
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

James N. Flavin, Salvatore Rionero

On the temperature distribution in cold ice

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni,
Serie 9, Vol. 8 (1997), n.4, p. 299–312.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1997_9_8_4_299_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi
di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1997_9_8_4_299_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1997.



Rend. Mat. Ace. Lincei 
s. 9, v. 8:299-312 (1997) 

Fis ica matemat ica . — On the temperature distribution in cold ice. N o t a ( * ) di J A M E S 

N . F L A V I N e SALVATORE R I O N E R O , p resen ta ta dal Corr i sp . S. R ionero . 

ABSTRACT. — The linear heat equation predicts that the variations of temperature along a cold ice sheet 
{i.e. at a temperature less than is freezing point) due to a sudden increase in air temperature, are very very 
slow. Based on this we represent the nonlinear evolution of an ice sheet as a sequence of steady states. As a 
first fundamental indication that this model is correct well posedness with respect to the variations of initial 
and boundary data is proved. Further an estimate of the error made in evaluating the thickness is 
given. 

KEY WORDS: Cold ice; Nonlinear heat equation; Stability. 

RIASSUNTO. — Sul campo di temperatura nel ghiaccio «cold». La teoria lineare prevede che in una lastra di 
ghiaccio «cold» (cioè a temperatura inferiore a quella di fusione) le variazioni di temperatura dovute ad im
provvise variazioni di quella dell'aria siano molto lente. Per tale motivo si propone qui che l'evoluzione non 
lineare di una lastra di ghiaccio possa rappresentarsi con una successione di stati stazionari. Come prima 
fondamentale indicazione che tale modello sia corretto, si prova la dipendenza continua rispetto alle per
turbazioni dei dati iniziali ed al contorno. Inoltre viene fornita una stima dell'errore che si commette nella 
valutazione dello spessore della lastra. 

1. INTRODUCTION 

As is well known, ice at a temperature less than its freezing point is called «cold», 
while ice at freezing point (which is essentially a two phase mixture of ice and water) is 
called «temperate» [1]. Cold ice occurs in many situations: in glaciers, on frozen lakes 
and seas, on mountains tops .... In the range [ — 40°C, 0°C] for the temperature T, 
the thermal conductivity k of cold ice depends on the temperature. Specifically the em
pirical relation of DiUand and Timmerhans's [1, p. 151; 2, p. 360] is 

(1) k(T) = (2.1725 -3 .403 X HT3 T+9 .085 X l O ^ T ^ K g m s - ^ d e g ) - 1 . 

Therefore, the temperature in such cold ice is governed by the equation 

(2) Qcp^=V-[k(T)VT] 

where the density Q and the specific heat at a constant pressure cp are given 
by [1,2] 

(3) e = 900Kgm, cp=2xl03JKg-1(K)-1. 
Many relevant problems depend on the solvability of (2). We quote here the 
following: 

/') In a cold ice glacier occupying a domain Q, only a part Z of dQ is accessible 
(the surface of glacier). Therefore measurements of the temperature T and heat flux 
n • VT, n being the unit upward normal, are possible only on H. Consequently the prob-

(*) Pervenuta all'Accademia il 17 settembre 1997. 
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lem of solving (2) in a bounded region Q knowing T and n*VT on only part of dQ, 
arises. 

//) On frozen lakes and seas the problem of determining the temperature distri
bution in a cold ice sheet and the thickness of the sheet arises. Because the bottom (i.e. 
the ice-water interface) is at freezing temperature and the temperature and the heat 
flux on the top can be measured, the problem of solving (2) and determining the sheet 
thickness under the aforesaid boundary conditions arises. 

The question /), (in one spatial dimension) has been considered recently in [3]. The 
authors - among other things - obtain an L2-Holder continuous dependence result 
and, in a sense, pointwise continuous dependence. Remaining in one spatial dimension, 
our aim is to contribute to the solution of question ii). Our starting point is the fact that 
the variations of temperature along a cold ice sheet due to a sudden increase in air tem
perature, are very very slow. In fact, for an ice sheet of thickness / = 0.5 m the linear 
version of equation (2) predicts [2, p. 390] that about two days are needed in order 
that 75 per cent of the final effect of any change in surface temperature penetrate 
three-quarters of the thickness. Based on this, it seems realistic to represent the evolu
tion of an ice sheet as a sequence of steady states Un requiring - as a first fundamental 
indication that this model is correct - well posedness with respect to the variations of 
the initial and boundary data. The present paper is devoted to this problem and its plan 
is as follows. First of all, we briefly recall an appropriate nondimensionalization (Sec
tion 2). In Section 3, we obtain the general form of a steady state U - as done in [4] for 
a similar equation - and further we obtain the associated thickness determined by the 
appropriate boundary data. Section 4 is dedicated to obtaining some preliminary lem
mas used later in the analysis of well posedness. In Section 5 we perform an L ̂ continu
ous dependence analysis, while in the Section 6 pointwise continuous dependence is 
treated. In the last Section an estimate of the error made in evaluating the thickness is 
given. 

