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Scienza dell'informazione. — On some properties of doubly-periodic words. No

ta (*) del Corrisp. CLAUDIO BAIOCCHI. 

ABSTRACT. — We study the functional equation: 

(1) ABC = CDA 

where A, B, C and D are words over an alphabet QL. In particular we prove a «structure result» for the inner 

factors B, D: for suitably chosen words X, Y, Z one has: 

(2) JB =XYZ, D = ZYX. 

It is a generalization of the Lyndon-Schutzenberger's Theorem (see [7]): if in (1) A or C is empty, formula 
(2) holds true with one among X, Y, Z which can be chosen empty. 

KEY WORDS: Words; Periodicity; Palindromy. 

RIASSUNTO. — Su alcune proprietà delle parole doppiamente periodiche. Si studia l'equazione funzionale: 

(1) ABC = CDA 

in cui A, JB, C e D sono parole su un alfabeto (3L. In particolare si ottiene una «formula di struttura» per i fat
tori centrali B e D: per opportune parole X, Y, Z vale: 

(2) B =XYZ, D = ZYX. 

Si tratta di una generalizzazione del Teorema di Lyndon-Schutzenberger (cfr. [7]): con due soli fattori nel
la (1) (cioè se una delle parole A, C è vuota) in (2) bastano due fattori (cioè: una almeno tra X, Y t. Z h 

vuota). 

1. NOTATIONS AND STATEMENTS 

Let CL be a non empty set, whose elements will be called letters; CL* will denote the 

free monoid over &; the elements of d* will be called words; for any word W the length 

of W is denoted by | W\ ; the empty word {i.e. the identity of &*) will be denoted by © 

(and, of course, |<9| = 0 ) . 

Le tp be a positive integer; a word W = ax ...an isp-periodic (andp is a period for 

W) if the relation ay = a.j+p holds true for 1 ^ / ^ n —pi1). 

We will deal with the following problem: 

PROBLEM A. We are given three positive integers, w, p, q such that: 

(3) p , q < w < p + q - gcd (p, q). 

We ask for words W of length w which are both p-periodic and q-periodic. • 

REMARK 1.1. We will in fact work in a more general setting, but the most interesting re

sults will hold true under the restriction (3). The reason for such a restriction is that we 

would work with «truly-double-periodic» words; this is obviously not the case ifp = q; and, 

(*) Pervenuta all'Accademia il 30 luglio 1996. 
i1) As usual, we do not require p < n\ any word W is p-periodic for p ^ \W\. 
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more generally, if w ^ p + q — gcd(/?, q): the well known Fine-Wilfs Theorem (see [5]) 
says that, in such framework, W is simply a gcd(p, q)-periodic word. On the other hand, as 
pointed out in footnote (1), if p or q reaches w the corresponding periodicity imposes no 
restrictions. • 

REMARK 1.2. A special case of particular interest is the case of w = p + q — 2; (3) then 
reads: 

(4) p, q are coprirne; \w\ = p + q - 2 

and the solutions W of Problem A are strictly related to the «Sturmian Words», as proved in 
recent papers [2-4]; in particular any such W is a palindrome word. Our results will give a 
new proof of this palindromy. • 

Let us define the quantities a, h and c by setting: 

(5) a'= w — q; b'. = p + q — w; c'.= w—p 

so that, in the framework of (3), a, b and c are strictly positive. Because of a + b + c = 
= wy for the solutions W of Problem A the formula: 

(6) W = ABC; \A\=a,\B\=b,\C\=c 

defines the words A, J3, C; and the double periodicity of W holds true if and only if 
there exists a word D (of course: with length d = b) such that (1) holds true. Of course 
the inverse formula of (5) is given by: 

(7) p = a + b; q = b + c; w = a + b + c 

and (3), in terms of a, b and ç, implies: 

(8) a,b,c>0; b > gcd{a + b, b + c). 

However problem (1) (with prescribed lengths a, b, c for A, B and C) could be studied 
under the more general assumption a, b,c e N . Let us recall some known results in 
such a framework. 

1) If c vanishes, C becomes the empty word, thus disappearing from (1). The 
corresponding equation is the so called Lyndon-Schutzenbergers equation. For any triple 
{/, R, S} with jeN and R, S e Œk, setting: 

(9) A = (RS)JRy B=SR; D = RS 

we get a solution of (1) with C = 0. Conversely, (see [7]), for any triple {A,B,D} 
such that (1) holds true with C = 0 , one has (9) for suitably chosen/, R, S(2). In par
ticular (2) holds true with one less factor. Of course a similar result holds true when a 
vanishes, say A = 0; the case b = 0 can be treated by an obvious change of names 
in (1). 

