Rendiconti Lincei Matematica e Applicazioni

Nicoletta Cantarini

Representations of $s l_{q}(3)$ at the roots of unity

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 7 (1996), n.4, p. 201-212.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1996_9_7_4_201_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1996.

Algebra. - Representations of $s l_{q}(3)$ at the roots of unity. Nota (*) di Nicoletta Cantarini, presentata dal Corrisp. C. De Concini.

Аbstract. - In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra $\mathcal{U}_{q}(g)$ associated to $g=s l(3)$, at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group $G=S L(3)$. We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the $\mathcal{U}_{q}(g)$-modules at the roots of 1 in the case of $g=s l(3)$.

Key words: Enveloping algebra; Representation; Cartan matrix.

Russsunto. - Rappresentazioni di sl (3) alle radici dell'unità. Vengono studiate le rappresentazioni irriducibili, finito-dimensionali dell'algebra inviluppante quantizzata $U_{q}(g)$ associata a $g=s l(3)$, alle radici dell'unità. È noto che tali rappresentazioni sono parametrizzate, a meno di isomorfismi, dalle classi di coniugio del gruppo $G=S L(3)$. Si ottiene una classificazione completa delle rappresentazioni corrispondenti alla classe di coniugio unipotente sottomassimale e quindi una prova, nel caso $g=s l(3)$, della congettura di De Concini, Kac sulla dimensione degli $\mathcal{U}_{q}(g)$-moduli alle radici dell'unità.

1. Introduction

In the papers $[1,3]$ the quantized enveloping algebra $\mathcal{U}_{q}(g)$ introduced by Drinfeld $[5,6]$ and Jimbo [8], has been studied in the case $q=\varepsilon, \varepsilon$ being an odd, primitive root of unity.

In particular it has been shown that the irreducible finite dimensional representations of $\mathcal{U}_{\varepsilon}(g)$ are parametrized, up to equivalence, by the conjugacy classes of the corresponding complex Lie group G with trivial center (see Section 2 for the definitions and Section 3 for the main results).

In this paper we will study the subregular representations of the quantum group $s l_{\varepsilon}(3)$, i.e. the irreducible representations corresponding to the unipotent conjugacy class of $\operatorname{SL}(3)$ of dimension 4.

The main result of this paper (see Theorem 4.8) consists in proving that any $s l_{\varepsilon}(3)$ subregular module can be induced by an irreducible $s l_{\varepsilon}(2)$-module in such a way that a suitable condition is satisfied (nice representation).

Hence we shall start from the construction of an induced module and study its irreducibility using a direct method (Propositions 4.4, 4.6, 4.7). In this way we shall be able to write a basis for any subregular module and to compute its dimension explicitly.

[^0]
2. Notations

2.1. Let $\left(a_{i j}\right), i, j=1, \ldots, n$, be a symmetric Cartan matrix and g the corresponding Lie algebra with Cartan subalgebra b and Chevalley generators $e_{i}, f_{i}(i=1, \ldots, n)$.

Let Q be the root system associated to $\left(a_{i j}\right), R$ the root lattice W the Weyl group and $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ the set of simple roots. Then $Q=Q^{+} \cup Q^{-}$where Q^{+}is the set of positive roots and Q^{-}is the set of negative roots.

Following Drinfeld [5,6] and Jimbo [8] we consider the quantum group $\mathcal{U}_{q}(g)$ associated to the matrix $\left(a_{i j}\right)$ i.e. the associative algebra over $\boldsymbol{C}(q)$ generated by E_{i}, F_{i}, K_{i}, $K_{i}^{-1}(i=1, \ldots, n)$ with the following relations:

$$
\begin{align*}
& K_{i} K_{j}=K_{j} K_{i}=K_{i+j}, \quad K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1 \tag{2.1}\\
& K_{i} E_{j} K_{i}^{-1}=q^{a_{i j}} E_{j}, \quad K_{i} F_{j} K_{i}^{-1}=q^{-a_{i j}} F_{j} \tag{2.2}\\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left(K_{i}-K_{i}^{-1}\right) /\left(q-q^{-1}\right) \tag{2.3}\\
& \sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right] E_{i}^{1-a_{i j}-s} E_{j} E_{i}^{s}=0 \quad \text { if } i \neq j \tag{2.4}\\
& \sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right] F_{i}^{1-a_{i j}-s} F_{j} F_{i}^{s}=0 \quad \text { if } i \neq j \tag{2.5}
\end{align*}
$$

Here $\left[\begin{array}{c}1-a_{i j} \\ s\end{array}\right]$ is the Gaussian binomial coefficient $\left[\begin{array}{c}1-a_{i j} \\ s\end{array}\right]_{d}$ with $d=1$.
2.2. Recall that the Braid group $B_{\text {พ以 }}$ associated to $\left(a_{i j}\right)$, with canonical generators T_{i}, acts on $U_{q}(g)$ by automorphisms defined in [10] by:

$$
\begin{aligned}
& T_{i} K_{j}=K_{s_{i}\left(a_{j}\right)}, \\
& T_{i} E_{i}=-F_{i} K_{i}, \quad T_{i} E_{j}=\sum_{s=0}^{-a_{i j}}(-1)^{s-a_{i j}} q^{-s} E_{i}^{\left(-a_{i j}-s\right)} E_{j} E_{i}^{(s)} \quad \text { if } i \neq j, \\
& T_{i} F_{i}=-K_{i}^{-1} E_{i}, \quad T_{i} F_{j}=\sum_{s=0}^{-a_{i j}}(-1)^{s-a_{i j}} q^{s} F_{i}^{(s)} F_{j} F_{i}^{\left(-a_{i j}-s\right)} \quad \text { if } i \neq j,
\end{aligned}
$$

where for each $a \in N$ we have $E_{i}^{(a)}=E_{i}^{a} /[a]!, F_{i}^{(a)}=F_{i}^{a} /[a]!,[a]!=[a] \ldots[1]$ and $[a]=\left(q^{a}-q^{-a}\right) /\left(q-q^{-1}\right)$.

