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Geometria. — On compact orbits in singular Kàhler spaces. Nota ( *) di J ò R G WINKEL-

MANN, presentata dal Socio E. Vesentini. 

ABSTRACT. — For a complex solvable Lie group acting holomorphically on a Kahler manifold every 

closed orbit is isomorphic to a torus and any two such tori are isogenous. We prove a similar result for sin

gular Kahler spaces. 

KEY WORDS: Kàhler manifold; Solvable group; Isogenous tori. 

RIASSUNTO. — Sulle orbite compatte in spazi di Kahler singolari. Ogni orbita chiusa di un gruppo di Lie ri

solubile operante olomorficamente su una varietà di Kàhler compatta è isomorfa ad un toro. Inoltre due 

tori siffatti sono isogeni. Scopo della Nota è l'estensione di questi risultati noti a spazi di Kàhler 

singolari. 

1. INTRODUCTION 

For a holomorphic action of a solvable complex Lie group G on a compact Kàhler 

manifold X the following is known: If there exists any closed orbit, then there exists a 

subtorus T of the Albanese variety Alb (X) such that every closed orbit is a torus isogenous 

to T. The principal goal of this paper is to generalize this result to possibly singular 

Kahler spaces. To achieve our goal, we consider an equivariant desingularization and 

study the behaviour of closed orbits under such a desingularization. We have to show 

that the projection map of the desingularization becomes a finite map after restriction 

to a closed orbit in X. Actually we will prove a more general result. For connected holo

morphic maps between compact G-complex spaces we prove that the generic fiber di

mension is always greater or equal to the fiber dimension of the same map restricted to 

a closed orbit. This implies in particular that if a closed orbit is contained in a fiber, 

then the dimension of this orbit can not exceed the generic fiber dimension. It follows 

that for a generically finite map (thus in particular for any desingularization) a positive-

dimensional closed orbit cannot be contained in a fiber. 

The main idea is to discuss the induced action of the group on the normal bundle of 

a closed orbit (and more generally on some kind of normal jet bundles). The philoso

phy is the following: If an orbit is contained in one fiber, but its dimension is larger than 

the generic fiber dimension, then its normal bundle should be slightly negative. On the 

other hand, the normal bundle of an orbit is necessarily a homogeneous vector bundle 

and homogeneous vector bundles over tori tend to be topologically trivial. 

We now state the main results. First we need a definition. 

DEFINITION. Let X, Y be complex spaces and A a complex subspace of X. A holo
morphic m a p / : X—» Y is called locally trivial along A if for any pf q e A there exist 
open neighbourhoods U, V of p resp. q in X and a biholomorphic map <p\ (U,p) —> 

-^(V,q) such that f\ u =f\ vo<p. 

(*) Pervenuta all'Accademia il 24 settembre 1996. 
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THEOREM 1. Let G be a connected complex Lie group and X a complex G-space with a 
compact G-orbit Z which is biholomorphic to a torus. Assume that X is smooth in some open 
neighbourhood ofZ. Letf. X —» Y be a holomorphic map to some complex space Y. Let A be 
a connected component of a fiber of f\z: Z —>Y. 

Then f: X—» Y is locally trivial along A. 

It is informative to consider the special case where Z coincides with a fiber of/. In 
this case we have the following implications: 

/ has constant rank in a neighbourhood of Z 

=>/ is locally trivial along Z 

=>/ has constant fiber-dimension in a neighbourhood of Z. 

PROPOSITION 1. Under the assumptions of the theorem the fiber dimension of f at any 
point x e X is greater than or equal to the fiber dimension of the restricted map 
f\z--Z-*Y. 

COROLLARY. Let X be a complex G-manifold and f. X^Y be a proper holomorphic 
map which is genetically finite. 

Then for every fiber E and every compact G-orbit G(x) isomorphic to a torus the inter
section E fi G(x) is finite. 

These results enable us to control the behaviour of compact orbits under desingu
larization. Recall that a compact complex space X is said to be of class G if it is bimero-
morphic to a Kàhler manifold. This assumption is equivalent to the existence of a holo
morphic surjection from a Kâhler manifold onto such a space. Spaces in class G are of
ten also called weakly Kahler. 

THEOREM 2. Let X be a complex G-space in class G and t: X->X be an equivariant 
proper modification. Let X G X with G(x) compact. Then there exists a point xel with 
r(x) = x and G{x) compact. The restricted map r: G(x) —» G(x) is finite if G is 
solvable. 

It should be noted that for non-solvable groups r: G(x) —> G(x) is not necessarily 
finite. 