(4) 

2. AN APPROPRIATE NONDIMENSIONALIZATION 

Equation (2) is written in nondimensional form by introducing the scalings 

X{ — ÙQXJ , 

t = t0t', 

T = T0T'. 

This leads to 

Qcp dT' 2.1725 _, 
(5) 

where 

ta dt' H 
1 " 

3 . 4 0 3 1 ^ . 9.085TQ2 

2172.5 r + 217250 
(T'): '\2 vr , 

v = dx[ ' 3%2 ' 3*3 
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On choosing 

(6) 2.1725 ' ° ' 
T0= 166.8 °C ; 

setting 

\u= - r , 
(7) . L = 0 . 2 6 1 , 

[ e 2 = 1.163 

and omitting the primes, it follows that 

(8) ut = V-[(l + £i^ + e2u
2)Vu]. 

We notice that (8) is the nondimensional version used in [3]. 

3. THE STEADY STATE 

We determine here the steady state temperature distribution and the thickness of 
the ice sheet, corresponding to known fixed values for the temperature and its gradient 
on its top. 

On setting 

(9) F = u + 6^/2 + £2u
3/3 

equation (8) becomes 

(10) ut = AF 

and, in one spatial dimension, admits the steady solution 

(11) u + e1u
2/2 + e2u

3/3 = ax + b 

where a and b are constants to be determined by the boundary conditions. We suppose 
that x = 0 denotes the top of the piece of cold ice, while x = I > 0 denotes the other 
end. On putting 

(12) ju = 6(ax + b) 

it turns out that 

(13) 6u + ò£iu2 + 2e2u
ò = ju 

which, by the substitution 

(14) u = w - e1/(2e2), 

is reduced to 

(15) aw3 + PW + Y'=0 
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where 

(16) j8 = 3 e 2 ( 4 e 2 - f i ? ) , 

The unique real solution of (15) is given by 

a = 4e3 
2 > 

2 > 

(17) w = ̂ yjfi + b1+f1- ^/V/i2 + h ~h 
where 

(18) h = - y / ( 2 a ) , hx = [e2(4e2 - £ l ) ] 3 / a 3 . 

On taking into account (12)-(18), we obtain the steady state solution 

(19) U = ^/V/i2 + hi +Â ~ >/V/i2 + *i ~fx ' *i / (2e 2 

where 

(20) 
pi = ((4fi2-e?)/(4ci))3, 
/ i = 3(*x + £) / (2e 2 ) + (6£2 - e ? ) e i / ( 8 e 

Let us evaluate now the values of <z and £ and the thickness / assuming that temperature 
and its gradient on the top (x = 0) are known. Denoting - in line with (7) - by/?, q re
spectively the values of — T and — dT/ dx on x = 0, from (11) it follows that 

\a=q(l + exp + e2p
2), 

\b=p(l + e1p/2 + e2p
2/3). 

Concerning the thickness /, from u(l) — 0 and (11), (21), it follows that 

(22) / = -b/a =p(l + 0.13;? + 0.387/0/(^(1 + 0.261/? + 1.163/0). 

We notice that 4e2> e2 implies that 

(23) P(£) = l + £ l £ / 2 + £ 2 £ 2 / 3 > 0 , V £ e R , 

(24) Q(!) = l + ^ + £ 2 £ 2 > 0 , V § G H . 

Therefore { / ? > 0 , # < 0 } give / > 0. Concerning q < 0, we observe that (11) 
gives 

(25) ^ ( 1 + £ 1 U + £ 2 U 2 ) = ^ , Vx. 
ox 

On taking into account (24), it follows that dU/ dx does not change sign. But U de
creases from /?°C to 0°C hence dU/dx < 0. 