Let w_{0} be the longest element in \mathfrak{W} so that $w_{0}\left(Q^{+}\right)=Q^{-}$. Chosen a reduced expression for $w_{0}: w_{0}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{\mathrm{N}}}$ with $N=\left|Q^{+}\right|$, we can define a convex total ordering of Q^{+}:

$$
\beta_{j}=s_{i_{1}} \ldots s_{i_{j-1}}\left(\alpha_{i_{j}}\right) \quad j=1, \ldots, N .
$$

We introduce the corresponding root vectors [10]:

$$
\begin{equation*}
E_{\beta_{j}}=T_{i_{1}} \ldots T_{i_{j-1}} E_{i_{j}}, \quad F_{\beta_{j}}=T_{i_{1}} \ldots T_{i_{j-1}} F_{i_{j}}, \quad j=1, \ldots, N \tag{2.6}
\end{equation*}
$$

then we let

$$
E^{k}=E_{\beta_{1}}^{k_{1}} \ldots E_{\beta_{N}}^{k_{N}}, \quad F^{k}=\omega E^{k}
$$

for $k=\left(k_{1}, \ldots, k_{N}\right) \in Z_{+}^{N}$, where ω is the conjugate-linear anti automorphism of $\mathcal{U}_{q}(g)$, as an algebra over C, defined by:

$$
\omega\left(E_{i}\right)=F_{i}, \quad \omega\left(F_{i}\right)=E_{i}, \quad \omega\left(K_{i}\right)=K_{i}^{-1}, \quad \omega(q)=q^{-1}
$$

It is known that ω commutes with the action of the Braid group.
Theorem $2.1[9,10]$. (a) The set $\left\{F^{k} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}: k, r \in \boldsymbol{Z}_{+}^{N},\left(m_{1}, \ldots, m_{n}\right) \in \mathbf{Z}^{n}\right\}$ is a basis of $\mathcal{U}_{q}(g)$ over $C(q)$.
(b) For $i<j$ one has:

$$
E_{\beta_{i}} E_{\beta_{j}}-q^{\left(\beta_{i} \mid \beta_{j}\right)} E_{\beta_{j}} E_{\beta_{i}}=\sum_{k \in Z_{+}^{N}} c_{k} E^{k}
$$

where $c_{k} \in C\left[q, q^{-1}\right]$ and $c_{k} \neq 0$ only when $k=\left(k_{1}, \ldots, k_{N}\right)$ is such that $k_{s}=0$ for $s \leqslant i$ and $s \geqslant j$.

Now, let l be an odd integer greater than 1 and ε a primitive l-th root of 1 . We denote by $\mathcal{U}_{\varepsilon} \equiv \mathcal{U}_{\varepsilon}(g)$ the algebra over C obtained by specializing q to ε. More precisely, let $\mathfrak{Q}=\mathcal{C}\left[q, q^{-1}\right]$ and denote by $\mathcal{U}_{\mathfrak{a}}$ the \mathfrak{G} subalgebra of $\mathcal{U}_{q}(g)$ generated by E_{i}, F_{i}, K_{i}, K_{i}^{-1} and $\left(K_{i}-K_{i}^{-1}\right) /\left(q-q^{-1}\right)$ with $i=1, \ldots, n$. Then $\mathcal{U}_{\varepsilon}=\mathcal{U}_{\mathfrak{a}} /(q-\varepsilon) \mathcal{U}_{\mathfrak{a}}$.

Denote by Z_{ε} the center of $\mathcal{U}_{\varepsilon}$. It is known [1] that $E_{\alpha}^{l}, F_{\alpha}^{l}\left(\alpha \in Q^{+}\right), K_{i}^{l}(i=$ $=1, \ldots, n)$ lie in Z_{ε}. Let Z_{0} be the subalgebra of Z_{ε} generated by these elements and denote by $Z_{0}^{-}, Z_{0}^{0}, Z_{0}^{+}$the subalgebras of Z_{0} generated by $F_{\alpha}^{l}, K_{j}^{l}$ and E_{α}^{l} respectively, with $\alpha \in Q^{+}, j=1, \ldots, n$. Then

$$
Z_{0} \simeq Z_{0}^{-} \otimes Z_{0}^{0} \otimes Z_{0}^{+}
$$

Lemma 2.2 [1]. The algebra U_{ε} is a free Z_{0}-module on the basis $\left\{F^{k} K_{1}^{m_{1}} \ldots K_{n}^{m_{n}} E^{r}\right.$: $\left.k=\left(k_{1}, \ldots, k_{N}\right), r=\left(r_{1}, \ldots, r_{N}\right) \in \boldsymbol{Z}_{+}^{N}, m_{i} \in \boldsymbol{Z}, 0 \leqslant k_{i}<l, 0 \leqslant r_{i}<l, 0 \leqslant m_{i}<l\right\}$.

3. Basic construction and main results

Let G be the connected complex Lie group with Lie algebra g and trivial center. Let T be the maximal torus of G corresponding to the Cartan subalgebra b of g, U_{-}and U_{+}the maximal unipotent subgroups of G corresponding to Q^{-}and Q^{+}respectively, $B_{-}=T U_{-}$and $B_{+}=T U_{+}$Borel subgroups.

In this section we will recall the correspondence between the equivalence classes of the irreducible finite-dimensional representations of the quantized enveloping algebra $\mathcal{U}_{\varepsilon}(g)$ and the conjugacy classes of the group G, and we will collect the main results concerning this correspondence.
3.1. Definition 3.1. If A is an associative algebra by $\operatorname{Spec} A$ we denote the set of the equivalence classes of the irreducible, finite dimensional representations of A.

Remark. Using Schur's lemma one can consider the canonical map

$$
\begin{gathered}
X: \operatorname{Spec} \mathcal{U}_{\varepsilon} \rightarrow \operatorname{Spec} Z_{\varepsilon}, \\
\sigma \mapsto \lambda_{\sigma},
\end{gathered}
$$

where σ is an irreducible representation of $\mathcal{U}_{\varepsilon}$ on a vector space V such that

$$
\sigma(z)(v)=\lambda_{\sigma}(z) v \quad \forall z \in Z_{\varepsilon}, \forall v \in V
$$

Proposition 3.2 [4].

1) The map $X: \operatorname{Spec} \mathcal{U}_{\varepsilon} \rightarrow \operatorname{Spec} Z_{\varepsilon}$ is surjective;
2) the points of $\operatorname{Spec} Z_{\varepsilon}$ parametrize the semisimple l^{N}-dimensional representations of $\mathcal{U}_{\varepsilon}$;
3) if $\lambda \in \operatorname{Spec} Z_{\varepsilon}, X^{-1}(\lambda)$ is the set of the irreducible components of the representation parametrized by λ.

