ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

NICOLETTA CANTARINI

Representations of $sl_q(3)$ at the roots of unity

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 7 (1996), n.4, p. 201–212.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1996_9_7_4_201_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1996.

Rend. Mat. Acc. Lincei s. 9, v. 7:201-212 (1996)

Algebra. — Representations of $sl_q(3)$ at the roots of unity. Nota (*) di NICOLETTA CANTARINI, presentata dal Corrisp. C. De Concini.

ABSTRACT. — In this paper we study the irreducible finite dimensional representations of the quantized enveloping algebra $\mathcal{U}_q(g)$ associated to g = sl(3), at the roots of unity. It is known that these representations are parametrized, up to isomorphisms, by the conjugacy classes of the group G = SL(3). We get a complete classification of the representations corresponding to the submaximal unipotent conjugacy class and therefore a proof of the De Concini-Kac conjecture about the dimension of the $\mathcal{U}_q(g)$ -modules at the roots of 1 in the case of g = sl(3).

KEY WORDS: Enveloping algebra; Representation; Cartan matrix.

RIASSUNTO. — Rappresentazioni di $sl_q(3)$ alle radici dell'unità. Vengono studiate le rappresentazioni irriducibili, finito-dimensionali dell'algebra inviluppante quantizzata $\mathcal{U}_q(g)$ associata a g = sl(3), alle radici dell'unità. È noto che tali rappresentazioni sono parametrizzate, a meno di isomorfismi, dalle classi di coniugio del gruppo G = SL(3). Si ottiene una classificazione completa delle rappresentazioni corrispondenti alla classe di coniugio unipotente sottomassimale e quindi una prova, nel caso g = sl(3), della congettura di De Concini, Kac sulla dimensione degli $\mathcal{U}_q(g)$ -moduli alle radici dell'unità.

1. INTRODUCTION

In the papers [1, 3] the quantized enveloping algebra $\mathcal{U}_q(g)$ introduced by Drinfeld [5, 6] and Jimbo [8], has been studied in the case $q = \varepsilon$, ε being an odd, primitive root of unity.

In particular it has been shown that the irreducible finite dimensional representations of $\mathcal{U}_{\varepsilon}(g)$ are parametrized, up to equivalence, by the conjugacy classes of the corresponding complex Lie group G with trivial center (see Section 2 for the definitions and Section 3 for the main results).

In this paper we will study the subregular representations of the quantum group $sl_{\varepsilon}(3)$, *i.e.* the irreducible representations corresponding to the unipotent conjugacy class of SL(3) of dimension 4.

The main result of this paper (see Theorem 4.8) consists in proving that any $sl_{\varepsilon}(3)$ -subregular module can be induced by an irreducible $sl_{\varepsilon}(2)$ -module in such a way that a suitable condition is satisfied (nice representation).

Hence we shall start from the construction of an induced module and study its irreducibility using a direct method (Propositions 4.4, 4.6, 4.7). In this way we shall be able to write a basis for any subregular module and to compute its dimension explicitly.

(*) Pervenuta all'Accademia l'11 luglio 1996.

2. NOTATIONS

2.1. Let (a_{ij}) , i, j = 1, ..., n, be a symmetric Cartan matrix and g the corresponding Lie algebra with Cartan subalgebra h and Chevalley generators e_i , f_i (i = 1, ..., n).

Let Q be the root system associated to (a_{ij}) , R the root lattice W the Weyl group and $\Delta = \{\alpha_1, ..., \alpha_n\}$ the set of simple roots. Then $Q = Q^+ \cup Q^-$ where Q^+ is the set of positive roots and Q^- is the set of negative roots.

Following Drinfeld [5, 6] and Jimbo [8] we consider the quantum group $\mathcal{U}_q(g)$ associated to the matrix (a_{ij}) *i.e.* the associative algebra over C(q) generated by E_i , F_i , K_i , K_i^{-1} (i = 1, ..., n) with the following relations:

(2.1)
$$K_i K_j = K_j K_i = K_{i+j}, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1,$$

(2.2)
$$K_i E_j K_i^{-1} = q^{a_{ij}} E_j$$
, $K_i F_j K_i^{-1} = q^{-a_{ij}} F_j$,