4. PRELIMINARY LEMMAS TO THE STABILITY 

Let t = 0 be the time at which the ice began to form and [0, TS], *6 = const > 0, be 
an interval of time on which the temperature of upper surface of the piece of ice is non 
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constant and less or equal to zero °C. Let [t0, tx~\ c]0,15] and denote by p and q the 
values 

(26) 

(27) 

p= -T (x = 09t = t0), 

q= -dT/dx (x = 0,t = t0) 

(evaluated experimentally) and by U the steady state corresponding to the data (26)-
(27) and by / = -pP{p)/qQ{p) the corresponding thickness. The following question 
arises: 

representing the temperature distribution by U and the thickness by / in the in
terval [t0y ti\ what are the consequential errors? Concerning the temperature distribu
tion, in Sections 5-6 an estimate is made of the error both in the L2 and pointwise 
norms. Next, Section 7 estimates the error made in evaluating the thickness. In the 
present section we prove some preliminary lemmas to the stability. 

On setting 

(28) F(u) =u + exu
2 /2 + e2u

3/3 

equation (8), in one spatial dimension, becomes 

32 

(29) 
dx' 

;F(u) 

Let us consider the problem 

(30) 

ut= — F(«), 
dx2 

u(0,t)=h(t), 

**(0, f )=gU), 

«[/,*] = 0, 

( X , * ) E [0, / ] X [/o,*iL-. 

/ e |>o, *i 1, 

' e [ f o , * i ] , 

u{x, 0) = u0 (x), x e [0, / ] , 

h(t) and g{t) being prescribed functions on [>0, t{\. Our aim is to estimate the error 
made when the problem (30) is replaced by 

(31) 

a2 

dx2 

U=p, 

U(x) = 0 , 

0 , * e [ 0 , / ] , 

x = 0, 

x = 0, 

x = I. 

On setting 

(32) v = u — U 
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from (30)-(31) it follows that 

d2 

(33) 

v,= —- [F(v + U)-F(U)1, (x,t)el0,n X [*0 , f l] , 
ox 

t^ Ito, hi, 

te [to,hi, 

t e ft»'il, 
* e [ 0 , / ] . 

vx(Q,t)=g(t)-q, 

vU,t] = 0 , 

i>(x, 0) = u0 — U, 

Therefore putting 

(34) L(U,v) = F(v + U)-F(U)= F' (U)v + F"(U)v2/2 + F'"(U)v}/6 

it follows that 

(35) L(U,v) = (1 + e\U + e2U
2)v + ( ^ + 2e2U)v2/2 + e2v

3/3 

and (33) becomes 

S2 

(36) 

v, = 7 7 L'tUW, »(*, / ) ] , (x, /) e [0, /] X [/„, * i ] , 

v(0,t)=h(t)-p, telto,^], 

vx(0,t)=g(t)-q, 

v(l,t) = 0; 

v{x, 0) = u0 — U, 
' e l>o>'iL 
x e [ 0 , / ] . 

In order to estimate v in the L2 and in the pointwise topology, we use the following 
theorem. 

(37) 

THEOREM 1. Let v e R and n e N, /&£# 

A = 1 - 3 £ i / ( 1 6 £ 2 

For any easy proof of (37) and for other purposes we need the following 
Lemmas: 

LEMMA 1. L2n + 1(v), ( » e N ) , is an increasing function on R. 

PROOF. It turns out that 

dv 
L2n + 1 = (2n + \)L2nV 

But 

V(v) = 1 + £1U + £2U2 + {£l + 2e2U)v + e2v
2 = 

= 1 + exU + £2U2 + £2!> + (6i£2-1 + 2 U ) / 2 ] 2 - M ^ e a " - ^ 2U)2 /4 £ 

^ 1 + exU + £2U2 - (eUl1 + 4£2U2 + 4£ 1U)/4 = 1 - c? / (4e 2 ) > 0 . 
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LEMMA 2. One has 

[L{v)^Avy v^O, 
( 3 8 ) [L(v)^Av, v^O. 

PROOF. For v ^ 0, it follows that 

L(v)/v = [6(1 + £xU + £2U
2) + 3(£1 + 2£2U)v + 2e2v

2l/6. 

But U ^ 0 and 4s2 > ^i imply 

9(£1 + 2 £ 2 U ) 2 - 4 8 £ 2 ( 1 + £1U + £2U
2) = 

= 9(ei + 2e2U)2 - 12(4e2 + 4£!£2U + 4£2
2U

2) ^ -3(ex + 2£2U)2 < 0 . 

