Rendiconti Lincei Matematica e Applicazioni

Tatsuhiro Honda

A special version of the Schwarz lemma on an infinite dimensional domain

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 8 (1997), n.2, p. 107-110.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1997_9_8_2_107_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1997.

Funzioni di variabili complesse. - A special version of the Schwarz lemma on an infinite dimensional domain. Nota di Tatsuhiro Honda, presentata (*) dal Socio E. Vesentini.

Abstract. - Let B be the open unit ball of a Banach space E, and let $f: B \rightarrow B$ be a holomorphic map with $f(0)=0$. In this paper, we discuss a condition whereby f is a linear isometry on E.

Key words: Banach space; Schwarz lemma; Complex geodesic; Projective space.
Riassunto. - Una versione speciale del lemma di Schwarz su un dominio di dimensione infinita. Sia B il disco unità aperto di uno spazio di Banach complesso. Si determina una condizione perché un'applicazione olomorfa $f: B \rightarrow B$, con $f(0)=0$, sia un'isometria lineare.

1. Introductipn

Let $\Delta=\{z \in \mathbb{C} ;|z|<1\}$ denote the unit disc in the complex plane \mathbb{C}. The classical Schwarz lemma is as follows:

Theorem (The classical Schwarz lemma).
(1) Let $f: \Delta \rightarrow \Delta$ be a bolomorphic map such that $f(0)=0$, then $|f(z)| \leqslant|z|$ for all $z \in \Delta$.
(2) Moreover, if there exists $z_{0} \in \Delta \backslash\{0\}$ such that $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ then there exists a complex number λ with $|\lambda|=1$ such that $f(x)=\lambda x$ and f is an automorphism of Δ.

Let E be a Banach space, and let D be a domain in E. The Carathéodory and Kobayashi invariant pseudo-distances have been introduced in D, together with the corresponding infinitesimal pseudo-metrics. A holomorphic map from Δ into D which is an isometry for the Poincaré distance of Δ and the Carathéodory or Kobayashi pseudo-distance of D is called a complex geodesic. It is known that complex geodesics do not always exist on D. However, their existence is a useful tool in the study of the group of all holomorphic isometry on D.
J. P. Vigué [13] generalized the above classical Schwarz lemma to the unit ball B in \mathbb{C}^{n}, for some norm such that every boundary point of B is a complex extreme point of \bar{B} and to a holomorphic map $f: B \rightarrow B$ for which $C_{B}(f(0), f(w))=C_{B}(0, w)$ on an open subset U of B. H. Hamada [8] extended Vigué's results for some local complex submanifold of codimension 1 instead of an open subset U.

The notion of a complex geodesic on infinite dimensional spaces was first introduced by E . Vesentini [10]. He showed that if every boundary point of B_{Z} is a complex extreme point of $\overline{B_{2}}$ and if $C_{B_{2}}(f(0), f(w))=C_{B_{1}}(0, w)$ for every $w \in B_{1}$, then f is a linear $\|\cdot\|$-isometry, where B_{1} and B_{2} are the open unit balls for normed spaces E_{1} and E_{2} over C.
(*) Nella seduta del 7 febbraio 1997.

In this paper, we give an infinite dimensional version of the above classical Schwarz lemma as follows:

Main theorem. Let E be a complex Banach space, let B be the unit ball of E, and let $f: B \rightarrow B$ be a bolomorphic map such that $f(0)=0$. We assume that every boundary point of B in E is a complex extreme point of the closure \bar{B} of B. Let X be a non-empty subset of B such that X is mapped bomeomorphically onto an open subset Ω of the complex projective space $\mathbb{P}(E)$ by the quotient map from E onto $\mathbb{P}(E)$. If $C_{B}(f(0), f(w))=C_{B}(0, w)$ for every $w \in X$, then f is a linear isometry on E.

If $E=\mathbb{C}, \mathbb{P}(E)$ is the set of only one element. This main theorem contains the part (2) of the classical Schwarz lemma.

2. Notations and preliminaries

Let $\Delta=\{z \in \mathbb{C} ;|z|<1\}$ be the unit disc in the complex plane C. The Poincaré distance ϱ on Δ is defined as follows:
$\varrho(z, w)=(1 / 2) \log (1+|(z-w) /(1-z \bar{w})|) /(1-|(z-w) /(1-z \bar{w})|)(z, w \in \Delta)$.
Let D_{1} and D_{2} be domains in complex Banach spaces. We denote by $H\left(D_{1}, D_{2}\right)$ the set of all holomorphic mappings on D_{1} into D_{2}. Let E be a complex Banach space, and let D be a domain in E. The Carathéodory distance C_{D} on D is defined as follows:

$$
C_{D}(p, q)=\sup \{\varrho(f(p), f(q)) ; f \in H(D, \Delta)\} \quad(p, q \in D)
$$

A mapping $g \in H(\Delta, D)$ is called a complex geodesic if $C_{D}(g(z), g(w))=\varrho(z, w)$ (for all $z, w \in \Delta)$.