Corollary 3.3. Any finite dimensional irreducible $\mathcal{U}_{\varepsilon}$-module has dimension less than or equal to l^{N}.

Consider now the following sequence of canonical maps [3]:

$$
\begin{equation*}
\varphi: \operatorname{Spec} \mathcal{U}_{\varepsilon} \xrightarrow{X} \operatorname{Spec} Z_{\varepsilon} \xrightarrow{\tau} \operatorname{Spec} Z_{0} \xrightarrow{\pi} G \tag{3.7}
\end{equation*}
$$

Here τ is induced by the inclusion $Z_{0} \subset Z_{\varepsilon}$; it is finite with fibers of order less than or equal to l^{n} which are completely described in [1,2]. The map π is constructed as follows: define

$$
\pi^{-}: \operatorname{Spec} Z_{0}^{-} \rightarrow U_{-} \quad \text { and } \quad \pi^{+}: \operatorname{Spec} Z_{0}^{+} \rightarrow U_{+}
$$

respectively by the elements $\exp \left(y_{\beta_{N}} f_{\beta_{N}}\right) \ldots \exp \left(y_{\beta_{1}} f_{\beta_{1}}\right)$ of $U_{-}\left(Z_{0}^{-}\right)$and $\exp \left(T_{0}\left(y_{\beta_{N}}\right) T_{0}\left(f_{\beta_{N}}\right)\right) \ldots \exp \left(T_{0}\left(y_{\beta_{1}}\right) T_{0}\left(f_{\beta_{1}}\right)\right)$ of $U_{+}\left(Z_{0}^{+}\right)$, where $T_{0}=T_{i_{1}} \ldots T_{i_{N}}, y_{\alpha}=$ $=\left(\varepsilon^{1 / 2(\alpha, \alpha)}-\varepsilon^{-1 / 2(\alpha, \alpha)}\right)^{l} F_{\alpha}^{l}\left(\alpha \in Q^{+}\right)$, and f_{α} are root vectors in g defined by formulas analogous to (2.6), through the action of $B_{\text {W以 }}$ on g introduced by Tits [11]:

$$
T_{i}=\left(\exp \operatorname{ad} f_{i}\right)\left(\exp \operatorname{ad} e_{i}\right)\left(\exp \operatorname{ad} f_{i}\right)
$$

We shall identify Spec Z_{0}^{0} with T through the isomorphism $R \rightarrow l R$ given by multiplication by l. Now consider the map

$$
\begin{gathered}
\pi: \operatorname{Spec} Z_{0}=\operatorname{Spec} Z_{0}^{-} \times T \times \operatorname{Spec} Z_{0}^{+} \rightarrow G, \\
\pi(a, t, b)=\pi^{-}(a) t^{2} \pi^{+}(b)
\end{gathered}
$$

the image of π is the big cell $\left(U_{-} T U_{+}\right)$of the group G.
Theorem 3.4 [3]. There exists a canonical infinite dimensional group \tilde{G} of automorphisms of U_{ε} such that:
a) \tilde{G} stabilizes Z_{0} and therefore acts on $\operatorname{Spec} Z_{0}$:

$$
(\widetilde{g} \lambda)(z)=\lambda\left(\tilde{g}^{-1} z\right), \quad \lambda \in \operatorname{Spec} Z_{0}, \quad z \in Z_{0}, \quad \tilde{g} \in \widetilde{G} ;
$$

b) X is an equivariant map with respect to the \tilde{G}-action;
c) the set F of fixed points of \tilde{G} in $\operatorname{Spec} Z_{0}$ is $(\pi)^{-1}(1)$;
d) if \mathcal{O} is the conjugacy class of a non central element of G then $\pi^{-1}(\mathcal{O})$ is a single \tilde{G}-orbit and $\left(\operatorname{Spec} Z_{0}\right)-F$ is a union of these \widetilde{G}-orbits.

The above theorem allows us to parametrize the equivalence classes of the irreducible $\mathcal{U}_{q}(g)$-modules by the conjugacy classes of the group G. The following conjecture states the existence of a linking between the geometry of these conjugacy classes and the structure of the corresponding representations in a more precise sense:

Conjecture [3]. If $\sigma \in \operatorname{Spec}_{\mathcal{U}_{\varepsilon}}$ is an irreducible representation of $\mathcal{U}_{\varepsilon}$ on a vector space V such that $\varphi(\sigma)$ belongs to a conjugacy class \mathcal{O} in G then $\operatorname{dim} V$ is divisible by $l^{\operatorname{dim} \mathcal{O} / 2}$.

We recall that each conjugacy class in G has got even dimension less than or equal to $2 N$. The above conjecture was proved in [4] in the maximal case:

Theorem 3.5. Any representation $\sigma \in \operatorname{Spec} \mathcal{U}_{\varepsilon}$ such that $\varphi(\sigma)$ lies in a regular conjugacy class of G has maximal dimension $\left(=l^{N}\right)$.

From now on we consider the quantized enveloping algebra $\mathcal{U}_{q}(g)$ associated to $g=\operatorname{sl}(n)$. Then $\mathfrak{W}=S_{n}$ and $G=S L(n)$. We will denote the Borel subgroups of G of upper and lower triangular matrices by B_{+}and B_{-}respectively, while U_{+}and U_{-}will be the corresponding unipotent subgroups and T the maximal torus of diagonal matrices.

Definition 3.6. We say that $\sigma \in \mathcal{U}_{\varepsilon}$ is unipotent if $\varphi(\sigma)$ is a unipotent element in $S L(n)$.