Therefore 

L{v)/v>0, V ^ E R - { 0 } , 

and attains its Lb. at v = — 3(£i + 2£2U)/(4£2) . Hence it follows that 

6L(v)/v > 6(1 + exU + £2U2) - 9(fii + 2£ 2U) 2 / (4£ 2) + 9(el + 2£ 2U) 2 / (8£ 2) = 

= 6(1 + exU + £2U
2) - 9(fi! + 2£ 2U) 2 / (8£ 2) ^ 

^ (6 - 9£ 2 / (8£ 2)) + (6 - 9 / 2 ) £ l U + (6 - 9 /2 )£ 2 U 2 ^ 6 - 9e 2 / (8£ 2 ) 

recalling that ej > 0. Therefore it immediately follows that 

L(v)/v > 1 - 3 £ 2 / ( 1 6 £ 2 ) =A. 

LEMMA 3. For any v e R one has 

V 

(39) 0 ^ ÏL2n + 1(v)S<vL2n + 1(v). 

o 

PROOF. Because L(0) = 0, Lemma 1 gives 

0 < v < v => [L2" + J (v)S < L2n + 1 (v) f <& = z i 2 " + x (p), 
0 0 

o o 
v <ï <0=* \L2n + 1(ï)dë > L2n + 1(v) idv = -vL2" + l ( v ) . 

V V 

The proof of (37) is now trivial. In fact for v ^ 0, (39) implies 

L2* + 2(z;) hL2n + 1(v)S>L2n + 2(v)/(L2n + 1(v)-v)=L/v. 
0 

Therefore on taking (38) into account, (37) immediately follows. 

5 . L2-ERROR ESUMATE FOR THE TEMPERATURE 

We set 

(40) G [ U ^ U , / ) ] = J L ( U , f ) ^ = ^ - [ 6 ( l + £ 1 U+£2U 2 ) + 2(£1 + 2£ 2U)^ + £2f2] 



306 J. N . FLAVIN - S. RIO N ERO 

and notice that the quantity in the square brackets is always positive (see the Proof of 
Lemma 1). Hence G is a positive definite function of v: 

f G > 0, v * 0 , 
( 4 1> |c-o, , = o. 
We use now the Liapunov function introduced by Rionero in [7] 

(42) V= {G[U(x),v(x,t)]dx. 

Along the solution to (36), it turns out that 

(43) V = Ldx. 

But 

(44) î, = 0 = > { G = 0 , L = 0 } 

hence from (36)4, (43)-(44) it turns out that 

(45) V= -ILLJ U o l\dx 
dx, 

and (44) and the Poincaré inequality [5, p. 338] imply 

(46) V = -[LLA-O-$\L dx. 

But (37), for n = 0, gives 

(47) L2>AG, 

hence (46) gives 

(48) 
L — ' 

dx _ 
-aV, 

x = 0 

o = Ajt2/(4l2), 

and therefore it follows that 

(49) V(t) < \ v_(*-
t 

L — 
dx _ 

em 

x = 0 
dx 

where V0 = V(U,v0). 
Now it turns out that 

(50) 

\ L \ X = 0 ^ \h{t) -p\[6Q(p) + 3 ( £ l + 2E2p)\h{t) -p\ + 2e2 \h{t) -p\2l/6, 

\dL/âc\x.o< \q\[{ex + 2e2 \p\) + e2 \q\ \h{t) -p\]\h(t) -p\ + 

+ \g(t) - q\iQ{p) + (£i + 2e2p)\h{t) -p\ + e2 \h{t) -p\2]. 
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Suppose 

(51) 

and set 

{\h(t)-p\^ô, feCfo,*!], 

\\g(t)-q\^e, * e | > o , ' i ] , 

{mx = [6Q(p) + 3(fii + 2£2p)ô + 2 £ 2 ô 2 ] / 6 , 

(52) J w2 = k l K ^ i + 2£2p) + e2 \q\ô], 

\mò = Q{p) + (e1 + 2e2p)ò + e 2 ô 2 . 

From (49) it turns out that V* e Oo>*i] 

(53) V U ) ^ y 0 ^ _ ( 7 ' + ^ i ^ ( ^ 2 Ô + ^ 3 £ ) ( l - ^ " a ' ) / a , 

/>. L2 continuous dependence with respect to perturbations in the initial data and in 
the boundary data. 

