomes

T∫

0

∣∣e−µnr1t (x1; en)X − e−µnr2t (x2; en)X

∣∣2 dt ≥(2.47)

≥ CT ρNs

[
e−2µnr1T µ2s

n |(x1; en)X |
2 + e−2µnr2T µ2s

n |(x2; en)X |
2
]

;

’ n ≥ NT ;

with, now, µn(xi; en) ∈ D(As), as desired.

2.2. Continuation of proof of Theorem 2.1 for 0 < ρ < 2: Distinct complex conjugate roots.

Step 1. In this case, the eigenvalues −r1, −r2 in (2.5) are distinct, complex conjugate:

−r1;2 = [−ρ± i
√

4 − ρ2]=2, r̄ 2 = r1, in which case Ã ∗ and eÃ∗t are now, recalling Ã

and eÃt in (2.7), (2.8):

(2.48) Ã ∗ =

[−Ar2 0

0 −Ar1

]
; eÃ∗t =

[
e−Ar2t 0

0 e−Ar1t

]
;

i.e., r1 and r2 [or x1 and x2 in X ] are interchanged with respect to (2.9). Via (2.15),
(2.16), (2.12), we see that the characterization (2.13) for exact null controllability in
H , with L2(0; T ; X )-controls, reads now

T∫

0

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

U =H
dt = |r2 − r1|

−2
∞∑

n=1

T∫

0

∣∣e−µnr2tαn − e−µnr1tβn

∣∣2 dt ≥(2.49)

≥ CT

∥∥∥eÃ∗T x
∥∥∥

2

H
= CT

∞∑

n=1

{
e−µnρT [|αn|

2 + |βn|
2]
}

;

Re r1 = Re r2 = ρ=2; αn = (x1; en)X ; βn = (x2; en)X ;(2.50)

which is the counterpart of eq. (2.26) in Section 2.1 (ρ > 2).

Step 2. The crux of the proof now is the following Lemma 2.5, which is the
counterpart of Lemma 2.3.
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Lemma 2.5. Let a = a1 + ia2 and b = a1 − ia2 = ā , ai ∈ R be two complex conjugate
numbers, a1 > 0. Let α;β be two possibly complex constants. Assume that 2h ≡ |a1=a| < 1.
Then, the following inequalities hold true:

(i )

T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2

dt ≥ (1 − 2h)
[∣∣α=

√
a1

∣∣2 +
∣∣β=

√
a1

∣∣2
] /

2 +(2.51)

−(1 + 2h)e−2a1T
[∣∣α=

√
a1

∣∣2 +
∣∣β=

√
a1

∣∣2
] /

2;

(ii )

T∫

0

∣∣∣e−atα−e−btβ
∣∣∣
2
dt ≥ 1

2

{ (1−2h)
a1

e2a1T − (1+2h)
a1

}
e−2a1T [|α|2 + |β|2

]
:(2.52)

Proof. We follow the proof of Lemma 2.3, as appropriately modified under present
assumptions. The counterpart of eq. (2.29), now with b = ā is

(2.53)
∣∣∣e−atα− e−btβ

∣∣∣
2
= e−2a1t [|α|2 + |β|2] − 2 Re

(
e−2atαβ

)
;

so that, setting now (compare with (2.30))

(2.54) α̃ ≡ e−a1T α; β̃ ≡ e−a1T β; hence α = α̃ea1T ; β = β̃ ea1T ;

we have, by (2.53), that the counterpart of (2.31)-(2.33) is:

T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2
dt =(2.55)

=
(1 − e−2a1T )

2

[∣∣∣ α
√

a1

∣∣∣
2
+
∣∣∣ β
√

a1

∣∣∣
2
]
− 2 Re

[
1 − e−2aT

2α
αβ

]
=

=
1
2

{[∣∣∣ α
√

a1

∣∣∣
2
+
∣∣∣ β
√

a1

∣∣∣
2
− 4 Re

(
α

√
a1

β
√

a1

a1

2a

)]
+(2.56)

−
[∣∣∣e−a1T α

√
a1

∣∣∣
2
+
∣∣∣e−a1T β

√
a1

∣∣∣
2
− 4 Re

(
e−a1T α
√

a1

e−a1T β
√

a1
e−2ia2T a1

2a

)]}

(by (2.54))=
1
2





[∣∣∣∣
α

√
a1

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

− 4 Re
(

α
√

a1

β
√

a1

a1

2a

)]
+(2.57)

−



∣∣∣∣
α̃

√
a1

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

− 4 Re

(
α̃

√
a1

β̃
√

a1
e−2ia2T a1

2a

)
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≥ 1
2





[∣∣∣∣
α

√
a1

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

− 2
∣∣∣ a1

2a

∣∣∣ 2
∣∣∣∣
α

√
a1

∣∣∣∣
∣∣∣∣
β

√
a1

∣∣∣∣

]
+(2.58)

−



∣∣∣∣
α̃

√
a1

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+ 2 · 1 ·
∣∣∣ a1

2a

∣∣∣ 2
∣∣∣∣
α̃

√
a1

∣∣∣∣

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣





 :

Recalling that 2h ≡ |a1=a| < 1 by assumption, we obtain from (2.58),

T∫

0

∣∣∣e−atα− e−btβ
∣∣∣
2

dt ≥ 1
2

(1 − 2h)
[∣∣∣ α

√
a1

∣∣∣
2
+
∣∣∣ β
√

a1

∣∣∣
2
]

+(2.59)

−1
2

(1 + 2h)

[∣∣∣ α̃
√

a1

∣∣∣
2
+
∣∣∣ β̃
√

a1

∣∣∣
2
]

:

Finally, (2.59) yields (2.51) as desired, by use of (2.54). Then (2.52) follows at
once from (2.51).