EXAMPLE. Let X be a Hirzebruch-surface S„ with n ^ 2. There is a SL2 (C)-action 
on S„ with three orbits: the 0-section, the o° -section and an open orbit. Now for n ^ 2 
the oo -section has self-intersection number - n. Hence it may be blown down to a sin
gular point. This is an example for an lS

,L2(C)-equivariant desingularization X^X 
where the projection maps an one-dimensional orbit on a fixed point. 
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COROLLARY. Let X be a complex G-space in class G. Let t: X—»X be an equivariant 
desingularization. Let KG (X) resp. KG (X) denote the union of compact orbits. 

Then r(KG(X))=KG(X). 

Note that by a result of Snow [13] the sets KG (X), KG (X) are closed analytic sub
sets of X resp. X. 

THEOREM 3. Let X be a complex space in class G and G a solvable complex Lie group act
ing on X 

Then any two compact G-orbits are tori isogenous to each other and furthermore isoge-
nous to the G-orbits in the Albanese of any equivariant desingularization of X. 

It should be noted that the statement of Theorem 3 does not hold if one drops the 
assumption X e G . It is even possible that there are compact orbits of different 
dimensions: 

EXAMPLE. Let F be the group of contractions on Y = C 2 \ { 0 } generated by 
(z, tv) t-> (2z, itw). The quotient YjF is a Hopf surface with two curves given by z = 0 
resp. w = 0. Consider the group C* acting by (z, w) »-> (Az, w). The curve w = 0 is a 
one-dimensional compact orbit in X while all the points in the curve z = 0 are fixed 
points. 

2. LOCAL TRIVIALITY AND FIBER DIMENSION 

As preparation for Theorem 1 we begin by proving some auxiliary results on homo
geneous vector bundles. 

Let G be a complex Lie group acting holomorphically on a complex space X. A vec
tor bundle E over X is called homogeneous (with respect to the given G-action) if the G-
action on X lifts to an action on E. 

Now let E be such a homogeneous vector bundle over a homogeneous manifold Z. 
Consider a holomorphic function / : E —» C which is linear on every fiber of E. Any 
such function fibers through the natural map XE: E —» (r(Z9 E*))* . Now define a sub
set N of E by N = {v G E: XE{v) = 0}. For a homogeneous vector bundle E over a ho
mogeneous manifold Z this subset N is a subvectorbundle. Then, for the quotient vec
tor bundle F = E/N, the map XF is injective on every fiber of F. Hence the dual bundle 
F* is spanned by global sections. Now recall that if Z is a torus then the trivial bundle is 
the only homogeneous vector bundle which is spanned by global holomorphic 
sections [10]. 

Thus we obtain 

LEMMA 1. Let E be a homogeneous vector bundle over a compact complex torus Z. Then 
E fits into a short exact sequence of homogeneous vector bundles 

0^N->E-^F^0 
such that XE vanishes identically on N and thus may be pushed-forward to a map from F to 
(r(Z> E*))*. The bundle F is a trivial vector bundle. 
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LEMMA 2. Let G be a complex Lie group acting holomorphically and transitively on a 
compact complex torus Z,H a Lie subgroup such that Z — G/H. Let Q: G —> GLn (C) be a 
Lie group homomorphism. 

Then Q(G) is contained in the algebraic Zariski-closure of Q(H). 

PROOF. Let H be the algebraic Zariski-closure of Q(H). Let M = GLn (C) /H. By a 
result of Chevalley [8] there exists an equivariant embedding of M in some projective 
space PN. On the other hand the Borei Fixed Point Theorem implies that every equivari
ant map from a torus to a projective space must be constant. Hence G = H. • 

PROPOSITION 2. Let E be a homogeneous vector bundle over a compact complex torus Z. 
Let G be a complex Lie group acting on E such that the induced action on Z is transitive, i.e. 
Z = G/H. Let x = eH e Z and denote the natural representation of H in GL(EX) by Q. 
Then for every g e G there exists an element h in the algebraic Zariski-closure of Q(H) in 
GL(EX) such that the following diagram commutes. 

Ex > Eg(x) 

h 

-^ nz,E*)* 
PROOF. Due to Lemma 1 we may assume that E is the trivial bundle. Since Z 

is compact, any global trivialization E — Z X V is unique and hence equivariant. Thus 
the G-action on E is given by a product of representations %1: G—»Aut(Z) and 
£2: G^GL(V). On the other hand E being trivial implies that r(Zy E*)* is just 
y** ^ V. Thus XE : E —> V is the projection on the second factor of E — Z X V. To 
make the diagram commutative it is hence sufficient to choose h e GL(V) = GL(EX) 
such that £,2(g) ~b. Since §2 I H = £> this is possible by Lemma 2. • 

We now apply the above results on homogeneous vector bundles in order to study 
holomorphic mappings. Any holomorphic map induces a vector bundle homomorphism 
between the tangent bundles. For our purposes this first-order approximation does not 
provide sufficient information, i.e. we need higher-order approximation. 