In fact from (38) it follows that 
V 

v>0=>L(v) >Av=>\Uv) >Av2/2y 

o 
0 0 

v < 0=>L(v) <Av=±> [h{v)dv <A \vdv = -Av2/2, 

i.e. Vf G R 

and hence 

(54) 

A 

v 

\L(v)dv = G/A 

\v2dv^V/t 

Set 

(55) 

6 . POINTWISE ERROR ESTIMATE FOR TEMPERATURE 

E=\Fdx, 
0 

F= JL2n + ldx9 « e N . 
0 

(56) 

It follows that 

/ l 

(57) È= ^L2" + 1Lxxdx = [L2n + 1LxYxz
lo- (2« + 1) \h2nL2

xdx. 
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But v(l, t) = 0=> {L = F = 0, at x = / } , hence 

(58) E= -[L2n + 1LX]X = 0 
2n + 

(n + mfr-y* 
{2n + \)n2 ' 

[L L J^° 4(« + l ) ^ J L * 
On integrating (37), it follows that 

(59) ^L2n + 2dx ^AE 

hence from (48)2 and (58) we obtain 

(60) EG -[L2" + 1LJx = 0-o(2n + l)(n + \)~2E 

i.e. 

(61) 

where 

(62) 

E^EQe-°nt-e-°nt\ j2n + 1 9L 

dx 
e°«xdx 

x = 0 

E0 = E(t0), 

an = [(2» + 1)(» + l ) - 2 ]cr . 

On taking into account (50) and (51), it follows that 

(63) E ^EQe-°nt + {rnxò)2n + l (m2ô + mòé)(\ - e-**')/'oH . 

From (38) it turns out that 
j In + 1 / In + 1 > /| In + 1 

hence 

i ;>0=^L 2^ + 1 ( ^ ) ^ ^ 2 " + 1^2" + 1=^fL 2^ + 1 ^ ^ ^ 2 « + 1t;2^ + 2 / ( 2 ^ + 2) , 
o 

o 
i ,< 0=>L2* + 1(t;) ^A2n + lv2n + 1=> ÏL2n + 1dv ^ -A2n + lv2n + 2/(2n + 2) , 

/.£. 

1/ 

rL2« + i < & . ^ 
2^ + 2 

^ + 2 , Vt; 

and integrating 

(64) £3= 
j 2» + 1 

2» + 2 V 1 dx,. 
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Finally we obtain 

(65) 
/ \ l /(2» + 2) 

jv2n + 2dx\ 
1/(2» +2) 

\0 / 

On taking into account that!1) 

from (63) and (65) it follows that 

1 J I ^(2» + l)/(2» + 2) 

and hence 

(66) lim I \v2n + 

£ i /<* + 2) , -^ / (2« + 2) . / m2ô+m,e WW 
h° 6 +miÒ\ mxôa ) 

l \ l / ( 2 « + 2 ) 
2dx\ ^ j r B m E 0

1 / ( 2 " + 2 ) + * 1 d l . 

But, from (37), it turns out that 

(67) E0= jdxJL2" + 1dv^ ± JL2" + 2(v0)dx. 
0 0 0 

Therefore in view of (70), we obtain 

(68) lim 
/ 

L 2 . + 2 dx 
1/(2»+ 2) 

i4 ( / \ 1/(2» +2) 

and hence pointwise continuous dependence follows according to 

(69) \v(*,t)\< j sup |L(z>0)| + M\à 
C0,/(0)] 

REMARK 1. We conclude with a simple analysis which provides the basis for an alter
native pointwise continuous dependence estimate. However, the estimate requires a 
knowledge of certain time rates of change, which are not required in the previous 
analysis. 

Referring to the problem defined by (36), define 

(70) E(t) 
/ ( 

dL 
dx 

dx. 

(!) From ê ï + £5 ^ (£i + §2)*, ïi,£2, * > 0, it follows that V i Y + T Ï ^ l i + £2 . Hence, setting 
£? = Af-, / = 1, 2, it turns out that y/Xi + X2 ^ V ^ + V ^ A t , A2, » > 0. 
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Differentiating gives 

2dL3L 
dx dt 

x = l 

x = 0 

(TX\
 dE o 3L d2L , 0 d2L dL , , 

( 7 1 ) — = 2 " ^ - -7T-7T- OX = - 2 — — — Ó&C + 
tìfr J 3x 3 /3x J <2v2 3^ 

0 0 

where integration by parts has been used in the last step. 