(2.3)
$$E_i F_j - F_j E_i = \delta_{ij} (K_i - K_i^{-1}) / (q - q^{-1}),$$

(2.4)
$$\sum_{s=0}^{1-a_{ij}} (-1)^{s} \begin{bmatrix} 1-a_{ij} \\ s \end{bmatrix} E_{i}^{1-a_{ij}-s} E_{j} E_{i}^{s} = 0 \quad \text{if } i \neq j,$$

(2.5)
$$\sum_{s=0}^{1-a_{ij}} (-1)^s \begin{bmatrix} 1-a_{ij} \\ s \end{bmatrix} F_i^{1-a_{ij}-s} F_j F_i^s = 0 \quad \text{if } i \neq j.$$

Here $\begin{bmatrix} 1 - a_{ij} \\ s \end{bmatrix}$ is the Gaussian binomial coefficient $\begin{bmatrix} 1 - a_{ij} \\ s \end{bmatrix}_d$ with d = 1.

2.2. Recall that the Braid group B_{w} associated to (a_{ij}) , with canonical generators T_i , acts on $\mathcal{U}_q(g)$ by automorphisms defined in [10] by:

$$T_{i}E_{i} = -F_{i}K_{i}, \qquad T_{i}E_{j} = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}}q^{-s}E_{i}^{(-a_{ij}-s)}E_{j}E_{i}^{(s)} \qquad \text{if } i \neq j,$$

$$T_{i}F_{i} = -K_{i}^{-1}E_{i}, \qquad T_{i}F_{j} = \sum_{s=0}^{-a_{ij}} (-1)^{s-a_{ij}}q^{s}F_{i}^{(s)}F_{j}F_{i}^{(-a_{ij}-s)} \qquad \text{if } i \neq j,$$

where for each $a \in N$ we have $E_i^{(a)} = E_i^a / [a]!$, $F_i^{(a)} = F_i^a / [a]!$, $[a]! = [a] \dots [1]$ and $[a] = (q^a - q^{-a}) / (q - q^{-1})$.

Let w_0 be the longest element in \mathcal{W} so that $w_0(Q^+) = Q^-$. Chosen a reduced expression for $w_0: w_0 = s_{i_1}s_{i_2}...s_{i_N}$ with $N = |Q^+|$, we can define a convex total ordering of Q^+ :

 $\beta_j = s_{i_1} \dots s_{i_{i-1}}(\alpha_{i_i}) \quad j = 1, \dots, N.$

We introduce the corresponding root vectors [10]:

(2.6)
$$E_{\beta_j} = T_{i_1} \dots T_{i_{j-1}} E_{i_j}$$
, $F_{\beta_j} = T_{i_1} \dots T_{i_{j-1}} F_{i_j}$, $j = 1, \dots, N$;

then we let

 $T_i K_i = K_{c_i(\alpha_i)}$,

$$E^k = E^{k_1}_{\beta_1} \dots E^{k_N}_{\beta_N}$$
, $F^k = \omega E^k$

Representations of $sl_q(3)$ at the roots of unity

for $k = (k_1, ..., k_N) \in \mathbb{Z}_+^N$, where ω is the conjugate-linear anti automorphism of $\mathcal{U}_q(g)$, as an algebra over C, defined by:

$$\omega(E_i) = F_i, \qquad \omega(F_i) = E_i, \qquad \omega(K_i) = K_i^{-1}, \qquad \omega(q) = q^{-1}$$

It is known that ω commutes with the action of the Braid group.

THEOREM 2.1 [9, 10]. (a) The set $\{F^k K_1^{m_1} \dots K_n^{m_n} E^r : k, r \in \mathbb{Z}_+^N, (m_1, \dots, m_n) \in \mathbb{Z}_+^n\}$ is a basis of $\mathcal{U}_q(g)$ over C(q).

(b) For i < j one has:

$$E_{\beta_i}E_{\beta_j} - q^{(\beta_i \mid \beta_j)}E_{\beta_j}E_{\beta_i} = \sum_{k \in \mathbb{Z}_+^N} c_k E^k$$

where $c_k \in C[q, q^{-1}]$ and $c_k \neq 0$ only when $k = (k_1, ..., k_N)$ is such that $k_s = 0$ for $s \leq i$ and $s \geq j$.