Theorem 1 [11, 4]. Let E be a complex Banach space, and let D be a convex domain in E. A mapping $g \in H(\Delta, D)$ is a complex geodesic if and only if there exist distinct points $z, w \in \Delta$ such that $C_{D}(g(z), g(w))=\varrho(z, w)$.

Theorem 2 [11]. Let E_{1} and E_{2} be two locally convex, locally bounded, complex vector spaces. Let D_{1} and D_{2} be two bounded, convex, balanced open neighborboods of 0 in E_{1} and E_{2}, and let $f: D_{1} \rightarrow D_{2}$ be a bolomorphic map such that $f(0)=0$. We assume that every boundary point of D_{2} is a complex extreme point of the closure $\overline{D_{2}}$ of D_{2}. If $C_{D_{2}}(f(0), f(w))=C_{D_{1}}(0, w)$ bolds for all $w \in D_{1}$, then f is a linear map of E_{1} into E_{2}.

3. Main results

Proposition 3 [6]. Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$. Then $C_{B}(0, x)=C_{\Delta}(0,\|x\|)$ for every $x \in B$.

Let f be a holomorphic map from B to B such that $f(0)=0$. By Proposition 3 and the distance decreasing property of the Carathéodory distances, we have $C_{\Delta}(0,\|z\|)=$ $=C_{B}(0, z) \geqslant C_{B}(0, f(z))=C_{\Delta}(0,\|f(z)\|)$ for all $z \in B$. Since $C_{\Delta}(0, r)$ is strictly increa-
sing for $0 \leqslant r<1$, we obtain that $\|f(z)\| \leqslant\|z\|$ for $z \in B$. This is a generalization of part (1) of the classical Schwarz lemma.
$P_{\text {roposrrion }}$ 4. Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$, and let $f: B \rightarrow B$ be a bolomorphic map such that $f(0)=0$. We assume that every boundary point of B is a complex extreme point of the closure \bar{B} of B. Let U be a non-empty open subset of B. If $C_{B}(f(0), f(w))=C_{B}(0, w)$ for every $w \in U$, then f is a linear isometry on E.

Proof. By Theorem 2, f is linear on E. So we show that f is injective.
By Proposition 3, the conditions $\|f(w)\|=\|w\|$ and $C_{B}(f(0), f(w))=C_{B}(0, w)$ are equivalent.

Let z be a point of E with $f(z)=0$ and let $w \neq 0$ be a point of U. Since U is open, there exists a positive number $r>0$ such that $w+\zeta z \in U$ for $\zeta \in \mathbb{C},|\zeta|<r$. Then

$$
\begin{equation*}
\left\|f\left(w+\xi_{z}\right)\right\|=\|w+\xi z\| . \tag{4.1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\|f(w+\zeta z)\|=\|f(w)+\zeta f(z)\|=\|f(w)\|=\|w\| . \tag{4.2}
\end{equation*}
$$

By (4.1) and (4.2), we have $\|w+\zeta z\|=\|w\|$. So

$$
\left\|\frac{w}{\|w\|}+\frac{\zeta}{\|w\|} z\right\|=1 \text { for }|\zeta|<r
$$

Since $w /\|w\|$ is a complex extreme point of \bar{B}, we have $z=0$. Therefore f is injective.

Now we introduce the projective space $\mathbb{P}(E)$. Let E be a Banach space. Let z and z^{\prime} be points in $E \backslash\{0\} . z$ and z^{\prime} are said to be equivalent if there exists $\lambda \in \mathbb{C}^{*}$ such that $z=\lambda z^{\prime}$. We denote by $\mathbb{P}(E)$ the quotient space of $E \backslash\{0\}$ by this equivalence relation. Then $\mathbb{P}(E)$ is a Hausdorff space. The Hausdorff space $\mathbb{P}(E)$ is called the complex projective space induced by E. We denote by Q the quotient map from $E \backslash\{0\}$ to $\mathrm{P}(E)$.