Step 3. We now verify that, in the present complex conjugate case where 0 < ρ < 2,
then h ≡ |a1=(2a)| < 1=2, as required by Lemma 2.5, if we take (recall (2.5)):

(2.60)





a = µnr2 = µn

(
ρ + i

√
4 − ρ2

)/
2 ; hence a1 = µn ρ=2;

4|a|2 = µ2
n[ρ2 + 4 − ρ2] = 4µ2

n; h2 =
a2

1

4|a|2
=

µ2
nρ

2=4

4µ2
n

<
1
4

;

i.e., h < 1=2, as desired, since 0 < ρ < 2. We then apply Lemma 2.5 with a = µnr2 =

= b̄ , b = µnr1 as in (2.60), and obtain by (2.52),

T∫

0

∣∣e−µnr2tαn − e−µnr1tβn

∣∣2 dt ≥(2.61)

≥
{

(1−2h)(µnρ)−1 eµnρT −(1+2h)(µnρ)−1
}

e−µnρT [|αn|
2 + |βn|

2];

n=1; 2; : : : ;

with αn = (x1; en)X and βn = (x2; en)X as in (2.50).

Step 4. As in Step 7 of Section 2.1, given T > 0, there exists a positive integer
N = NT , depending on T (as well as on ρ, which is fixed), such that

(2.62)
{

(1 − 2h)(µnρ)−1 eµnρT − (1 + 2h)(µnρ)−1
}
≥ CT ρN > 0; ’ n ≥ NT ;

(2.63)

T∫

0

∣∣e−µnr2tαn − e−µnr1tβn

∣∣2 dt ≥ CT ρN e−µnρT [|αn|
2 + |βn|

2]; ’ n ≥ NT ;
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and hence

(2.64)
∞∑

n=N

T∫

0

∣∣e−µnr2tαn − e−µnr1tβn

∣∣2 dt ≥ CT ρN

∞∑

n=N

e−µnρT [|αn|
2 + |βn|

2];

which is the counterpart of (2.39).

Step 5. The analysis of the same inequality (2.64), this time up to N , is the same as
in Step 8 (Lemma 2.4) of Section 2.1; since the proof is based on the property r1 �= r2,
which still holds true.

Lemma 2.6. Let T > 0 and let N be any positive integer. Then there exists a positive constant
εTN > 0 such that

(2.65)
N−1∑

n=1

T∫

0

∣∣e−µnr2tαn − e−µnr1tβn

∣∣2 dt ≥ εTN

N−1∑

n=1

e−µnρT [|αn|
2 + |βn|

2]:

To obtain the sought-after estimate (2.49), and thus complete the proof of Theo-
rem 2.1 in the present case 0 < ρ < 2 with simple eigenvalues µn of A, we sum up
inequalities (2.64) and (2.65).

The multiple eigenvalue case can be dealt with as at the end of Section 2.1.

Remark 2.2. In the case ρ = 2 so far excluded, we have r1 = r2 by (2.5) and so
the matrix P−1MP in (2.6) becomes a Jordan cell. The operator Ã and its s.c. analytic

semigroup eÃt have a Jordan structure. To analyze this case, we recall [5, Lemma
A.1(iv)(b), p. 47] that then ψ−

n = [0; en] is a generalized eigenvector of A; and that,
moreover, span{Φ+;−

n ;ψ−
n } = E , see [5, eq. (A.17)]. (In [5], the present ρ is replaced

by 2ρ). This special case has not been studied in detail yet.

3. Proof of Theorem 1.1.1: The case 1=2 ≤ α ≤ 1

Orientation. When 1=2 < α ≤ 1, the factorization property followed by diagonal-
ization, displayed by the operator A in (2.2) for α = 1=2 is no longer true. However,
for the entire range 1=2 ≤ α ≤ 1 of analyticity of the underlying semigroup eAρα [5]
corresponding to the generator A

ρα in (1.1.2), a different set of spectral properties of
A

ρα hold true, as pointed out in [5, Appendix A]. Accordingly, in the present proof
we shall exploit a subset of the aforementioned spectral theory for ρ2 �= 4µ1−2α

n , ’ n,
where µn are the eigenvalues of the operator S , see (3.4). It turns out that there is
a basic difference between the set of cases 1=2 ≤ α ≤ 1 on the one hand and the
isolated case α = 1 on the other hand. Indeed, in the former situation 1=2 ≤ α < 1,
the eigenvalues of A

ρα consist of two branches, λ−
n and λ+

n having the following prop-
erties: both of them are real negative for ρ2 > 4µ1−2α

n , where µ1−2α
n ↘ 0 as n → ∞

for 1=2 < α ≤ 1; and, moreover, both of them tend to −∞: λ−
n , λ+

n → −∞, as
n →+ ∞, for 1=2 < α < 1; and for α = 1=2, ρ > 2. By contrast, in the isolated
case α = 1, we still have λ−

n → −∞; however, now, λ+
n ↗ finite limit − 1=ρ < 0 as
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n → ∞. (Thus, A
ρα

has compact resolvent for α < 1, but not for α = 1 on the energy

space E = D(S1=2) × X [5, Appendix A]). The fact that the branch λ+
n → a finite limit

−‘ �= 0 for α = 1 will be responsible for the failure of Theorem 1.1.1 in this case, see
the counterexample below, eqs. (3.3.1) and (3.3.4).