Now, let *l* be an odd integer greater than 1 and ε a primitive *l*-th root of 1. We denote by $\mathcal{U}_{\varepsilon} \equiv \mathcal{U}_{\varepsilon}(g)$ the algebra over *C* obtained by specializing *q* to ε . More precisely, let $\mathcal{A} = C[q, q^{-1}]$ and denote by \mathcal{U}_{α} the \mathcal{A} subalgebra of $\mathcal{U}_{q}(g)$ generated by $E_{i}, F_{i}, K_{i}, K_{i}^{-1}$ and $(K_{i} - K_{i}^{-1})/(q - q^{-1})$ with i = 1, ..., n. Then $\mathcal{U}_{\varepsilon} = \mathcal{U}_{\alpha}/(q - \varepsilon)\mathcal{U}_{\alpha}$.

Denote by Z_{ε} the center of $\mathcal{U}_{\varepsilon}$. It is known [1] that E_{α}^{l} , F_{α}^{l} ($\alpha \in Q^{+}$), K_{i}^{l} (i = 1, ..., n) lie in Z_{ε} . Let Z_{0} be the subalgebra of Z_{ε} generated by these elements and denote by Z_{0}^{-} , Z_{0}^{0} , Z_{0}^{+} the subalgebras of Z_{0} generated by F_{α}^{l} , K_{j}^{l} and E_{α}^{l} respectively, with $\alpha \in Q^{+}$, j = 1, ..., n. Then

$$Z_0 \simeq Z_0^- \otimes Z_0^0 \otimes Z_0^+$$

LEMMA 2.2 [1]. The algebra $\mathcal{U}_{\varepsilon}$ is a free Z_0 -module on the basis $\{F^k K_1^{m_1} \dots K_n^{m_n} E^r : k = (k_1, \dots, k_N), r = (r_1, \dots, r_N) \in \mathbb{Z}^N_+, m_i \in \mathbb{Z}, 0 \le k_i < l, 0 \le r_i < l, 0 \le m_i < l\}.$

3. Basic construction and main results

Let G be the connected complex Lie group with Lie algebra g and trivial center. Let T be the maximal torus of G corresponding to the Cartan subalgebra h of g, U_{-} and U_{+} the maximal unipotent subgroups of G corresponding to Q^{-} and Q^{+} respectively, $B_{-} = TU_{-}$ and $B_{+} = TU_{+}$ Borel subgroups.

In this section we will recall the correspondence between the equivalence classes of the irreducible finite-dimensional representations of the quantized enveloping algebra $\mathcal{U}_{\varepsilon}(g)$ and the conjugacy classes of the group G, and we will collect the main results concerning this correspondence.

3.1. DEFINITION 3.1. If A is an associative algebra by Spec A we denote the set of the equivalence classes of the irreducible, finite dimensional representations of A.

REMARK. Using Schur's lemma one can consider the canonical map

X: Spec $\mathcal{U}_{\varepsilon} \to \operatorname{Spec} Z_{\varepsilon}$,

```
\sigma \mapsto \lambda_{\sigma},
```

where σ is an irreducible representation of $\mathcal{U}_{\varepsilon}$ on a vector space V such that

 $\sigma(z)(v) = \lambda_{\sigma}(z) v \qquad \forall z \in Z_{\varepsilon} , \forall v \in V.$

PROPOSITION 3.2 [4].

1) The map X: Spec $\mathcal{U}_{\varepsilon} \rightarrow \text{Spec } Z_{\varepsilon}$ is surjective;

2) the points of Spec Z_{ε} parametrize the semisimple l^{N} -dimensional representations of $\mathcal{U}_{\varepsilon}$;

3) if $\lambda \in \operatorname{Spec} Z_{\varepsilon}$, $X^{-1}(\lambda)$ is the set of the irreducible components of the representation parametrized by λ .

COROLLARY 3.3. Any finite dimensional irreducible U_{ε} -module has dimension less than or equal to l^{N} .

Consider now the following sequence of canonical maps [3]:

(3.7) $\varphi: \operatorname{Spec} \mathcal{U}_{\varepsilon} \xrightarrow{X} \operatorname{Spec} Z_{\varepsilon} \xrightarrow{\tau} \operatorname{Spec} Z_{0} \xrightarrow{\pi} G.$

Here τ is induced by the inclusion $Z_0 \subset Z_{\varepsilon}$; it is finite with fibers of order less than or equal to l^n which are completely described in [1, 2]. The map π is constructed as follows: define