Take a non unipotent element σ in Spec $\mathcal{U}_{\varepsilon}$ and write $m=\varphi(\sigma)=m_{s} m_{u}$ where m_{s} and m_{u} are the semisimple and unipotent part of m respectively $\left(m_{s} \neq 1\right)$. Define $T^{\prime}=$ $=$ center $\left(\operatorname{centralizer}_{G}\left(m_{s}\right)\right)$ and put $b^{\prime}:=\operatorname{Lie}\left(T^{\prime}\right)$. Then b^{\prime} will be a proper subalgebra of the Cartan subalgebra b of g. Let $Q^{\prime}:=\left\{\alpha \in Q \mid \alpha\right.$ vanishes on $\left.b^{\prime}\right\}$, then $Q^{\prime}=\mathbf{Z} \Delta^{\prime} \cap Q$ where $\boldsymbol{Z} \Delta^{\prime}$ is a sublattice of R spanned by a proper subset Δ^{\prime} of Δ. We shall denote by g^{\prime} the Lie algebra whose Chevalley generators are those of g corresponding to $\alpha_{i} \in \Delta^{\prime}$ and by \mathcal{U}^{\prime} the subalgebra of $\mathcal{U}_{\varepsilon}$ generated by E_{i}, F_{i} with $\alpha_{i} \in \Delta^{\prime}$ and K_{j} with $j=1, \ldots, n$. Put $\widetilde{U}=\mathcal{U}^{\prime} U^{+}$where \mathcal{U}^{+}is the subalgebra of $\mathcal{U}_{\varepsilon}$ generated by E_{i}, K_{i} for $i=1, \ldots, n$. Then the following theorem holds:

Theorem 3.7 [2]. If $\sigma \in \operatorname{Spec}^{U_{\varepsilon}}$ is a non unipotent representation of $s l_{\varepsilon}(n)$ on a vector space V there exists a unique irreducible $\mathcal{U}_{\varepsilon}\left(g^{\prime}\right)$-module V^{\prime} such that:

1) V^{\prime} is an irreducible \widetilde{U}-module;
2) $V=s l_{\varepsilon}(n) \bigotimes_{\widetilde{u}} V^{\prime}$; in particular $\operatorname{dim} V=l^{t} \operatorname{dim} V^{\prime}$ where $2 t=\left|Q / Q^{\prime}\right|$.

The above theorem reduces the study of the irreducible representations of $s l_{\varepsilon}(n)$ to the study of its unipotent representations, since it states, in particular, that any $s l_{\varepsilon}(n)$ module which is not unipotent is induced by a $s l_{\varepsilon}(r)$-unipotent module, with $r<n$.

We recall that the number of conjugacy classes of the unipotent elements in $S L(n)$ is finite and that each class is parametrized by the Jordan decomposition of its elements, i.e. by a partition of n. Moreover the following theorem holds:

Theorem 3.8 [7]. Let \mathcal{O} be a conjugacy class in $\operatorname{SL}(n)$ parametrized by the partition $\left(b_{i}\right)$ of n. Then $\operatorname{dim} \mathcal{O}=n^{2}-\sum \check{h}_{i}$, where $\left(\check{h}_{i}\right)$ is the dual partition.

4. $U_{\varepsilon}(s l(3))$: the subregular case

In this section we will consider the case $g=s l(3)$ and study the subregular representations of the quantum group $U_{\varepsilon}(s l(3))$ i.e. the irreducible representations which lie over the conjugacy class \mathcal{O}, parametrized by

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

through the correspondence (3.7). According to what stated in 3 this completes the proof of the recalled conjecture in the case of $s l_{\varepsilon}(3)$. Indeed there are 3 conjugacy classes of unipotent elements in $\operatorname{SL}(3)$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

In the first case $(\operatorname{dim} \mathcal{O}=0)$ the conjecture is empty and in the last case (the maximal case) it is proved by Theorem 3.5.

Let us fix a reduced expression for w_{0}, say $w_{0}=s_{2} s_{1} s_{2}$. Then the following relations can be proved by induction on r :

$$
\begin{align*}
& E_{1} F_{12}^{r}=F_{12}^{r} E_{1}-\left(\sum_{k=0}^{r-1} \varepsilon^{2 k}\right) F_{12}^{r-1} F_{2} K_{1}^{-1} \tag{4.8}\\
& E_{2} F_{12}^{r}=F_{12}^{r} E_{2}+\varepsilon\left(\sum_{k=0}^{r-1} \varepsilon^{-2 k}\right) F_{12}^{r-1} F_{1} K_{2} \tag{4.9}
\end{align*}
$$

We recall that, with our choice of the reduced expression of w_{0},

$$
F_{1} F_{12}=\varepsilon^{-1} F_{12} F_{1}, \quad F_{2} F_{12}=\varepsilon F_{12} F_{2} .
$$

Let us choose the representative element

$$
m=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

of the class \mathcal{O}, then, using the definition of φ, one sees that any representation in $\varphi^{-1}(m)$ is such that $E_{1}^{l}=E_{12}^{l}=E_{2}^{l}=0, K_{1}^{l}=K_{2}^{l}=1, F_{2}^{l}=0, F_{1}^{l}=1=F_{12}^{l}$, where the elements of $s l_{\varepsilon}(3)$ are identified with their images through the representation.

According to [1], we consider the irreducible $(j+1)$-dimensional representation V $(0 \leqslant j \leqslant l-1)$ of $s l_{\varepsilon}(2)$ with a basis consisting of the vectors $v, F_{2} v, \ldots, F_{2}^{j} v$, where v
is a non zero vector such that $E_{2} v=0, K_{2} v=\varepsilon^{j} v, F_{2}^{j+1} v=0$. Let \tilde{u} be the subalgebra of $\mathcal{U}_{\varepsilon}$ with generators $E_{2}, F_{2}, K_{2}, E_{1}, K_{1}, F_{1}^{l}, F_{12}^{l}$ and define an action of \tilde{U} on V by the relations:

$$
F_{1}^{l}=1, \quad F_{12}^{l}=1, \quad E_{1} V \equiv 0, \quad K_{1} F_{2}^{r} v=\varepsilon^{i+r} F_{2}^{r} v \quad \forall r=0, \ldots, j
$$

where i is a fixed integer such that $0 \leqslant i \leqslant l-1 . V$ is then a left \widetilde{U}-module, and we can consider the induced representation $\operatorname{Ind}(V):=s l_{\varepsilon}(3) \underset{\sim}{\otimes} V$.

Definition 4.1. We say that the above defined representation $\operatorname{Ind}(V)$ is a representation of type (i, j) of $s l_{\varepsilon}(3)$.