Proof of Theorem 1.1.1(i) for 1=2 ≤ α < 1. With reference to eq. (1.1.1), we shall
now set y(t ) = [S1=2w(t );−wt (t )] and obtain

(3.1) yt = A∗
ραy + Bu on H ≡ X × X ; B =

[
0
−I

]
; B∗

[
y1

y2

]
= −y2;

(3.2) A∗
ρα =

[
0 −S1=2

S1=2 −ρSα

]
; Aρα =

[
0 S1=2

−S1=2 −ρSα

]
;

(3.3) H ⊃ D(A∗
ρα) = {[x1; x2] ∈ H : x2 ∈ D(S1=2); [x1 + ρSα−1=2x2] ∈ D(S1=2)}:

As seen in Section 2, with no loss of generality we may let the positive self-adjoint
(unbounded) operator S with compact resolvent have simple eigenvalues {µn}, with
non-normalized (in X ) eigenvectors {en} forming an orthogonal basis on X .

(3.4) Sen = µnen; 0 < µn ↗+ ∞:

Then, the operator Aρα in (3.2) has eigenvalues {λ+;−
n } and normalized (in H ) eigen-

vectors Φ+;−
n , as follows:

(3.5a) (λ+;−
n )2 + ρµα

n λ
+;−
n + µn = 0; λ+

n λ
−
n = µn; −λ+

n − λ−
n = ρµα

n ;

(3.5b) λ+;−
n =

(
−ρµα

n ±
√
ρ2µ2α

n − 4µn

)/
2; λ+

n =−2µn

/(√
ρ2µ2α

n − 4µn + ρµα

n

)
;

(3.6) Φ+

n =

[
µ1=2

n en

λ+
n en

]
; Φ−

n = χn

[
µ1=2

n en

λ−
n en

]
;

(3.7) ‖Φ+

n ‖
2
H ≡ 1 ⇐⇒ (µn + |λ+

n |
2)‖en‖

2
X ≡ 1;

(3.8) ‖Φ−
n ‖

2
H ≡ 1 ⇐⇒ χ2

n = (µn + |λ+
n |

2)=(µn + |λ−
n |

2); χ2
n‖en‖

2
X = 1=(µn + |λ−

n |
2);

(3.9) {Φ+
n }

∞
n=1 and {Φ−

n }
∞
n=1 each forms an orthonormal family on H .

{Φ+;−
n } is a complete family on H , under the assumption(3.10)

that ρ2 �= 4µ1−2α
n , so that λ+

n �= λ−
n .

(3.11) H =H + +H −(non-orthogonal, direct sum); x =x+ + x−; x+∈H +; x−∈H −;

(3.12) H + ≡ span{Φ+
n }

∞
n=1; H − ≡ span{Φ−

n }
∞
n=1:
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Accordingly, from the above properties (3.6)-(3.12), we obtain that A
ρα

is the direct
sum of two normal operators (on H + and on H −) and

eAραt x =
∞∑

n=1

eλ
+
n t (x+; Φ+

n )H Φ+
n +

∞∑

n=1

eλ
−
n t (x−; Φ−

n )H Φ−
n ;(3.13)

∥∥∥eAραt x
∥∥∥

2

H
∼

∞∑

n=1

e2(Reλ+
n )t |(x+; Φ+

n )H |2 +
∞∑

n=1

e2(Reλ−
n )t |(x−; Φ−

n )H |2:(3.14)

Recalling from (3.1) that −B∗[y1; y2] = y2, we obtain by (3.13),

−B∗eAραt x =
[
eAραt x

]
second component

=(3.15)

(by (3.13), (3.6)) =
∞∑

n=1

[
eλ

+
n t (x+; Φ+

n )Hλ
+
n ‖en‖X

]
en=‖en‖X +(3.16)

+
∞∑

n=1

[
eλ

+
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

]
en=‖en‖X

‖B∗eAραt x‖2
X =

∞∑

n=1

∣∣∣∣e
λ+

n t (x+; Φ+
n )Hλ

+
n ‖en‖X +(3.17)

+ eλ
−
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

∣∣∣∣
2

:

Thus, the characterization for the property of exact null controllability of eq. (1.1.1) on
E ≡ D(S1=2)×X , with L2(0; T ; X )-controls (equivalently, of eq. (3.1) on H ≡ X ×X ),

(3.18)

T∫

0

∥∥∥B∗eAραt x
∥∥∥

2

X
dt ≥ CT

∥∥∥eAραT x
∥∥∥

2

H
; x ∈ H;

is equivalent, via (3.14), (3.17), to the inequality:

∞∑

n=1

T∫

0

∣∣∣∣e
λ+

n t (x+; Φ+
n )Hλ

+
n ‖en‖X + eλ

−
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

∣∣∣∣
2

dt ≥(3.19)

≥ CT

{
∞∑

n=1

e2(Reλ+
n )T |(x+; Φ+

n )H |2 +
∞∑

n=1

e2(Reλ−
n )T |(x−; Φ−

n )H |2
}

;

for some constant CT > 0. The crux of the proof now consists in showing the validity
of inequality (3.19).