Using the definition of L and (36) it follows that 

(72) - 2 ^ - ^ = ~2[(l + £lU+ e2U
2) + (e1 + 2e2U)v + e2v

2]t d2LX2 

dx2 3t — ' - 1 " ^ ,'^i'~2~,*>«2* ^ d x 2 

Since v - 0 on x = /, it follows that L = 0 thereon. Thus 

(73) 9L/dt = 0 

thereon. It follows from (71)-(73) that, 

f * " 2 f (M)f(0.»> 
(where L = L(x, /)). Integration gives 

t 

(74) B ( / ) ^ E U o ) - 2 j f^ ( 0 , 0 4 ^ (<>,*')<&'. 
4) 

A pointwise estimate is deducible from this in view of 

(75) L2(x,t)^(l-x)E(t) 

a consequence of Schwarz's inequality and 

(76) L2(x, /) ^ v2(x, t)[l + exU + eU2 + ( e i + 2e2U)v/2 + e2v
2/3ì ^ 

^v2(xyt)[l-3s2
1e2

1/l6]. 

In the above analysis it is, of course, assumed that the requisite smoothness 
obtains. 

.7. O N AN ESTIMATE OF THICKNESS 

Let us recall the equation commonly used to predict the thickness of ice on lakes 
from forecasts. For the sake of simplicity, we return to using dimensional quantities. 
Let ô {t) be the thickness at time t and Ts ( < 0) the temperature in °C of the upper sur
face S such that {Ts(0) = 0, Ts(0) < 0 for t > 0}. The equation that has been found 
to describe the growth of the ice sheets remarkably well is [2, pp. 389-390] 

t 

(77) ô2{t) = jx j w r ^ 
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where X is the latent heat of melting per unit mass and t = 0 is the time at which the ice 
began to form. The equation (77) is a consequence of the following two assump
tions 

/') the quantity of heat dQ conducted through unit area of the sheet in time 
dt is 

(78) dQ= -{k{Tz)/ô)Tzdt 

ti) it is allowed to neglect any change in the temperature of the ice which has 
formed and therefore 

(79) dQ= -QÀdô. 

We recall that (78) is suggested by experiments when the steady state of tempera
ture has been reached [6, p. 2]. It is quite natural then to compare, at any fixed time /, 
the value ô(t) given by (77) to the sheet thickness ô* evaluated through a steady state 
f(x) 

(80) alT + a2T
2/2+a}T

}/3=âx + ï 

where 

(81) «! = 2.1725, a2= -3.403 X 1(T3 , a} = 9.085 X 10"5 

and a, b being constants to be determined by the boundary data 

(82) -T{O) = TSO), 

(83) [dT/dx]x = 0 = S(t) 

where S: t e [0, "6] =*S(t) e R denotes the heat flux on the top. From (80), (82) and 
(83) it turns out that 

\â = S(t)KlTs(t)l, 

(84) •J = Ts0)[a1 + (a2/2)Ts0) + (aì/3)Tl('t)], 

[ô*= -lia. 
A comparison between ò{t) and ò* can be found noticing that (78) assumes that 

(85) SO) = (JlôOÛÎ - TsCt))/òQ) = -Tz(t)/òCt). 

Consequently (83) and (84) imply 

(86) ô*lô = {a1+a2Tsl2 + a}Til3)l(K(Ts)) 

i.e. 

(87) ô*/o = (l + e1p/2 + e2p
2/3)/(l + elp + e2p

2) = 

= (2 + (4 + eip)/(l + elP + e2p
2))/6 

where 

(88) p= - r 2 / 1 6 6 . 8 . 

It is easily seen that <5* / ò is a decreasing function of p ^ 0. In particular, in the range 
T e [ - 40 °C, 0 °C] easily follows. 
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TABLE I. 

ô*/ô 

0°C 
-10°C 
- 2 0 ° C 
-30°C 
-40°C 

0 

0.059 

0.118 
0.179 

0.23 

1 
0.9896 

0.9738 

0.9555 

0.932 

TABLE II. 

0°C 

-10°C 

-20°C 

-30°C 

- 4 0 ° C 

1000 mm 

1000 mm 

1000 mm 

1000 mm 

1000 mm 

1000 mm 
989 mm 
973 mm 
955 mm 
932 mm 
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