Remark. A representation of type (i, j) has dimension $(j+1) l^{2}$. Indeed, by definition, a basis of $\operatorname{Ind}(V)$ consists of the vectors

$$
\begin{equation*}
\left\{F_{1}^{r} F_{12}^{t} F_{2}^{s} v: 0 \leqslant r, t \leqslant l-1,0 \leqslant s \leqslant j\right\} . \tag{4.10}
\end{equation*}
$$

Lemma 4.2. Given $x \in \operatorname{Ind}(V), x=\sum_{k=1}^{n} a_{k} F_{1}^{\gamma_{k}} F_{12}^{t_{2}} F_{2}^{s k} v$, the following relations hold:

$$
\begin{align*}
E_{1}(x)=- & \sum_{k=1}^{n} a_{k} \varepsilon^{-s_{k}-i} \frac{1-\varepsilon^{2 k_{k}}}{1-\varepsilon^{2}} F_{1}^{r_{k}} F_{12}^{t_{k}-1} F_{2}^{s_{k}+1} v+ \tag{4.11}\\
& +\sum_{k=1}^{n} a_{k} \frac{\left(1-\varepsilon^{r_{k} k}\right)\left(\varepsilon^{2-2 r_{k}-t_{k}+s_{k}+i}-\varepsilon^{t_{k}-s_{k}-i}\right)}{\left(\varepsilon-\varepsilon^{-1}\right)\left(1-\varepsilon^{2}\right)} F_{1}^{r_{k}-1} F_{12}^{t_{1}} F_{2}^{s_{k}} v ;
\end{align*}
$$

$$
\begin{align*}
E_{2}(x)=\sum_{k=1}^{n} a_{k} \frac{\left(\varepsilon^{j+2}-\varepsilon^{-j+2 v_{k}}\right)\left(1-\varepsilon^{-2 s_{k}}\right)}{\left(\varepsilon^{2}-1\right)\left(\varepsilon-\varepsilon^{-1}\right)} F_{1}^{r_{k}} F_{12}^{t_{t_{2}}} F_{2}^{s_{k}-1} v+ \tag{4.12}\\
\quad+\sum_{k=1}^{n} a_{k} \frac{1-\varepsilon^{2 t_{k}}}{1-\varepsilon^{2}} \varepsilon^{2-t_{k}-2 s_{k}+j} F_{1}^{t_{k}+1} F_{12}^{t_{k}-1} F_{2}^{s_{k}} v .
\end{align*}
$$

Proof. By using relation (4.8) we have:

$$
\begin{aligned}
E_{1}(x) & =E_{1}\left(\sum_{k=1}^{n} a_{k} F_{1}^{r_{k}} F_{12}^{t_{k}} F_{2}^{s_{k} v} v\right)=\sum_{k=1}^{n} a_{k} E_{1} F_{1}^{r_{k}} F_{12}^{t_{k}} F_{2}^{s_{k}} v= \\
& =\sum_{k=1}^{n} a_{k}\left(F_{1}^{r_{k}} E_{1}+F_{1}^{r_{k}-1} \frac{\left(\sum_{s=0}^{r_{k}-1} \varepsilon^{-2 s}\right) K_{1}-\left(\sum_{s=0}^{r_{k}-1} \varepsilon^{2 s}\right) K_{1}^{-1}}{\varepsilon-\varepsilon^{-1}}\right) F_{12}^{t_{12}} F_{2}^{s_{k} v} v \\
= & \sum_{k=1}^{n} a_{k} F_{1}^{r_{k}} E_{1} F_{12}^{t_{k}} F_{2}^{s_{k}} v+ \\
& +\sum_{k=1}^{n} a_{k} F_{1}^{r_{k}-1} \frac{\left(1-\varepsilon^{-2 r_{k}}\right) /\left(1-\varepsilon^{-2}\right) \varepsilon^{-t_{k}+s_{k}+i}-\left(1-\varepsilon^{2 r_{k}}\right) /\left(1-\varepsilon^{2}\right) \varepsilon^{t_{k}-s_{k}-i}}{\varepsilon-\varepsilon^{-1}} . \\
& \cdot F_{12}^{t_{k}} F_{2}^{s_{k}} v=\sum_{k=1}^{n} a_{k} F_{1}^{r_{k}}\left(-\sum_{m=0}^{t_{k}-1} \varepsilon^{2 m}\right) F_{12}^{t_{k}-1} F_{2} K_{1}^{-1} F_{2}^{s_{k} v}+ \\
& +\sum_{k=1}^{n} a_{k} \frac{\left(1-\varepsilon^{2 r_{k}}\right) /\left(1-\varepsilon^{2}\right) \varepsilon^{2-2 r_{k}-t_{k}+s_{k}+i}-\left(1-\varepsilon^{2 r_{k}}\right) /\left(1-\varepsilon^{2}\right) \varepsilon^{t_{k}-s_{k}-i}}{\varepsilon-\varepsilon^{-1}} .
\end{aligned}
$$

$$
\begin{aligned}
\cdot F_{1}^{r_{k}-1} F_{12}^{t_{k}} F_{2}^{s_{k}} v=- & \sum_{k=1}^{n} a_{k} \varepsilon^{-s_{k}-i} \frac{1-\varepsilon^{2 t_{k}}}{1-\varepsilon^{2}} F_{1}^{\gamma_{k}} F_{12}^{t_{k}-1} F_{2}^{s_{k}+1} v+ \\
& +\sum_{k=1}^{n} a_{k} \frac{\left(1-\varepsilon^{2 r_{k}}\right)\left(\varepsilon^{2-2 r_{k}-t_{k}+s_{k}+i}-\varepsilon^{t_{k}-s_{k}-i}\right)}{\left(\varepsilon-\varepsilon^{-1}\right)\left(1-\varepsilon^{2}\right)} F_{1}^{r_{k}-1} F_{12}^{t_{k}} F_{2}^{s_{k}} v .
\end{aligned}
$$

We compute $E_{2}(x)$ in a similar way.

Given a $s l_{\varepsilon}$ (3)-module V, we shall say that $x \in V$ is a weight vector if it is a common eigenvector for the K_{i} 's for $i=1,2$.

Lemma 4.3. Each weight vector x in $\operatorname{Ind}(V)$ such that $E_{2}(x)=0$ bas the form

$$
\begin{equation*}
x=\sum_{k=1}^{t+1} a_{k} F_{1}^{r+k-1} F_{12}^{t-k+1} F_{2}^{k-1} v \tag{4.13}
\end{equation*}
$$

with $t, r \in N, 0 \leqslant t \leqslant j, 0 \leqslant r \leqslant l-1$ and $a_{k} \in C-\{0\}$.
Proof. Let us take $x \in \operatorname{Ind}(V)$, then we can write x as a linear combination of the vectors in the basis (4.10): $x=\sum_{k=1}^{n} a_{k} F_{1}^{r_{k}} F_{12}^{t_{k}} F_{2}^{s_{k}} v$.