Step 2. We shall show (3.19) when 1=2 ≤ α < 1 and ρ2 �= 4µ1−2α
n , as assumed. We

begin by working in the case when ρ2 > 4µ1−2α
n , 1=2 ≤ α < 1, in which case λ+;−

n are
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both real (negative): this means for all n ≥ some N
α
≥ 1 when 1=2 < α < 1; and for

ρ > 2 when α = 1=2. We apply Lemma 2.3 with

(3.20)

{
a = −λ+

n > 0; b = −λ−
n > 0;

αn = (x+; Φ+
n )Hλ

+
n ‖en‖X ; βn = (x−; Φ−

n )Hχnλ
−
n ‖en‖X ;

kn ≡
√

ab=(a + b) =
√
λ+

n λ
−
n =(−λ+

n − λ−
n ) =(3.21)

=
√
µn=(ρµα

n ) =

{
1=ρ < 1=2; if α = 1=2; ρ > 2;

↘ 0; if 1=2 < α < 1;

recalling (3:5a-b), so that the required condition
√

ab=(a + b) < 1=2 of Lemma 2.3
is satisfied, at least for all n sufficiently large, say w.l.o.g. still n ≥ Nα ≥ 1, for
1=2 < α ≤ 1. Applying Lemma 2.3(ii), eq. (2.28), for n ≥ Nα, we obtain via (3.20),
(3.21):

T∫

0

∣∣∣eλ
+
n t (x+; Φ+

n )Hλ
+
n ‖en‖X + eλ

−
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

∣∣∣
2

dt ≥(3.22)

≥ 1
2

{
(1 − 2kn)e2|λ+

n |T

|λ+
n |

− (1 + 2kn)
|λ+

n |

}
|λ+

n |
2‖en‖

2
X e−2|λ+

n |T |(x+; Φ+
n )H |2 +

+
1
2

{
(1−2kn)e2|λ−

n |T

|λ−
n |

− (1+2kn)
|λ−

n |

}
χ2

n|λ
−
n |

2‖en‖
2
X e−2|λ−

n |T |(x−; Φ−
n )H |2

(recalling the normalizations in (3.7) and (3.8))

≥ 1
2

{
(1 − 2kn)|λ+

n |e
2|λ+

n |T

µn + |λ+
n |

2 − (1 + 2kn)|λ+
n |

µn + |λ+
n |

2

}
e−2|λ+

n |T |(x+; Φ+
n )H |2 +(3.23)

+
1
2

{
(1 − 2kn)|λ−

n |e
2|λ−

n |T

µn + |λ−
n |

2 − (1 + 2kn)|λ−
n |

µn + |λ−
n |

2

}
e−2|λ−

n |T |(x−; Φ−
n )H |2;

’ n ≥ Nα ≥ 1:

Step 3. We now complete the proof of Theorem 1.1.1 for 1=2 < α < 1, ρ2 �=
�= 4µ1−2α

n ; or α = 1=2, ρ > 2. In this case, by recalling (3:5b), we obtain

(3.24) λ−
n ∼ µα

n ; λ−
n ↘ −∞; λ+

n ∼ µ1−α

n ; λ+

n ↘ −∞;

(3.25)
|λ−

n |
µn + |λ−

n |
2 ∼ µα

n

µn +µ2α
n

∼ 1
µα

n

↘ 0; kn ↘ 0 for
1
2

< α < 1; kn ≡ 1
ρ

;α=
1
2

;
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(3.26)
|λ+

n |
µn + |λ+

n |
2 ∼ µ1−α

n

µn + µ2−2α
n

∼ µ1−α
n

µn

=
1
µα

n

↘ 0:

Thus, by (3.24)- (3.26), given T > 0 fixed (but arbitrary), there exists a positive integer
NT α

depending on T and α (as well as on ρ, which is fixed), such that

1
2

{
(1 − 2kn)|λ+;−

n |e2|λ+;−
n |T

µn + |λ+;−
n |2

− (1 + 2kn)|λ+;−
n |

µn + |λ+;−
n |2

}
≥ CT ρNT

> 0;(3.27)

’ n ≥ NT α ≥ Nα ≥ 1:

Thus, a fortiori, inequality (3.23) implies by virtue of (3.27)

T∫

0

∣∣∣eλ
+
n t (x+; Φ+

n )Hλ
+

n ‖en‖X + eλ
−
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

∣∣∣
2

dt ≥(3.28)

≥ CT ρNT α

{
e−2|λ+

n |T |(x+; Φ+
n )H |2 + e−2|λ−

n |T |(x−; Φ−
n )H |2

}
; ’ n ≥ NT α;

and hence

∞∑

n=NT α

T∫

0

∣∣∣eλ
+
n t (x+; Φ+

n )Hλ
+
n ‖en‖X + eλ

−
n t (x−; Φ−

n )Hχnλ
−
n ‖en‖X

∣∣∣
2

dt ≥(3.29)

≥ CT ρNT

∞∑

n=NT

{
e−2|λ+

n |T |(x+; Φ+
n )H |2 + e−2|λ−

n |T |(x−; Φ−
n )H |2

}
:

Thus, for α = 1=2 and ρ > 2; or else for 1=2 < α < 1 where µ1−2α
n ↘ 0, and so

ρ2 > 4µ1−2α
n , in which cases λ+;−

n are real negative for n large enough (without loss
of generality for all n ≥ NT α

), we see that eq. (3.29) proves the required inequality
(3.19) with Reλ+;−

n = −|λ+;−
n |, at least from n = NT α

on. Then, we can obtain
the inequality corresponding to (3.29) with

∑N−1
n=1 replacing

∑∞
n=N , N = NT α

, when
ρ2 �= 4µ1−2α

n , in which case λ+

n and λ−
n are distinct, and the argument of Step 8 in

Section 2 (Lemma 2.4) continues to work. This way, inequality (3.19) is proved.

It remains to handle the case α = 1=2, 0 < ρ < 2. Here we proceed as above by
invoking however, Lemma 2.5(ii), eq. (2.5.2) (instead of Lemma 2.3, eq. (2.28)), as
well as Lemma 2.6 (instead of Lemma 2.4).