2) If a,b,c> 0, and b ^ gcd.U + b, b + c), the Fine-Wilfs theorem (see [5]) 

(2) The value of \R\, \S\ and j can be calculated by some obvious «modular» operations on \A\ 

and IBI . 
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implies that, for a suitable word E of length gcd{a + b, b + c) — b, one has 

(10) A = (EBY'E, C = (EB)kE, D = B 

with/, k defined by the obvious modular operations. Conversely, for any y E N and for 
any choice of 23, E E CI*, formula (10) gives a solution of (1). Of course (2) still holds 
true, with two factors vanishing (3). 

3) The remaining case can be described by: 

(11) b> gcd(a + b,b + c) 

which in turn (because oia,b,c ^ 0) implies a,b,c > 0; thus we are in the framework 
of (8). As far as we know, no results are known. As already said in the Abstract, we shall 
prove a formula of type (2); for the moment being, let us remark that in general three 
(non empty) factors could be needed. Fix any triple X,Y, Z e. GL* and set B := XYZ. 
Then, for any choice oijeN, formulae: 

(12) A = (YZy' + 1Y; C = {YZ)jY- D = ZYX 

give a solution of (1), the «symmetric» one (see footnote (3)) being given by: 

(13) A = (YXy'Y; C = (YXY+1Y; D = ZYX. 

The results we will given in Section 2, together the ones we just recalled, can be 

grouped into the following Theorems 1.1 and 1.2. 

THEOREM 1.1. For any choice ofa,B,c, with a> e E N and Bed*, there exists at least 

a triple A, C, D of words, with 

(14) \A\=a, \C\=c 

such that (1) holds true. All solutions have the same D; the condition 

(15) b&gcd(a+b9b+c) 

is necessary and sufficient for the uniqueness of A, C. • 

Let us be more precise about the map {a, B, c} *-+D. We will construct a map from 
N3 into itself: 

(16) N33{a,b,c}>->{x,y,z}<EN3 

such that for any solution of (1) (with lengths a, b, c for A, B, C) one has (2) 
with: 

(17) |X| =x(a,b,c), \Y\=y(a9b,c), \Z\ =z(a,b,c); 

of course our map will satisfy: 

(18) x(a, b, c) + y(a, b, c) + z(a, b,c) = b for all a;b, c eN 

so that for any B of length b there exists a unique triple {X, Y, Z} satisfying (17) and 
B = XYZ. Let us summarize the corresponding result: 

(3) We could e.g. choose X = Z = 0, Y = B, in order to respect the «symmetry» of the problem: 
equation (1) is symmetric with respect to the swaps a**c, A**C; swaps that in (2) just require 
X**Z. 
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THEOREM 1.2. For any choice of a, B, c, with a, e e N and B e CL*, to X, y, Z &£ 
defined through (17) #»*/: 

(19) B=XYZ, 
For any solution of (1) with (14), one has D = ZYX; furthermore, if (15) holds 
true, also the words A and C can be uniquely reconstructed by suitably combining powers of 
x, y, z. • 

These results (that of course also apply to Problem A) will be proved in § 2; let us 
remark, however, that they must be proved only in the framework of (8), the remaining 
cases being already known. In § 3 we will investigate some interconnections between 
double periodicity and a generalization of the notion of palindromy (see Remark 
1.2). 

2. PROOFS 

In this Section we will use «mixed» notations: A, B, C, D will denote solutions of (1) 
of lengths a, b, c and d = b; p, q, w will denote the quantities given by (7); W = ABC 
will denote the corresponding word of length w and periods p, q. We will assume that 
(3) holds true; say, in «mixed» notations: 

(20) b>gcd(p,q); 

as we already remarked, we will also have: 

(21) a,b,c>0; a*c. 

Let us first work under the assumption: 

(22) \b\ >\a-c\ 

and show that the corresponding solutions of (1) must be described through (12) or 
(13); we detail only the case of 

(23) c < a < b + c 
corresponding to (12), the other case being quite similar. We set(4): 

(24) x(a, b, c)'.= b + c — a ; y(a, b, c)'-= aModc ; z(a, b, c):= a — c — y 

so that, because of (18), for any B of length b formulae (19), (17) define the words X, Y, 
Z. Setting also: 

(25) j:=cDiv(a-c) 

we remark that formula (12) provides a solution of (1) with \A\ = a, and \C\ = c. Let 

us prove that this is the only solution: 

LEMMA 2.1. Let A, B, C, D be given with (1) and such that, for the corresponding 
lengths, (23) holds true. Then formula (12) holds true with X, Y, ZJ defined through (24), 
(19), (17), (25). 