If $n=1$, relation (4.12) shows that $E_{2}(x)=0$ if and only if $s_{1}=t_{1}=0$. In this case $x=F_{1}^{r_{1}} v$ spans the representation $\operatorname{Ind}(V)$ since F_{1} is invertible.

Suppose now $n>1$. We rewrite (4.12) in the following way:

$$
E_{2}(x)=A+B=\sum_{k=1}^{n} \alpha_{k} A_{k}+\sum_{k=1}^{n} \beta_{k} B_{k}
$$

with $A_{k}=F_{1}^{r_{k}} F_{12}^{t_{k}} F_{2}^{s_{k}} v, B_{k}=F_{1}^{r_{k}+1} F_{12}^{t_{k}-1} F_{2}^{s_{k}} v$; the vectors A_{k} are then linearly independent as well as the vectors B_{k}, moreover $A_{k} \neq B_{k}$ for the same k. Now, if $B_{k_{1}}=A_{k_{2}}$ for some $k_{1} \neq k_{2}$, this means that

$$
\left\{\begin{array}{l}
r_{k_{2}}=r_{k_{1}}+1 \tag{4.14}\\
t_{k_{2}}=t_{k_{1}}-1 \\
s_{k_{2}}=s_{k_{1}}+1
\end{array}\right.
$$

so that $A_{k_{1}} \neq B_{k_{2}}$. In the same way, by induction, we get that if $B_{k_{1}}=A_{k_{2}}, B_{k_{2}}=$ $=A_{k_{3}}, \ldots, B_{k_{n-1}}=A_{k_{n}}$, then k_{1}, \ldots, k_{n} must be different from each other and $A_{k_{1}}$ is different from $B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{n}}$. Therefore, $E_{2}(x)=0$ if and only if there exists an ordering k_{1}, \ldots, k_{n} of the indeces such that

$$
\left\{\begin{array}{l}
B_{k_{1}}=A_{k_{2}} \tag{4.15}\\
B_{k_{2}}=A_{k_{3}} \\
\vdots \\
B_{k_{n-1}}=A_{k_{n}}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\alpha_{k_{2}}+\beta_{k_{1}}=0 \tag{4.16}\\
\alpha_{k_{3}}+\beta_{k_{2}}=0 \\
\vdots \\
\alpha_{k_{n}}+\beta_{k_{n-1}}=0
\end{array}\right.
$$

and $\alpha_{k_{1}}=0, \beta_{k_{n}}=0$ i.e. $s_{k_{1}}=0, t_{k_{n}}=0$. Notice that system (4.15) is equivalent to the following:

$$
\left\{\begin{array}{l}
r_{k_{b}}=r_{k_{1}}+b-1 \tag{4.17}\\
t_{k_{b}}=t_{k_{1}}-b+1 \\
s_{k_{b}}=b-1
\end{array}\right.
$$

with $2 \leqslant b \leqslant n$. Particularly $t_{k_{1}}=t_{k_{n}}+n-1=n-1=s_{k_{n}}$, so that: $1 \leqslant t_{k_{1}}=n-1 \leqslant$ $\leqslant j$. Now we can write the relation $\alpha_{k_{b}}+\beta_{k_{b-1}}=0$ explicitly:

$$
a_{k_{b}} \frac{\left(\varepsilon^{j+2}-\varepsilon^{-j+2 s_{k b}}\right)\left(1-\varepsilon^{-2 s_{k_{b}}}\right)}{\left(\varepsilon^{2}-1\right)\left(\varepsilon-\varepsilon^{-1}\right)}+a_{k_{b-1}} \frac{1-\varepsilon^{2 t_{k_{b}-1}}}{1-\varepsilon^{2}} \varepsilon^{2-t_{k_{b}-1}-2 s_{k_{b}-1}+j}=0
$$

We point out that, as in our hypothesis the coefficients of the previous equation are different from zero when $2 \leqslant b \leqslant n$, system (4.16) has got a solution $\left(a_{k_{1}}, \ldots, a_{k_{n}}\right)$ with $a_{k_{j}} \neq 0$ for each $j=1, \ldots, n$, uniquely determined up to a scalar factor. Finally, if $a_{k_{j}}=0$ for one j then $x \equiv 0$.

Remark. If $t=0$ in (4.13) $E_{1}(x)=0$ if and only if $r=0$ or $r=i+1$. These are the only cases in which a vector $F_{1}^{r} F_{12}^{t} F_{2}^{s} v$ is annihilated by both E_{1} and E_{2}. Notice that, since $F_{1}^{l}=1$, the set $\left\{F_{1}^{r} F_{12}^{t} F_{2}^{s}\left(F_{1}^{i+1} v\right): 0 \leqslant r, t \leqslant l-1,0 \leqslant s \leqslant j\right\}$ is a basis of $\operatorname{Ind}(V)$.

From now on we will suppose $t>0$ in (4.13).
Proposition 4.4. Let x be of type (4.13), $x \neq 0$, such that $E_{1}(x)=E_{2}(x)=0$. Then

$$
\begin{equation*}
2+i+j-t \equiv 0(\bmod l) \tag{4.18}
\end{equation*}
$$

Proof. Take $x=\sum_{k=1}^{t+1} a_{k} F_{1}^{r+k-1} F_{12}^{t-k+1} F_{2}^{k-1} v$ as in Lemma 4.3. Then

$$
\begin{aligned}
E_{1}(x)= & -\sum_{k=1}^{t+1} a_{k} \varepsilon^{-k+1-i} \frac{1-\varepsilon^{2(t-k+1)}}{1-\varepsilon^{2}} F_{1}^{r+k-1} F_{12}^{t-k} F_{2}^{k} v+ \\
& +\sum_{k=1}^{t+1} a_{k} \frac{\left(1-\varepsilon^{2(r+k-1)}\right)\left(\varepsilon^{2-2 r-t+i}-\varepsilon^{t-2 k+2-i}\right)}{\left(\varepsilon-\varepsilon^{-1}\right)\left(1-\varepsilon^{2}\right)} F_{1}^{r+k-2} F_{12}^{t-k+1} F_{2}^{k-1} v
\end{aligned}
$$