The case α = 1, ρ2 �= 4µ1−2α
n = 4µ−1

n : Counterexample to inequality (3.18). The
above argument, leading to the key inequality (3.27), was carried out for 1=2 ≤ α < 1,
ρ2 > 4µ1−2α

n , in which case then λ+;−
n (real negative) ↘ −∞. In the case α = 1, this

argument breaks down, as we now have:

(3.30) λ−
n ∼ µn; λ−

n ↘ −∞; but λ+
n ↗ limit − ‘ = −1=ρ �= 0:

Thus, the argument leading to inequality (3.27) continues to hold true for λ−
n , when

α = 1. However, regarding λ+
n and α = 1, we obtain for T > 0, via (3.30), and
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km ↘ 0 by (3.21):

(3.31)
[
(1 − 2kn)e2|λ+

n |T − (1 + 2kn)
]
|λ+

n |=(µn + |λ+
n |

2) → [e2‘T − 1] · 0 = 0;

as n →+ ∞, which denies (3.27). Indeed, for α = 1, the critical inequality (3.18) (or
(3.19)) fails to hold true. To show this, we take the sequence of elements xm ≡ Φ+

m ∈ H +,
so that by (3.11), and (3.6), (3.7), (3.9) we have:

(3.32) x+
m ≡ Φ+

m ; x−
m ≡ 0; and (x+

m ; Φ+
n )H =

{
0 if m �= n;

1 if m = n:

Then, via (3.32), and (3.17), we obtain

T∫

0

∥∥∥B∗eAραt xm

∥∥∥
2

X
dt =

T∫

0

∣∣∣eλ
+
m t · 1 · λ+

m‖em‖X + 0
∣∣∣
2

dt = |λ+
m |

2‖em‖
2
X

1 − e2λ+
m T

2|λ+

m |
(3.33)

(by (3.7)) =
|λ+

m |
µm + |λ+

m |
2

(1 − e2λ+
m T )

2
→ 0 · (1 − e−2‘T )

2
(3.34)

= 0;

as µm ↗ ∞, λ+
m ↗ −‘, when m → ∞. Moreover, by (3.32) and (3.14), we obtain

(3.35)
∥∥∥eAραT xm

∥∥∥
2

H
= e−2|λ+

m |T 1 + 0 = e−2|λ+
m |T → e−2‘T ;

as m → ∞. Thus, (3.34) and (3.35) combined show that the characterizing inequality
(3.18), or (3.19), is false for α = 1 and ρ2 �= 4µ1−2α

n ; and thus exact null controllability of
eq. (1.1.1) on the energy space E ≡ D(S1=2) × X [or, equivalently, of system (3.1) on
H ≡ X ×X ] over the time [0; T ], by means of L2(0; T ; X )-controls is false in this case.

Remark 3.1. By techniques similar to the ones employed above, one can prove that
exact null controllability of eq. (1.1.1) with α = 1 on the energy space E ≡ D(S1=2)×X
[equivalently, of system (3.1) on the space H ≡ X ×X ] over the time [0; T ] by means
of the larger class of L2(0; T ; [D(S1=2)]′)-controls is true, when α = 1, ρ2 �= 4µ1−2α

n .
Indeed, in this case, the corresponding exact null controllability characterization is

(3.36)

T∫

0

∥∥∥S1=2B∗eAραt x
∥∥∥

2

X
dt ≥ CT

∥∥∥eAραT x
∥∥∥

2

X
; x ∈ X;

in lieu of (3.18). Then, the coordinate terms on the left-hand side of inequality (3.19)
are now multiplied by µn. Thus, we now have that the key inequality (counterpart of
(3.27) is)

1
2

{
(1 − 2kn)µn|λ

+;−
n |e2|λ+;−

n |T

µn + |λ+;−
n |2

− (1 + 2kn)µn|λ
+;−
n |

µn + |λ+;−
n |2

}
≥ CT ρNT

> 0;(3.37)

’ n ≥ NT α;
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i.e., (3.27) with the left-hand side multiplied by µn. Thus, we now have [µn|λ
+

n |=(µn +

+ |λ+
n |

2)] ↗ ‘ �= 0, and (3.36) hold true also for the λ+
n -branch, as desired. This way,

inequality (3.36) is proved as before.

4. Thermo-elastic case: Proof of Theorem 1.2.1

Step 1. The proof of Theorem 1.2.1 in the thermo-elastic case (1.2.1)-(1.2.3) is
conceptually similar to that of Theorem 1.1.1, case α = 1=2, Section 2, in that both
cases share the property that the basic operator A can be factored and is diagonalizable.
Indeed, the operator A in (1.2.2) can be rewritten as [3]

(4.1) A =




0 A 0
−A 0 A

0 −A −A


 = AM ;

M =




0 1 0
−1 0 1

0 −1 −1


 ; det(zI − M ) = z3 + z2 + 2z + 1(4.2)

= (z − z1)(z − z2)(z − z3) = 0;

(4.3) z1 = −0:56984; z2 = −0:21508 + i(1:30714); z3 = z̄ 2;

with accuracy up to the fifth decimal point. Then the matrix M is diagonalizable, with
diagonalizing matrix P :

(4.4) P−1MP =




z1 0

z2

0 z3


 ; P =




1 1 1
z1 z2 z3−z1

1 + z1

−z2

1 + z2

−z3

1 + z3


 :

We define the operator Π = P (I ), Identity on X , and obtain

(4.5) A =




0 A 0

−A 0 A
0 −A −A


 = Π Ã Π−1; Ã =



Az1 0

Az2

0 Az3


 ;