 π^- : Spec $Z_0^- \to U_-$ and π^+ : Spec $Z_0^+ \to U_+$

respectively by the elements $\exp(y_{\beta_N}f_{\beta_N}) \dots \exp(y_{\beta_1}f_{\beta_1})$ of $U_-(Z_0^-)$ and $\exp(T_0(y_{\beta_N})T_0(f_{\beta_N}))\dots \exp(T_0(y_{\beta_1})T_0(f_{\beta_1}))$ of $U_+(Z_0^+)$, where $T_0 = T_{i_1}\dots T_{i_N}, y_a = (\varepsilon^{1/2(\alpha, a)} - \varepsilon^{-1/2(\alpha, a)})^l F_a^l \ (\alpha \in Q^+)$, and f_a are root vectors in g defined by formulas analogous to (2.6), through the action of B_{W} on g introduced by Tits [11]:

 $T_i = (\exp \operatorname{ad} f_i)(\exp \operatorname{ad} e_i)(\exp \operatorname{ad} f_i).$

We shall identify Spec Z_0^0 with T through the isomorphism $R \rightarrow lR$ given by multiplication by l. Now consider the map

$$\pi: \operatorname{Spec} Z_0 = \operatorname{Spec} Z_0^- \times T \times \operatorname{Spec} Z_0^+ \to G,$$
$$\pi(a, t, b) = \pi^-(a) t^2 \pi^+(b);$$

the image of π is the big cell $(U_{-}TU_{+})$ of the group G.

THEOREM 3.4 [3]. There exists a canonical infinite dimensional group \tilde{G} of automorphisms of U_{ε} such that:

a) \tilde{G} stabilizes Z_0 and therefore acts on Spec Z_0 :

$$(\widetilde{g}\lambda)(z) = \lambda(\widetilde{g}^{-1}z), \quad \lambda \in \operatorname{Spec} Z_0, \quad z \in Z_0, \quad \widetilde{g} \in G;$$

b) X is an equivariant map with respect to the G-action;

c) the set F of fixed points of \tilde{G} in Spec Z_0 is $(\pi)^{-1}(1)$;

REPRESENTATIONS OF $sl_q(3)$ at the roots of unity

d) if \mathfrak{O} is the conjugacy class of a non central element of G then $\pi^{-1}(\mathfrak{O})$ is a single \tilde{G} -orbit and $(\operatorname{Spec} Z_0) - F$ is a union of these \tilde{G} -orbits.

The above theorem allows us to parametrize the equivalence classes of the irreducible $\mathcal{U}_q(g)$ -modules by the conjugacy classes of the group G. The following conjecture states the existence of a linking between the geometry of these conjugacy classes and the structure of the corresponding representations in a more precise sense:

CONJECTURE [3]. If $\sigma \in \text{Spec } \mathcal{U}_{\varepsilon}$ is an irreducible representation of $\mathcal{U}_{\varepsilon}$ on a vector space V such that $\varphi(\sigma)$ belongs to a conjugacy class \mathcal{O} in G then dim V is divisible by $l^{\dim \mathcal{O}/2}$.

We recall that each conjugacy class in G has got even dimension less than or equal to 2N. The above conjecture was proved in [4] in the maximal case:

THEOREM 3.5. Any representation $\sigma \in \text{Spec } U_{\varepsilon}$ such that $\varphi(\sigma)$ lies in a regular conjugacy class of G has maximal dimension $(=l^N)$.

From now on we consider the quantized enveloping algebra $\mathcal{U}_q(g)$ associated to g = sl(n). Then $\mathfrak{W} = S_n$ and G = SL(n). We will denote the Borel subgroups of G of upper and lower triangular matrices by B_+ and B_- respectively, while U_+ and U_- will be the corresponding unipotent subgroups and T the maximal torus of diagonal matrices.

DEFINITION 3.6. We say that $\sigma \in \mathcal{U}_{\varepsilon}$ is unipotent if $\varphi(\sigma)$ is a unipotent element in SL(n).