Since the first summand does not contain the vector $F_{1}^{r-1} F_{12}^{t} v$, if $E_{1}(x)=0$, we must. have:
(A)

$$
r=0
$$

or
(B)

$$
1-r-t+i \equiv 0(\bmod l)
$$

Now, as

$$
\begin{aligned}
& E_{2}(x)= \sum_{k=1}^{t+1} a_{k} \frac{\left(\varepsilon^{j+2}-\varepsilon^{-j+2 k-2}\right)\left(1-\varepsilon^{-2 k+2}\right)}{\left(\varepsilon^{2}-1\right)\left(\varepsilon-\varepsilon^{-1}\right)} F_{1}^{r+k-1} F_{12}^{t-k+1} F_{2}^{k-2} v+ \\
& \quad+\sum_{k=1}^{t+1} a_{k} \frac{1-\varepsilon^{2(t-k+1)}}{1-\varepsilon^{2}} \varepsilon^{3-t-k+j} F_{1}^{r+k} F_{12}^{t-k} F_{2}^{k-1} v,
\end{aligned}
$$

$E_{1}(x)=E_{2}(x)=0$ if and only if the following system has got a non trivial solution for each $k=2, \ldots, t+1$:

$$
\left\{\begin{array}{l}
a_{k} \frac{\left(\varepsilon^{j+2}-\varepsilon^{-j+2 k-2}\right)\left(1-\varepsilon^{-2 k+2}\right)}{\left(\varepsilon^{2}-1\right)\left(\varepsilon-\varepsilon^{-1}\right)}+a_{k-1} \varepsilon^{4-t-k+j} \frac{1-\varepsilon^{2(t-k+2)}}{1-\varepsilon^{2}}=0, \\
a_{k} \frac{\left(1-\varepsilon^{2(r+k-1)}\right)\left(\varepsilon^{2-2 r-t+i}-\varepsilon^{t-2 k+2-i}\right)}{\left(\varepsilon-\varepsilon^{-1}\right)\left(1-\varepsilon^{2}\right)}-a_{k-1} \varepsilon^{-k+2-i} \frac{1-\varepsilon^{2(t-k+2)}}{1-\varepsilon^{2}}=0 .
\end{array}\right.
$$

Particularly, for $k=2$ this is equivalent to require that

$$
\left(\varepsilon^{j+2}-\varepsilon^{-j+2}\right)\left(1-\varepsilon^{-2}\right)-\varepsilon^{2-t+j+i}\left(1-\varepsilon^{2 r+2}\right)\left(\varepsilon^{-2 r+i-t+2}-\varepsilon^{-i+t-2}\right)=0 .
$$

We distinguish the following two different cases:
(A): $\quad r=0 \Rightarrow$

$$
\begin{aligned}
& 0=\left(\varepsilon^{j}-\varepsilon^{-j}\right)\left(\varepsilon^{2}-1\right)-\varepsilon^{2-t+i+j}\left(1-\varepsilon^{2}\right)\left(\varepsilon^{i+2-t}-\varepsilon^{-i+t-2)}=\right. \\
&=\left(\varepsilon^{2}-1\right)\left(\varepsilon^{j}-\varepsilon^{-j}+\varepsilon^{4-2 t+2 i+j}-\varepsilon^{j}\right) \Leftrightarrow \\
& \Leftrightarrow \varepsilon^{4-2 t+2 i+j}=\varepsilon^{-j} \Leftrightarrow 2-t+i+j \equiv 0(\bmod l),
\end{aligned}
$$

(B): $\quad 1-r+i-t \equiv 0(\bmod l) \Rightarrow$

$$
\begin{aligned}
& 0=\left(\varepsilon^{j}-\varepsilon^{-j}\right)\left(\varepsilon^{2}-1\right)-\varepsilon^{2-t+i+j}\left(1-\varepsilon^{2 r+2}\right)\left(\varepsilon^{1-r}-\varepsilon^{-r-1}\right)= \\
&=\left(\varepsilon^{j}-\varepsilon^{-j}\right)\left(\varepsilon^{2}-1\right)-\varepsilon^{1+j}\left(1-\varepsilon^{2 r+2}\right)\left(\varepsilon-\varepsilon^{-1}\right)= \\
&=\left(\varepsilon^{2}-1\right)\left(\varepsilon^{j}-\varepsilon^{-j}-\varepsilon^{j}+\varepsilon^{2 r+2+j}\right) \Leftrightarrow \varepsilon^{2 r+2+j}=\varepsilon^{-j} \Leftrightarrow r+1+j \equiv 0 .
\end{aligned}
$$

The above relation, together with (B), is equivalent to (4.18).
Defintrion 4.5. We say that a $s l_{\varepsilon}$ (3)-module is nice if it is of type (i, j) with $2+i+$ $+j \leqslant l$ or $i=l-1$.

Proposition 4.6. A nice representation is irreducible.
Proof. Let us consider a representation of type (i, j) generated by a vector $v \neq 0$. Proposition 4.4 shows that if

$$
2+i+j \not \equiv t(\bmod l)
$$

for any t such that $1 \leqslant t \leqslant j$, the representation $\operatorname{Ind}(V)$ contains no weight vector $x \neq$ $\neq \alpha v, \beta F_{1}^{i+1} v$, with $\alpha, \beta \in C$, such that $E_{1}(x)=0=E_{2}(x)$. Now, since $E_{1}^{l}=E_{12}^{l}=E_{2}^{l}=$ $=0$, the algebra generated by E_{1}, E_{2} is nilpotent, therefore if $W \subset \operatorname{Ind}(V)$ is a subrepresentation of $\operatorname{Ind}(V)$, there exists a weight vector $w \in W$ such that $E_{1}(w)=0=E_{2}(w)$. This forces w to be a multiple scalar of v or of $F_{1}^{i+1} v$ and therefore $W=$ $=\operatorname{Ind}(V)$.

Finally it is easy to verify that $2+i+j \not \equiv t$ for any t such that $1 \leqslant t \leqslant j$ if and only if $2+i+j \leqslant l$ or $i=l-1$.