(4) As usual, we denote by «a Mod b», «a Divb» the reminder and the integer quotient between the 
positive integers a and b. 
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PROOF. Using our definitions for X, Y, Z, we also set U-= YZ, so that B = XU; 
remark that, if we can prove the decomposition: 

(26) U = SR; \R\=z, \S\=y 

we will have R = Z, S=Y. Replacing B = XU into (1) we get (AX) UC = (CD) A 
where, in both sides, the parentheses denote words of length b + c. It follows that 
AX = CD, UC = A so that D (which is longer than X) can be factorized in the form 
D = VX. Now AX = CD becomes A = CV} so that we have a double representation 
for A, say A = CV = UC. The Lyndon-Schutzenberger's theorem applied to CV = UC 
then implies V — RS, U = SR, C = (SR)JS, for suitably chosen words R, S, the length 
of S being given by | UC | Mod \U\. The lemma then follows immediately by remarking 
that the values for \R\, \S\ coincide with the values z and y, so that (26) holds 
true. • 

REMARK 2.1. Let us point out that (23) implies 0 < x < b, so that (because of 
x + y + z = b): 

(27) two at least among X, Y, Z are non-empty. 

On the other hand, due to the symmetry of the problem (see (3)), formula (27) holds true un
der the general assumption (22), and not only in the framework of (23). • 

The following remark will be useful: starting from a solution {A, B, C, D} of (1), 
we can construct a «longer» solution by replacing A or C by the whole W = ABC; in 
other words, both the quadruplets {ABC, B, C,D} and {A,B,ABC,D} still satisfy 
(1) (the proof is immediate). Remark that for such «expanded» solution the (new) 
lengths a, b, c satisfy respectively a ^ b + c and c ^ a + b; so that in any case one 
has: 

(28) \a-c\^b 

and in particular (22) fails. Conversely, let us start with a quadruplet satisfying (28) and 
let us prove that it is an «expansion» of a shorter quadruplet. We detail the case 
a ^ b + c, the other one being similar: the word A is longer than CD; so that from (1) 
follows that, for a suitably chosen (possibly empty) word A0, it is A = CDAQ . By substi
tuting such a formula for A into (1) we get (CDA0)BC = CD(CDA0); thus, simplifying, 
we get AQBC = CDA0. The new quadruplet {A0,B, C,D} still satisfies (1); and of 
course the starting solution can be reconstructed by means of the formula 
{CDA0, B, C, D}; SO that, if for the shorter quadruplet one has uniqueness, there is 
uniqueness also for the starting one. 

Because of (20) (which implies b > 0) the new word W0 = AQBC is definitly shorter 
than the original W; and (if (22) still fails) we can iterate the procedure. Let us point 
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out what happens concerning the periods of the (shorter and shorter) word W: 

'while \p - q\ ^ b: 

if p ^ q : p becomes p — q 

else: q becomes q — p 

kend while 

which is nothing else but the Euclide's Algorithm for the evaluation of gcd(p, q\ with 
an unusual stop-criterion. It is a «true» algorithm, that ends after a finite number of 
steps (at most as many as for the standard criterion, which ends when/? — q = 0; here 
we stop when \p — q\ < b, with h > 0). 

Of course, when the algorithm ends, one has \p — q\ < b; so that (22) holds true. 
The existence and uniqueness theorems proved in this case will remain valid for all ex
pansions; and (the words JB and D being unchanged) the representation formula (2), as 
well as the assertion (27), still holds true. 

Theorems 1.1 and 1.2 are thus completely proved; let us end this Section with two 
remarks: 

REMARK 2.2. In the framework of Remark 1.2, we have b = 2; so that (27) says that 
exactly two among X, Y, Z have length 1 {the third one being empty). In particular it is 

(30) B = aj3; D =/3a 

for (possibly coinciding) letters a, /3. • 

REMARK 2.3. In the framework of a,b,c ^ 0 one has the implication: 

(31) B*D=>gcà(a+byb + c) <b 

because from gcà(a + b,b + c) = b it follows B = D. • 

3 . BlPERIODICITY AND PALINDROMY 

In this Section we will denote by o an involution of d; to any a we associate a map 
3IZa of (1* into itself by setting 3fZa(0) = 0 and, by induction on the length of the 
word A: 

ïïla(Aa):=o(a)3(ïla(A) forali a e CT. 

One easily verifies that such 9K0 is. an involution which is also an antimorphism: 

(32) Dìl0(AB) = 3fïCa(B)3K0(A) for all A, B G a" . 