Take a non unipotent element σ in Spec $\mathcal{U}_{\varepsilon}$ and write $m = \varphi(\sigma) = m_s m_u$ where m_s and m_u are the semisimple and unipotent part of m respectively $(m_s \neq 1)$. Define T' == center (centralizer_G (m_s)) and put h' := Lie(T'). Then h' will be a proper subalgebra of the Cartan subalgebra h of g. Let $Q' := \{\alpha \in Q \mid \alpha \text{ vanishes on } h'\}$, then $Q' = \mathbb{Z}\Delta' \cap Q$ where $\mathbb{Z}\Delta'$ is a sublattice of R spanned by a proper subset Δ' of Δ . We shall denote by g'the Lie algebra whose Chevalley generators are those of g corresponding to $\alpha_i \in \Delta'$ and by \mathcal{U}' the subalgebra of $\mathcal{U}_{\varepsilon}$ generated by E_i , F_i with $\alpha_i \in \Delta'$ and K_j with j = 1, ..., n. Put $\widetilde{\mathcal{U}} = \mathcal{U}' \mathcal{U}^+$ where \mathcal{U}^+ is the subalgebra of $\mathcal{U}_{\varepsilon}$ generated by E_i , K_i for i = 1, ..., n. Then the following theorem holds:

THEOREM 3.7 [2]. If $\sigma \in \text{Spec } U_{\varepsilon}$ is a non unipotent representation of $sl_{\varepsilon}(n)$ on a vector space V there exists a unique irreducible $U_{\varepsilon}(g')$ -module V' such that:

- 1) V' is an irreducible \tilde{U} -module;
- 2) $V = sl_{\varepsilon}(n) \bigotimes_{\overline{sl}} V'$; in particular dim $V = l^t \dim V'$ where 2t = |Q/Q'|.

The above theorem reduces the study of the irreducible representations of $sl_{\varepsilon}(n)$ to the study of its unipotent representations, since it states, in particular, that any $sl_{\varepsilon}(n)$ -module which is not unipotent is induced by a $sl_{\varepsilon}(r)$ -unipotent module, with r < n.

We recall that the number of conjugacy classes of the unipotent elements in SL(n) is finite and that each class is parametrized by the Jordan decomposition of its elements, *i.e.* by a partition of n. Moreover the following theorem holds:

THEOREM 3.8 [7]. Let O be a conjugacy class in SL(n) parametrized by the partition (b_i) of n. Then dim $O = n^2 - \sum \check{b}_i$, where (\check{b}_i) is the dual partition.

4. $U_{\varepsilon}(\mathfrak{sl}(\mathfrak{Z}))$: THE SUBREGULAR CASE

In this section we will consider the case g = sl(3) and study the subregular representations of the quantum group $U_{\varepsilon}(sl(3))$ *i.e.* the irreducible representations which lie over the conjugacy class \mathcal{O} , parametrized by

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

through the correspondence (3.7). According to what stated in 3 this completes the proof of the recalled conjecture in the case of $sl_{\varepsilon}(3)$. Indeed there are 3 conjugacy classes of unipotent elements in SL(3):

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

In the first case $(\dim \mathcal{O} = 0)$ the conjecture is empty and in the last case (the maximal case) it is proved by Theorem 3.5.

Let us fix a reduced expression for w_0 , say $w_0 = s_2 s_1 s_2$. Then the following relations can be proved by induction on r:

(4.8)
$$E_1 F_{12}^r = F_{12}^r E_1 - \left(\sum_{k=0}^{r-1} \varepsilon^{2k}\right) F_{12}^{r-1} F_2 K_1^{-1} ;$$

(4.9)
$$E_2 F_{12}^r = F_{12}^r E_2 + \varepsilon \left(\sum_{k=0}^{r-1} \varepsilon^{-2k}\right) F_{12}^{r-1} F_1 K_2$$

We recall that, with our choice of the reduced expression of w_0 ,

$$F_1F_{12} = \varepsilon^{-1}F_{12}F_1$$
, $F_2F_{12} = \varepsilon F_{12}F_2$.

Let us choose the representative element

$$m = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

of the class O, then, using the definition of φ , one sees that any representation in $\varphi^{-1}(m)$ is such that $E_1^l = E_{12}^l = E_2^l = 0$, $K_1^l = K_2^l = 1$, $F_2^l = 0$, $F_1^l = 1 = F_{12}^l$, where the elements of $sl_{\varepsilon}(3)$ are identified with their images through the representation.