Recall that the tangent space at a point may be defined as TX(X) = (mx/mx)*, 
where mx denotes the maximal ideal of the local ring Ox. In this spirit let Sx = 
= (mx jmx)* . It is clear from this definition that Sk is a vector bundle and that every holo
morphic map/: X-*Yinduces a vector bundle homomorphism Sk(X) -»Sk (Y). If Z is 
an orbit of a complex Lie group G acting on a complex manifold X, then Sk (X)\z will 
be a homogeneous vector bundle I1). 

Any holomorphic automorphism of the space-germ (X, x) induces a linear automor
phism of Sx , but not conversely. 

(*) Caveat: These bundles Sk are not the usual jet bundles Jk as defined in e.g. [6,5]. In fact they are in 
some sense dual to the usual jet bundles. There are natural projections Jk + i^Jk> DUt we have injections 
Sk^Sk + l. 
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LEMMA 3. Let Gk denote the group of elements in GL{SX) which are induced by holo-
morphic automorphisms of the space-germ (X, x). 

Then G& is an algebraic subgroup of GL{S^). 

PROOF. Let Z\, ..., z„ be local coordinates. Then Zi are the generators of the C-alge-
bra Ak = Ox jm* . It is easy to see that any algebra automorphism of A^ is induced by a 
holomorphic automorphism of (X, x). Furthermore the group of algebra automor
phisms of Ak is a linear-algebraic subgroup of GL(A^) and stabilizes the maximal ideal. 
Now Gk is just the linear-algebraic group Aut{Ak) in its dual representation. • 

In the following we say that two holomorphic map-germs/, g from (X, x) to (Y,y) 
are £-equivalent (/~*g) if the induced maps from S% to 5* .coincide. Similarly we say 
that two sets A, B of maps are ^-equivalent if for each / e A there exists a g'e B such 
that f~kg and vice versa. 

PROPOSITION 3. Let (X, x), (Y,y) be space-germs andf, g holomorphic map-germs from 
(X, x) to (Y,y). Assume that for all k E N there exists an automorphism 0^ e Aut(X, x) 
such that fo(j)k~kg. 

Then there exists an automorphism 0 e Aut(X, x) such that fo<p = g. 

PROOF. Define H^= {h e Aut (X, x): fob ~kf}- The image of any H^ under the nat
ural homomorphism Qj: Aut(X, X) —» GL{m/mJ)* is an algebraic subgroup. Obviously 
Qj(g) = Qj{h) itîg ~jh. Since any descending sequence of algebraic varieties becomes 
stationary after finitely many steps, it follows that for ally there exists an N such that 
HN ~j Hi for all / > N. For each y let N(j) denote a minimal such N and define j (k) = 
= sup{j: k ^ N(j)}. Then lim j(k) = oo . Next define v(k) = mm{k,j(k)}. Let JE^be 

defined by Ek = {g:g~v(k)h 3h e Hk}. ThenE/ cEk andE/ ~v{k)Ek{orl>k. Moreover: 
EkcHv(k). Next define Wk^ {<pk °h: h eEk}. Observe that the sets Wk form a de
scending sequence of sets with W\ ~v(k) ^k for I > k and /o £ ~ v{k) g for Ç E Wk. We 
may now choose a sequence of elements ipk E Wk such that ipk ~v(k) tyk + i- Since 
lim v(k) = oo it follows that the ipk converge coefficient-wise to a formal power series 

ip which fulfills the functional equation /o ip = g. 
But Artin has proved that such a functional equation always has a convergent sol

ution <p if it has a formal solution [1]. • 

PROOF OF THEOREM 1. We do not lose any generality if we assume Y to be smooth, 
because any complex space is locally embeddable in a complex manifold. Furthermore 
we may assume that / is constant on Z, because it is a general fact that for every holo
morphic map from a torus to an arbitrary space all the irreducible components of the 
fibers must be subtori. 

Now consider the induced map/* : Sk (X) | z -> 5* ( Y) with {y }= F(Z). Sk (X) | z is 
a homogeneous vector bundle on Z and Sy (Y) — Cm (m E N). Fix p, q eZ and g E G 
such thatg{p) = q. Let H by the isotropy inx a n d ^ : H —» GL(SX (X)) the natural rep
resentation. Then Proposition 2 implies that the following diagram commutes for some 
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hk in the Zariski-closure of Q^iH): 

Sp
k(X) - ^ Sk

q{X) 

i* f 
Sk

p{X) —> S*(Y) 

The group of all elements in GL(Sp (X)) induced by holomorphic automorphisms of the 
space germ (X,p) is an algebraic group (Lemma 2). Since this group contains gk (H), it 
contains hk. Thus for each k there exists an automorphism 0^ of the space germ (X,p) 
such that Fq°go(/)k~kFp. Therefore the statement of the Theorem follows from 
Proposition 3. • 

We now proceed toward the proof of Proposition 3. 