Theorem 5 (Main theorem). Let E be a complex Banach space with the norm $\|\cdot\|$, let B be the open unit ball of E for the norm $\|\cdot\|$, and $f: B \rightarrow B$ a bolomorphic map such that $f(0)=0$. We assume that every boundary point of B is a complex extreme point of the closu$r e \bar{B}$ of B. Let X be a non-empty subset of B such that X is mapped homeomorphically onto an open subset Ω of the projective space $P(E)$ by the quotient map Q. If $C_{B}(f(0), f(w))=$ $=C_{B}(0, w)$ bolds for every $w \in X$, then f is a linear isometry on E.

Proof. We take a point $w \neq 0, w \in X$. We set $\varphi(\zeta)=\zeta(w /\|w\|)$ for $\zeta \in \Delta$. Then φ is a complex geodesic of B. We have $C_{B}(f \circ \varphi(0), f \circ \varphi(\|w\|))=C_{\Delta}(0,\|w\|)$. By Theorem $1, f \circ \varphi$ is a complex geodesic of B. So there exists a point $y \in B \backslash\{0\}$ such that

$$
\begin{equation*}
f \circ \varphi(\zeta)=\zeta(y /\|y\|) . \tag{5.1}
\end{equation*}
$$

(see e.g. [10-12]). On the other hand, let $f(x)=\sum_{n=1}^{\infty} P_{n}(x)$ be the development of f by n-homogeneous continuous polynomials P_{n} in a neighborhood V of 0 in E. Then we have

$$
\begin{equation*}
f \circ \varphi(\xi)=\sum_{n=1}^{\infty} P_{n}\left(\xi \frac{w}{\|w\|}\right)=\sum_{n=1}^{\infty}\left(\frac{\zeta}{\|w\|}\right)^{n} P_{n}(w) \tag{5.2}
\end{equation*}
$$

in a neighborhood of 0 in Δ. By (7.1) and (7.2), we obtain $P_{n}(w)=0$ for $w \in X$, $n \geqslant 2$.

We take any point $y \in \mathbb{C}^{*} X=\left\{t x ; t \in \mathbb{C}^{*}, x \in X\right\}$. Then there exist $t \in \mathbb{C}^{*}$ and $x \in X$ such that $y=t x$. So

$$
P_{n}(y)=P_{n}(t x)=t^{n} P_{n}(x)=0
$$

Thus $P_{n} \equiv 0$ on $\mathbb{C}^{*} X \subset E$ for every $n \geqslant 2$. Since Q is continuous, the set $\mathbb{C}^{*} X=$ $=Q^{-1}(\Omega)$ is an open subset of E. By the identity theorem, $P_{n} \equiv 0$ on E for every $n \geqslant 2$. Therefore $f=P_{1}$ on B. So we have $\|f(t x)\|=\|t f(x)\|=|t|\|f(x)\|=|t|\|x\|=\|t x\|$ for every $t \in \mathbb{C}^{*}, x \in X$. Then $\|f(y)\|=\|y\|$ for all $y \in \mathbb{C}^{*} X$. By Proposition $4, f$ is a linear isometry on E.

References

[1] L. Belkhchicha, Caractérisation des isomorphismes analytiques sur la boule-unité de \mathbb{C}^{n} pour une norme. Math. Z., 215, 1994, 129-141.
[2] S. Dineen, Complex Analysis in Locally Convex Spaces. North-Holland Math. Studies, 57, 1981.
[3] S. Dineen, The Schwarz Lemma. Oxford Mathematical Monographs, 1989.
[4] S. Dineen - R. M. Timoney, Complex Geodesics on Convex Domains. Progress in Functional Analysis, 1992, 333-365.
[5] S. Dineen - R. M. Timoney - J. P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529.
[6] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distances. North-Holland Math. Studies, 40, 1980.
[7] M. Jarnicki - P. Pflug, Invariant Distances and Metrics in Complex Analysis. de Gruyter, Berlin-New York 1983.
[8] H. Hamada, A Schwarz lemma in several complex variables. In: Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis. Seoul, Korea, 1995, 105-110.
[9] M. Nishinara, On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces. Portugaliae Math., 52, 1995, 61-94.
[10] E. Vesentini, Variations on a theme of Carathéodory. Ann. Scuola Norm. Sup. Pisa, 7 (4), 1979, 39-68.
[11] E. Vesentini, Complex geodesics. Compositio Math., 44, 1981, 375-394.
[12] E. Vesentini, Complex geodesics and bolomorphic maps. Sympos. Math., 26, 1982, 211-230.
[13] J. P. ViguÉ, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes. Indiana Univ. Math. J., 40, 1991, 239-304.
[14] J. P. ViguÉ, Le lemme de Schwarz et la caractérisation des automorphismes analytiques. Astérisque, 217, 1993, 241-249.