According to [1], we consider the irreducible (j + 1)-dimensional representation V $(0 \le j \le l - 1)$ of $sl_{\varepsilon}(2)$ with a basis consisting of the vectors $v, F_2v, ..., F_2^jv$, where v Representations of $sl_q(3)$ at the roots of unity

is a non zero vector such that $E_2 v = 0$, $K_2 v = \varepsilon^j v$, $F_2^{j+1} v = 0$. Let $\tilde{\mathcal{U}}$ be the subalgebra of $\mathcal{U}_{\varepsilon}$ with generators E_2 , F_2 , K_2 , E_1 , K_1 , F_1^l , F_{12}^l and define an action of $\tilde{\mathcal{U}}$ on V by the relations:

$$F_1^l = 1$$
, $F_{12}^l = 1$, $E_1 V \equiv 0$, $K_1 F_2^r v = \varepsilon^{i+r} F_2^r v$ $\forall r = 0, ..., j$

where *i* is a fixed integer such that $0 \le i \le l - 1$. *V* is then a left \tilde{U} -module, and we can consider the induced representation $\operatorname{Ind}(V) := sl_{\varepsilon}(3) \bigotimes_{\tilde{U}} V$.

DEFINITION 4.1. We say that the above defined representation Ind(V) is a representation of type (i, j) of $sl_{\varepsilon}(3)$.

REMARK. A representation of type (i, j) has dimension $(j + 1)l^2$. Indeed, by definition, a basis of Ind(V) consists of the vectors

(4.10)
$$\{F_1^r F_{12}^t F_2^s v \colon 0 \le r, t \le l-1, 0 \le s \le j\}.$$

LEMMA 4.2. Given $x \in \text{Ind}(V)$, $x = \sum_{k=1}^{n} a_k F_1^{r_k} F_{12}^{r_k} F_2^{s_k} v$, the following relations hold:

$$(4.11) E_{1}(x) = -\sum_{k=1}^{n} a_{k} \varepsilon^{-s_{k}-i} \frac{1-\varepsilon^{2t_{k}}}{1-\varepsilon^{2}} F_{1}^{r_{k}} F_{12}^{t_{k}-1} F_{2}^{s_{k}+1} v + + \sum_{k=1}^{n} a_{k} \frac{(1-\varepsilon^{2r_{k}})(\varepsilon^{2-2r_{k}-t_{k}+s_{k}+i}-\varepsilon^{t_{k}-s_{k}-i})}{(\varepsilon-\varepsilon^{-1})(1-\varepsilon^{2})} F_{1}^{r_{k}-1} F_{12}^{t_{k}} F_{2}^{s_{k}} v ; (4.12) E_{2}(x) = \sum_{k=1}^{n} a_{k} \frac{(\varepsilon^{j+2}-\varepsilon^{-j+2s_{k}})(1-\varepsilon^{-2s_{k}})}{(\varepsilon^{2}-1)(\varepsilon-\varepsilon^{-1})} F_{1}^{r_{k}} F_{12}^{t_{k}} F_{2}^{s_{k}-1} v + + \sum_{k=1}^{n} a_{k} \frac{1-\varepsilon^{2t_{k}}}{1-\varepsilon^{2}} \varepsilon^{2-t_{k}-2s_{k}+j} F_{1}^{r_{k}+1} F_{12}^{t_{k}-1} F_{2}^{s_{k}} v .$$

PROOF. By using relation (4.8) we have:

$$\begin{split} E_{1}(x) &= E_{1}\left(\sum_{k=1}^{n} a_{k}F_{1}^{r_{k}}F_{12}^{t_{k}}F_{2}^{s_{k}}v\right) = \sum_{k=1}^{n} a_{k}E_{1}F_{1}^{r_{k}}F_{12}^{t_{k}}F_{2}^{s_{k}}v = \\ &= \sum_{k=1}^{n} a_{k}\left(F_{1}^{r_{k}}E_{1} + F_{1}^{r_{k}-1}\left(\frac{\sum_{s=0}^{r_{k}-1}\varepsilon^{-2s}\right)K_{1} - \left(\sum_{s=0}^{r_{k}-1}\varepsilon^{2s}\right)K_{1}^{-1}}{\varepsilon - \varepsilon^{-1}}\right)F_{12}^{t_{k}}F_{2}^{s_{k}}v = \\ &= \sum_{k=1}^{n} a_{k}F_{1}^{r_{k}}E_{1}F_{12}^{t_{k}}F_{2}^{s_{k}}v + \\ &+ \sum_{k=1}^{n} a_{k}F_{1}^{r_{k}-1}\frac{(1 - \varepsilon^{-2r_{k}})/(1 - \varepsilon^{-2})\varepsilon^{-t_{k}+s_{k}+i} - (1 - \varepsilon^{2r_{k}})/(1 - \varepsilon^{2})\varepsilon^{t_{k}-s_{k}-i}}{\varepsilon - \varepsilon^{-1}} \cdot \\ &\cdot F_{12}^{t_{k}}F_{2}^{s_{k}}v = \sum_{k=1}^{n} a_{k}F_{1}^{r_{k}}\left(-\sum_{m=0}^{t_{k}-1}\varepsilon^{2m}\right)F_{12}^{t_{k}-1}F_{2}K_{1}^{-1}F_{2}^{s_{k}}v + \\ &+ \sum_{k=1}^{n} a_{k}\frac{(1 - \varepsilon^{2r_{k}})/(1 - \varepsilon^{2})\varepsilon^{2-2r_{k}-t_{k}+s_{k}+i} - (1 - \varepsilon^{2r_{k}})/(1 - \varepsilon^{2})\varepsilon^{t_{k}-s_{k}-i}}{\varepsilon - \varepsilon^{-1}} \cdot \end{split}$$