REMARK 3.1. Conversely, let M be an involution of d* which satisfies (32); then 3ÌI 
cannot modify the lengths so that we can define a: CT —> CL by setting o(a):= ffî(a) for all 
a e CL; and one easily checks that 3ÎI = Dll0. In particular, in order to describe the fixed 
points of an involutory antimorphism, we will confine ourselves to work with fixed points of 
an 3\l0. • 



ON SOME PROPERTIES OF DOUBLY-PERIODIC WORDS 4 5 

If F e CL* is 2L fixed point for 9Jl0, say 3Jl0 (F) = F , we will say that F is a-palindrome, 

and we will write F e a-PAL; of course, if a is the identity, the a-palindromy coincides 

with the palindromy; and we will write simply F G PAL. 

There exist words which, for any a, cannot be in a-PAL; e.g. the word a/?/3 with 

a , /3 e CL, a ^ /?; so that it does make sense to ask whether a given word is in a-PAL for 

some a. We will deal with the following problem: 

PROBLEM B. Let W he a doubly periodic word. Find the involutions a (if any!) such that 

IF G a-PAL. • 

By slightly enlarging the restriction (3) we will assume: 

(33) p,q^w^p+g + gcd(p,q) 

so that, with respect to the decomposition W = ABC = CD A, the knowledge of a, B, c 

will uniquely determine the whole word W; see (10) where (because of (33)) it is 

E = G. In particular we will prove: 

THEOREM 3.1. In the framework of (4) one has always W G PAL. Under the weaker as

sumption (33) there exists at most one involution o of Mph(W) (5) such that We a-PAL; 

with respect to the decomposition (2), one has 

(34) We a - P A L < ^ X J , Z e a-PAL ; 

moreover, the condition-. 

(35) the letters of B are all different 

is sufficient to guarantee the existence of o. • 

REMARK 3.2. In the framework ofh ^ gcdU + b,b + c), from (10) we get: 

We a - P A L ^ B , E G a-PAL . 

Of course in the limit case b — gcd(p, q) one has E = G and the result of Theorem 3.1 will 

be a consequence of the following Lemma 3.1; while if \E\ > 0 the knowledge of a, B, c 

does not suffice to characterize W. • 

For the proof of Theorem 3.1 we will use the following (obvious) lemma: 

LEMMA 3.1. For any word F , there exists a most one a, involution o/Alph(F), such that 

F e a-PAL. If the letters of F are all different, such a a does exist. 

PROOF. Let F have the form F = a x ... an. The involution a must obviously satisfy 
o(aj) = an _y fo r / = 1, . . . , « ; and such a formula uniquely determines a on Alph(F). 
However, in general, our formula defines a multi-valued map. If the letters of F are all 
different, t h e m a p is single-valued and is obviously an involut ion. • 

P R O O F OF THEOREM 3.1. Let us firstly remark that, because of (32), one has: 

We a -PAL » i 4 , C e a-PAL ; D = 3Ka(B) 

(5) Alph(F) will denote the set of letters which appear in F. 
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and the condition D = 91l0(B) can obviously (see (32)) be rewritten in the form 
X, Y, Z e a-PAL. In particular, we need only to prove that this last property implies 
A,C e. a-PAL. In the framework of (22), this follows immediately from the corre
sponding formula (which is (12) or (13)); in the general case one will use the characteri
zation of the solutions as «extensions» of shorter ones, and the result follows by 
induction. The uniqueness of a follows from Lemma 3.1; the case of (4) follows 
from (30). • 

We conclude with a problem posed by Robinson (see [9,1]) and solved by Peder-
sen (see [8]). In the framework of a binary alphabet, say Ci = {a, /?}, we are given 
a palindrome word T such that, for suitably chosen palindrome words R, S one has 
RS = Taft. What can be said about the lengths r> s, t of such words? The Pedersen's an
swer is that 

(36) r + 2 and t + 2 must be coprirne 

so that, because otr + s = t + 2, i£ s > 2 also r + 2 and s — 2 are coprirne (6). On the 
other hand it was proved by de Luca and Mignosi [4] that the set of words W = RS = 
= Ta/3 coincides with the set of all the finite standard sturmian words of length > 1; 
moreover the set of the words T satisfying the above equation coincides with the set of 
the words having two periods p and q coprirne, whose length is p + q — 2. 

Independently from the cardinality of (31*, let us assume that we are given R, S, T, U 
a such that: 

R, S, T G a-PAL ; U g a-PAL ; RS = TU . 

Setting W:= TUR (so that W = RSR), from (32) and R, S E a-PAL we derive We a-
PAL; again from (32), because of R, T, TUR e a-PAL, we derive TUR = RM0(U) T, 
say an equation of type (1) with B ** D (because U $ a-PAL). From (31) we then 
get 

(37) gcd (r + u,t + u) < u . 

Let us now assume u = 2; (37) then coincides with (36); furthermore, from Remark 
2.2, we get that the map a must be the identity and (see (30)) one has U = a/3, 
3ila(U) = pa. Finally, from U * 3Z0(U), we get a * /?. 
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