(4.6) eAt = ΠeÃtΠ−1; eÃt =




eAz1t 0
eAz2t

0 eAz3t


; Re zi < 0:

Applying Π−1 on both sides of the equation ẏ = Ay + Bu in (1.2.1) yields

(4.7) ỹ t = Ã ỹ + B̃ u; ỹ = Π−1y; B̃ = Π−1B:

The ỹ -problem in (4.7) represents the diagonalized version of the original y-equation in
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(1.2.1). We have, by (4.3),

(4.8) Ã ∗ =



Az1 0

Az3

0 Az2


 ; eÃ∗t =




eAz1t 0
eAz3t

0 eAz2t


 ;

(4.9) B̃ = [b1; b2; b3]; B̃ ∗y = b1y1 + b2y2 + b3y3;

the exact expressions for b1; b2; b3 in terms of z1; z2; z3 in either case B = Bm =

= [0; I; 0], or else B = Bθ = [0; 0; I ], see (1.2.3), being non-critical in the argument
below, except for being all non-zero. [E.g., for B = Bm = [0; I; 0], we find

b1 = (1 + z1)=
(
(z1 − z2)(z1 − z3)

)
;

b2 = (1 + z2)=
(
(z2 − z1)(z2 − z3)

)
;

b3 = (1 + z3)=
(
(z3 − z1)(z3 − z2)

)
:

Instead, for B = Bθ = [0; 0; I ], we find

b1 = (1 + z1)(1 + z2)(1 + z3)=
(
(z1 − z2)(z1 − z3)

)
;

b2 = (1 + z1)(1 + z2)(1 + z3)=
(
(z2 − z3)(z2 − z1)

)
;

b3 = (1 + z1)(1 + z2)(1 + z3)=
(
(z3 − z1)(z3 − z2)

)
]:

Thus, if x = [x1; x2; x3] ∈ H , we have by (4.8), (4.9):

(4.10) B̃ ∗eÃ∗t x = b1eAz1t x1 + b2eAz3t x2 + b3eAz2t x3:

As seen in Section 2, without loss of generality, we may let the positive, self-adjoint
operator A with compact resolvent have simple eigenvalues {µn} with corresponding
eigenvectors {en} forming an orthonormal basis in X ,

(4.11) Aen = µnen; 0 < µn →+ ∞:

Then

(4.12) eAzi t xi =
∞∑

n=1

eµnzi t (xi; en)X en; xi ∈ X; i = 1; 2; 3:

Hence by (4.10)-(4.12), we obtain

(4.13)
∥∥∥B̃ ∗eÃ∗t x

∥∥∥
2

H
=

∞∑

n=1

∣∣∣∣e
µnz1t b1(x1; en)X +eµnz3t b2(x2; en)X + eµnz2t b3(x3; en)X

∣∣∣∣
2

;

while also by (4.8),

(4.14)
∥∥∥eÃ∗T x

∥∥∥
2

H
=

∞∑

n=1

{
e2µnz1T |(x1; en)X |

2 + e2µn(Rez2)T [|(x2; en)X |
2 + |(x3; en)X |

2]
}

:

Thus, the property of exact null-controllability on H , over [0; T ], with L2(0; T ; X )-
controls of the original problem ẏ = Ay + Bu in (1.2.1) is equivalent to the same
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property for the diagonalized problem (4.7); and this, in turn, is equivalent to the
following inequality: there exists a constant cT > 0 such that

(4.15)

T∫

0

∥∥∥B̃ ∗eÃ∗t x
∥∥∥

2

H
dt ≥ cT

∥∥∥eA∗T x
∥∥∥

2
; ’ x ∈ H;

i.e., by (4.13) and (4.14),

∞∑

n=1

T∫

0

∣∣∣∣e
µnz1t b1(x1; en)X + eµnz3t b2(x2; en)X + eµnz2t b3(x3; en)X

∣∣∣∣
2

dt ≥(4.16)

≥ cT

∞∑

n=1

{
e2µnz1T |(x1; en)X |

2 + e2µnRe(z2)T [|(x2; en)X |
2 + |(x3; en)X |

2]
}

:

Step 2. The crux of the proof consists in showing the validity of inequality (4.16).
To this end, critical is the following lemma, the counterpart of Lemma 2.3.

Lemma 4.1. Let r > 0 and a = a1 + ia2 and b = a1 − ia2 be two complex conjugate
constants with a1 > 0. Let α;β; γ be possibly complex constants. Assume that

(4.17) k1 ≡ 2
√

ra1=|r + a| < 1=2; k2 ≡ a1=|a| < 1 − k1:

Then, the following inequalities hold true:
(i)

T∫

0

∣∣∣e−rtα + e−atβ + e−btγ
∣∣∣
2

dt ≥ 1
2

c1

[∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

(4.18a)

− 1
2

c2

{
e−2rT

∣∣∣∣
α√
r

∣∣∣∣
2

+ e−2a1T

[∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]}

;

(4.18b) c1≡min{[1−2k1]; [1− k1 − k2]}>0; c2≡max{[1 + 2k1]; [1 + k1 + k2]}>0;

(ii)

T∫

0

∣∣∣e−rtα + e−atβ + e−btγ
∣∣∣
2

dt ≥ 1=2
[
c1e2rT − c2

]
e−2rT

∣∣∣∣
α√
r

∣∣∣∣
2

+(4.19)

+ 1=2
[
c1e2a1T − c2

]
e−2a1T

[∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

:

Proof. (i) Writing |z |2 = zz̄ we obtain with b = ā ,

∣∣e−rtα + e−atβ + e−ā tγ
∣∣2 = e−2rt |α|2 + e−2a1t [|β|2 + |γ|2] +(4.20)