LEMMA 4. Letf: X^Y he a holomorphic map between complex spaces x e X , and C a 
curve on X defined in some open neighbourhood W of x. Assume that f\c is not 
constant. 

Then there exist open neighbourhoods U and Uf of x resp. f(x) (with U c W) such that 
f(U) c U' and the restricted map / : C Pi U ->Uf is proper. In particular f{C fi U) is an 
analytic subset of U'. 

PROOF. Let t be a coordinate function on a desingularization r: C —> C of C. Now 
we can write/or locally in the form/ox\ t*-> (tkl(px (t), ...,tkn<pn (t)) with 0, ( 0 ) ^ 0 . 
Therefore a small enough neighbourhood U' oif(x) will have the property that the con
nected component of C H / - 1 (IT) containing x is relatively compact in C. Taking this 
connected component as U yields the result. • 

PROPOSITION 4. Let X be a complex manifold with a submanifold Z and a holomorphic 
map F from X to a complex manifold Y which is constant on Z. Assume that for all x,y E Z 
there exist open neighbourhoods U, V and a biholomorphic map (f):lJ->V such that 
F\u = F\v°(j). 

Then the generic fiber dimension of F is greater or equal to the dimension of Z. 

PROOF. Let d be the generic fiber dimension. Let Q denote the subset of X where 
the fiber dimension equals d. Then Q is Zariski-open [11]. Choose a small neighbour
hood Wof x and a curve C in Wthroughx such that C\{x} cQ. Furthermore choose 
C in such a way that F \ c is not constant. By the preceding lemma we may assume that 
F(x) has an open neighbourhood W such that F(C) is a closed analytic set in W. Thus 
A = W n F _ 1 (F(C n W)) is a closed analytic subset of W. It consists possibly of dif
ferent irreducible components. Let A0 denote the component containing C\{x}. Obvi
ously dimc(i40) = d + 1. But now the assumption of the proposition implies that in 
some neighbourhood of x every point of Z is contained in the topological closure of A0. 
Thus Z D WcA0. Since A0 is irreducible, it follows that dimc(y40) > dimc(Z), i.e. 
d^dimc(Z). m 
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Proposition 1 is now an immediate consequence of the preceding proposition to

gether with Theorem 1. 

3. COMPACT ORBITS IN CLASS C 

We are now in a position to start the proof of our results on the behaviour of com

pact orbits under proper modifications. 

P R O O F OF THEOREM 2. Let G = R'S be a Levi-Malcev-decomposition. A result of 

Borel-Remmert [2] implies that G(x) is compact iff both R(x) and S(x) are compact. 

Thus we can treat R and S separately. 

We first discuss R. If X is in class G then X is also in class £ Hence the connected 

part of the automorphism group acts compactifiably and admits a certain Zariski-topol-

ogy such that every closed subgroup acts compactifiably [9,3] . Let R be the closure of 

R with respect to this topology. Now R is a solvable group acting compactifiably on the 

R-stable compact analytic set A = r~1(R(x)). Hence there exists a point xeA with 

R(x) compact. Now R(x) must be a torus. By our Theorem 2 it follows that the restrict

ed map r : R(x) -^R(x) is finite. Thus R acts transitively on R(x). 

Now for a compact orbit G(x) in X, define K to be the set of all points p in 

r~1(G(x)) such that R(p) is compact. We have just proved that K is not empty. 

From [13] we know that K is a closed analytic subset. Note that S stabilizes K because S 

normalizes R. Now every action of a semisimple complex Lie group on a space in class 

C is compactifiable. It follows that S has a compact orbit in K. • 

P R O O F OF THEOREM 3. For a smooth Kahler manifold this is an immediate conse

quence of the results of Sommese [14]. By [3] this extends to smooth manifolds in class 

£ Using Hironaka's desingularization [8] our Theorem 2 implies the statement for sin

gular spaces. (Keep in mind that the Albanese of the desingularization is independent 

of the chosen desingularization). • 

Finally we note a fixed-point-theorem implied by our results. 

PROPOSITION 5. Let Xhe a compact complex space in class C with a positive-dimensional 

exceptional set E (i.e. the set E can be blown down to a point). Let G be a solvable complex 

Lie group acting on X. Then G stabilizes E and has a fixed point in E. 

PROOF. Recall that any proper map with connected fibers is equivariant for any ac

tion of any connected complex Lie group [12]. In particular the blowing down X^X0 

is equivariant. It follows that E is invariant. Blowing-down E is equivariant for any con

nected Lie group acting on X [12]. Now the image of £ is a fixed point. Thus the state

ment follows from Theorem 2. • 
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