Proposition 4.7. If V is a $l_{\varepsilon}(3)$-module of type (i, j) and is not nice there exists a nice submodule W of V such that the quotient V / W is a nice representation.

Proof. Let V be a representation of $s l_{\varepsilon}(3)$ of type (i, j) with $2+i+j \geqslant l+1, i \neq$ $\neq l-1$. Take $\bar{x}=F_{2}^{2+i+j-l} F_{1}^{i+1} v$, then \bar{x} is a weight vector killed by both E_{1} and E_{2} which spans a proper subrepresentation Φ of V, with basis $\left\{F_{1}^{r} F_{12}^{t} F_{2}^{s} \bar{x}: 0 \leqslant r, t \leqslant l-1\right.$, $0 \leqslant s \leqslant l-i-2\} . \Phi$ is irreducible, indeed it is the representation of type ($[l-j-$ $-2], l-i-2$), generated by $F_{1}^{j+1} \bar{x}$, which can be easily seen to be nice. (By $[l-j-2]$ we mean the integer $k \in[0, l-1]$ such that $k \equiv l-j-2(\bmod l))$. Finally the quotient V / Φ is the representation of type $(l-i-2, i+j+1-l)$ generated by $F_{1}^{i+1} v$ and this is nice too.

Theorem 4.8. Every subregular representation of $U_{\varepsilon}(s l(3))$ is a nice representation.

Proof. Let us take a subregular representation W of $\mathcal{U}_{\varepsilon}(s l(3))$. As the algebra generated by E_{1} and E_{2} is nilpotent, the set

$$
B:=\left\{w \in W: E_{1}(w)=0=E_{2}(w)\right\}
$$

is nontrivial; moreover K_{1} and K_{2} act diagonally on B. Take then $u \in B \backslash\{0\}$ such that $K_{1} u=\varepsilon^{x} u, K_{2} u=\varepsilon^{y} u: u$ spans W since W is irreducible. Consider the subspace V of W generated by the set $\left\{F_{2}^{r} u: 0 \leqslant r \leqslant l-1\right\} ; V$ is stable under the action of F_{2}, E_{2}, K_{2}, K_{1}. In particular V defines a representation of the subalgebra $\tilde{\mathcal{U}}$ of $\mathcal{U}_{\varepsilon}(s l(3))$ generated by $E_{2}, F_{2}, K_{2}, K_{1}^{2} K_{2}$. Let V^{\prime} be an irreducible \tilde{U}-submodule of $V . V^{\prime}$ is then an irreducible representation of $s l_{\varepsilon}(2)$, since $K_{1}^{2} K_{2}$ is central in \tilde{U}. We then see that V^{\prime} is stable under K_{1} as $K_{1}=\lambda K_{2}^{(l-1) / 2}$ with $\lambda \in C$.

Define $\operatorname{Ind}\left(V^{\prime}\right)$ as the representation induced by V^{\prime} on $s l_{\varepsilon}(3)$ in the natural way. Then W is a quotient of $\operatorname{Ind}\left(V^{\prime}\right)$ since the set $\left\{F_{1}^{r} F_{12}^{t} \tilde{v}: \tilde{v} \in V^{\prime}, 0 \leqslant r, t \leqslant l-1\right\}$ is stable under the action of $E_{\alpha}, F_{\alpha}, K_{j}$ for any $\alpha \in Q^{+}, j=1,2$. Now, if $\operatorname{Ind}\left(V^{\prime}\right)$ is nice, $W=\operatorname{Ind}\left(V^{\prime}\right)$. Otherwise, by Proposition 4.7, $\operatorname{Ind}\left(V^{\prime}\right)$ contains a proper nice subrepresentation Φ such that $\operatorname{Ind}\left(V^{\prime}\right) / \Phi$ is nice. Write $W=\operatorname{Ind}\left(V^{\prime}\right) / T$ where T is a subrepresentation of $\operatorname{Ind}\left(V^{\prime}\right)$. Then, if $T \cap \Phi \neq\{0\}, T \supset \Phi$ so that $W=\operatorname{Ind}\left(V^{\prime}\right) / T \subset$ $c \operatorname{Ind}\left(V^{\prime}\right) / \Phi$, but since $\operatorname{Ind}\left(V^{\prime}\right) / \Phi$ is irreducible, $W=\operatorname{Ind}\left(V^{\prime}\right) / \Phi$.

On the contrary, if $T \cap \Phi=\{0\}$ then $W \supset \Phi / T \simeq \Phi$ so that $W=\Phi$.
Corollary 4.9. The dimension of any subregular representation of $U_{\varepsilon}(s l(3))$ is divisible by l^{2}.

Acknowledgements

I would like to express my gratitude to Professor Corrado De Concini for the patient interest with which he followed this paper.

References

[1] C. De Concini - V. G. Kac, Representations of quantum groups at roots of 1. Progress in Math., 92, Birkhäuser, 1990, 471-506.
[2] C. De Concini - V. G. Kac, Representations of quantum groups at roots of 1: reduction to the exceptional case. International Journal of Modern Physics A, vol. 7, Suppl. 1A, 1992, 141-149.
[3] C. De Concini - V. G. Kac - C. Procesi, Quantum coadjoint action. Journal of the American Mathematical Society, 5, 1992, 151-190.
[4] C. De Concini - V. G. Kac - C. Procesi, Some remarkable degenerations of quantum groups. Comm. Math. Phys., 157, 1993, 405-427.
[5] V. G. Drinfeld, Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258.
[6] V. G. Drinfeld, Quantum groups. Proc. ICM, Berkeley, 1, 1986, 798-820.
[7] W. Hesselink, The normality of closures of orbits in a Lie algebra. Commentarii Math. Helvet., 54, 1979, 105-110.
[8] M. Jimbo, A q-difference analogue of $\mathcal{U}(\mathrm{g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69.
[9] S. Z. Levendorskit - Ya. S. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Comm. Math. Phys., 139, 1991, 141-170.
[10] G. Lusztig, Quantum groups at roots of 1. Geom. Ded., 35, 1990, 89-114.
[11] J. Trrs, Sur les constants de structure et le théorème d'existence des algebres de Lie semi-simple. Publ. Math. IHES, 31, 1966, 21-58.

Dipartimento di Matematica Università degli Studi di Pisa
Via Buonarroti, 2-56127 PISA

[^0]: (*) Pervenuta all'Accademia l'11 luglio 1996.