+ 2 Re
[
e−(r+a)tαβ

]
+ 2 Re

[
e−(r+ā )tαγ

]
+ 2 Re

[
e−2atβγ

]
:
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Hence, from (4.20) we obtain

T∫

0

∣∣e−rtα + e−atβ + e−ā tγ
∣∣2 dt =(4.21)

=
(1 − e−2rT )

2r
|α|2 +

(1 − e−2a1T )
2a1

[|β|2 + |γ|2]+2 Re
[

1 − e−(r+a)T

r + a
αβ

]
+

+ 2 Re
[

1 − e−2aT

2a
βγ

]
+ 2 Re

[
1 − e−(r+ā )T

r + ā
αγ

]
=

=
1
2

{[ ∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2 ]

+ 4 Re
[
α√
r

β
√

a1

√
ra1

r + a

]
+(4.22)

+ 4 Re
[

β
√

a1

γ
√

a1

a1√
2a

]
+ 4 Re

[
α√
r

γ
√

a1

√
ra1

r + ā

]}
+

− 1
2

{∣∣∣∣
e−rT α√

r

∣∣∣∣
2

+

∣∣∣∣
e−a1T β
√

a1

∣∣∣∣
2

+

∣∣∣∣
e−a1T γ
√

a1

∣∣∣∣
2

+

+4 Re
[

e−rT α√
r

e−a1T β
√

a1
e−ia2T

√
ra1

r + a

]
+4 Re

[
e−a1T β
√

a1

e−a1T γ
√

a1
e−2ia2T a1

2a

]
+

+ 4 Re
[

e−rT α√
r

e−a1T γ
√

a1
eia2T

√
ra1

r + ā

]}
:

Setting

(4.23)

{
α̃ ≡ e−rT α; β̃ ≡ e−a1T β; γ̃ ≡ e−a1T γ; hence

α = erT α̃; β = ea1T β̃ ; γ = ea1T γ̃;

we rewrite eq. (4.22) more conveniently as

T∫

0

∣∣e−rtα + e−atβ + e−ā tγ
∣∣2 dt =

1
2

{∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2

+(4.24)

+4 Re
[
α√
r

β
√

a1

√
ra1

r + a

]
+4 Re

[
β

√
a1

γ
√

a1

a1

2a

]
+4 Re

[
α√
r

γ
√

a1

√
ra1

r + ā

]}
+

− 1
2

{∣∣∣∣
α̃√
r

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

+ 4 Re

[
α̃√
r

β̃
√

a1
e−ia2T

√
ra1

r + a

]
+

+ 4 Re

[
β̃
√

a1

γ̃
√

a1
e−2ia2T a1

2a

]
+ 4 Re

[
α̃√
r

γ̃
√

a1
eia2T

√
ra1

r + ā

]}
=

=
1
2

① − 1
2

②;(4.25)
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where

① ≥
∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2

− 2
√

ra1

|r + a| 2
∣∣∣∣
α√
r

∣∣∣∣
∣∣∣∣
β

√
a1

∣∣∣∣ +(4.26)

− 2
∣∣∣ a1

2a

∣∣∣ · 2
∣∣∣∣
β

√
a1

∣∣∣∣
∣∣∣∣
γ

√
a1

∣∣∣∣− 2
√

ra1

|r + ā | 2
∣∣∣∣
α√
r

∣∣∣∣
∣∣∣∣
γ

√
a1

∣∣∣∣ ≥

≥
∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2

− 2
√

ra1

|r + a|

[∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2
]

+

−
∣∣∣a1

a

∣∣∣
[∣∣∣∣

β
√

a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]
− 2

√
ra1

|r + ā |

[∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

:

Hence since |r + a| = |r + ā |, we obtain from (4.26),

① ≥
{

1 − 2
√

ra1

|r + a| − 2
√

ra1

|r + ā |

}∣∣∣∣
α√
r

∣∣∣∣
2

+(4.27)

+

{
1 − 2

√
ra1

|r + a| −
∣∣∣a1

a

∣∣∣
}[∣∣∣∣

β
√

a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

=

= {1 − 2k1}
∣∣∣∣
α√
r

∣∣∣∣
2

+ {1 − k1 − k2}
[∣∣∣∣

β
√

a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

:

Hence, recalling the constant c1 > 0 defined in (4.18b), we obtain from (4.27),

(4.28) ① ≥ c1

[∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

:

Similarly, from (4.24), (4.25), we estimate

② ≤
∣∣∣∣
α̃√
r

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

+ 2
√

ra1

|r + a| · 2
∣∣∣∣
α̃√
r

∣∣∣∣

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣ +(4.29)

+ 2
∣∣∣ a1

2a

∣∣∣ 2

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

∣∣∣∣
γ̃

√
a1

∣∣∣∣ + 2
√

ra1

|r + ā | · 2
∣∣∣∣
α̃√
r

∣∣∣∣
∣∣∣∣
γ̃

√
a1

∣∣∣∣ ≤

≤
{

1 + 2
√

ra1

|r + a| + 2
∣∣∣∣

√
ra1

|r + ā |

∣∣∣∣
} ∣∣∣∣

α̃√
r

∣∣∣∣
2

+

+

{
1 + 2

√
ra1

|r + a| +
∣∣∣a1

a

∣∣∣
}

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

 =

= {1 + 2k1}
∣∣∣∣
α̃√
r

∣∣∣∣
2

+ {1 + k1 + k2}



∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

 :
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Hence, recalling the constant c2 > 0 defined in (4:18b), we obtain from (4.29),

(4.30) ② ≤ c2



∣∣∣∣
α̃√
r

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

 :

Thus, using (4.28) and (4.30) in (4.25), we obtain

T∫

0

∣∣e−rtα + e−atβ + e−ā tγ
∣∣2 dt ≥ 1

2
c1

[∣∣∣∣
α√
r

∣∣∣∣
2

+

∣∣∣∣
β

√
a1

∣∣∣∣
2

+

∣∣∣∣
γ

√
a1

∣∣∣∣
2
]

+(4.31)

−1
2

c2



∣∣∣∣
α̃√
r

∣∣∣∣
2

+

∣∣∣∣∣
β̃
√

a1

∣∣∣∣∣

2

+

∣∣∣∣
γ̃

√
a1

∣∣∣∣
2

 :

Recalling (4.23), we see that (4.31) coincides with the desired estimate (4:18a).
Then (4:18a) readily implies (4.19). Lemma 4.1 is proved.

Remark 4.1. In going from (4.26) to (4.27), if we use 2ab ≤ εa2 + b2=ε, we obtain
a more general set of sufficient conditions for Lemma 4.1 which reduce to (4.17) for
ε = 1. However, (4.17) is sufficient for our purposes in Step 3 below.

Step 3. We apply Lemma 4.1(ii), eq. (4.19) with

(4.32)

{
r = µn|z1| = µn(−z1) > 0; a = µn(−z2); a1 = µn Re(−z2) > 0;

|r + a| = µn|z1 + z2|;
and recalling (4.3):

k1 =
2√ra1

|r + a| =
2
√

(−z1)Re(−z2)
|z1 + z2|

∼ 2
√

(0:56984)(0:21508)
|0:78492+ i(1:30714)| ∼ 0:45922<

1
2

;(4.33)

k2 =
a1

|a| =

∣∣∣∣
Re z2

z2

∣∣∣∣ ∼
0:21508√

(0:21508)2 + (1:30714)2
=

0:21508√
0:04625 + 1:70861

=(4.34)

=
0:21508√
1:75486

=
0:21508
1:32471

∼ 0:16236 < 1 − k1 ∼ 0:54078:

Thus, the assumptions (4.17) of Lemma 4.1 are satisfied.
We obtain from (4.19), (4.32):

T∫

0

∣∣eµnz1tαn + eµnz2tβn + eµnz3tγn

∣∣2 dt ≥ 1
2

[
c1e2µn|z1|T − c2

µn|z1|

]
e2µnz1T |αn|

2 +(4.35)

+
1
2

[
c1e2µnRe(−z2)T − c2

µnRe(−z2)

]
e2µn(Re z2)T [|βn|

2 + |γn|
2];
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with

(4.36) αn = b1(x1; en)X ; βn = b3(x3; en)X ; γn = b2(x2; en)X :

Step 4. Starting from (4.35), we can complete the proof of the sought-after estimate
(4.16), by proceeding as in Steps 7, 8, and 9 of Section 2.1. Given T > 0 fixed (but
arbitrary), there exists a positive integer N = NT depending on T , such that

(4.37)
1
2

[
c1e2µn|z1|T − c2

µn|z1|

]
;

1
2

[
c1e2µnRe(−z2)T − c2

µnRe(−z2)

]
≥CTN >0; ’ n ≥ NT :

This is surely possible since µn ↗+ ∞, |z1| > 0; Re(−z2) > 0. Then (4.35) and (4.37)
imply

∞∑

n=N

T∫

0

∣∣eµnz1t b1(x1; en)X + eµnz3t b2(x2; en)X + eµnz2t b3(x3; en)X

∣∣2 dt ≥(4.38)

≥ C ′
TN

∞∑

n=N

e2µnz1T |(x1; en)X |
2 + e2µn(Re z2)T [|(x2; en)X |

2 + |(x3; en)X |
2];

(4.39) C ′
TN = CTN min{|b1|

2; |b2|
2; |b3|

2} > 0;

as all bi �= 0 (recall the statements below (4.9)).

To obtain the corresponding estimate of (4.38) for
N =1∑
n=1

, we use the same argument

as in Lemma 2.4, which relies on the same three roots z1; z2; z3 being distinct, hence
on the corresponding exponentials eµnz1t ; eµnz2t ; eµnz3t being linearly independent. We
omit the details, and refer to Step 8 and Step 9 of Section 2.1, to complete the proof
of Theorem 1.2.1, at least when the eigenvalues of A are simple. The case of multiple
eigenvalues also works along similar lines, as pointed out at the end of Section 2.1,
below Step 9.

5. Use of rank conditions

With reference to both problems, the structurally damped equation (1.1.1) and the
thermo-elastic equation (1.2.1)-(1.2.3), rewritten as ẏ = Ay + Bu on the space H
(see (3.1), (3.2), in the first case), suppose that we attempt to use the rank condition
span{BU1; ABU2} = H , which is sufficient for steering any initial point in D(A) to the
origin on an arbitrary time T , by means of an explicit smooth control, see [9, Theorem
3.1(ii), p. 362]. We then find that the above rank condition never holds true, except
in the case of the structurally damped equation (1:1:1) with α = 1=2. In this case, since
eAt is analytic, we then let u1 ≡ 0 on 0 ≤ t ≤ ε, so that y(ε) = eAεy0 ∈ D(A). Then,
the steering control u2 in [9] steers y(ε) to the origin over an additional time interval
T (arbitrarily small). Thus, u1 followed by u2 steers y0 to the origin on an arbitrarily
small time. This re-proves exact null-controllability for (1.1.1) with α = 1=2.
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