$$\cdot F_1^{r_k - 1} F_{12}^{t_k} F_2^{s_k} v = -\sum_{k=1}^n a_k \, \varepsilon^{-s_k - i} \, \frac{1 - \varepsilon^{2t_k}}{1 - \varepsilon^2} F_1^{r_k} F_{12}^{t_k - 1} F_2^{s_k + 1} v + \\ + \sum_{k=1}^n a_k \, \frac{(1 - \varepsilon^{2r_k})(\varepsilon^{2 - 2r_k - t_k + s_k + i} - \varepsilon^{t_k - s_k - i})}{(\varepsilon - \varepsilon^{-1})(1 - \varepsilon^2)} \, F_1^{r_k - 1} F_{12}^{t_k} F_2^{s_k} v \, .$$

We compute $E_2(x)$ in a similar way.

Given a $sl_{\varepsilon}(3)$ -module V, we shall say that $x \in V$ is a weight vector if it is a common eigenvector for the K_i 's for i = 1, 2.

LEMMA 4.3. Each weight vector x in Ind(V) such that $E_2(x) = 0$ has the form

(4.13)
$$x = \sum_{k=1}^{t+1} a_k F_1^{t+k-1} F_{12}^{t-k+1} F_2^{k-1} \iota$$

with $t, r \in \mathbb{N}$, $0 \leq t \leq j$, $0 \leq r \leq l-1$ and $a_k \in \mathbb{C} - \{0\}$.

PROOF. Let us take $x \in \text{Ind}(V)$, then we can write x as a linear combination of the vectors in the basis (4.10): $x = \sum_{k=1}^{n} a_k F_1^{r_k} F_{12}^{r_k} F_2^{s_k} v$.

If n = 1, relation (4.12) shows that $E_2(x) = 0$ if and only if $s_1 = t_1 = 0$. In this case $x = F_1^{r_1}v$ spans the representation Ind(V) since F_1 is invertible.

Suppose now n > 1. We rewrite (4.12) in the following way:

$$E_{2}(x) = A + B = \sum_{k=1}^{n} \alpha_{k}A_{k} + \sum_{k=1}^{n} \beta_{k}B_{k}$$

with $A_k = F_1^{r_k} F_{12}^{r_k} F_2^{s_k} v$, $B_k = F_1^{r_k+1} F_{12}^{r_k-1} F_2^{s_k} v$; the vectors A_k are then linearly independent as well as the vectors B_k , moreover $A_k \neq B_k$ for the same k. Now, if $B_{k_1} = A_{k_2}$ for some $k_1 \neq k_2$, this means that

(4.14)
$$\begin{cases} r_{k_2} = r_{k_1} + 1 \\ t_{k_2} = t_{k_1} - 1 \\ s_{k_2} = s_{k_1} + 1 \end{cases}$$

so that $A_{k_1} \neq B_{k_2}$. In the same way, by induction, we get that if $B_{k_1} = A_{k_2}$, $B_{k_2} = A_{k_3}, \ldots, B_{k_{n-1}} = A_{k_n}$, then k_1, \ldots, k_n must be different from each other and A_{k_1} is different from $B_{k_1}, B_{k_2}, \ldots, B_{k_n}$. Therefore, $E_2(x) = 0$ if and only if there exists an ordering k_1, \ldots, k_n of the indeces such that

(4.15)
$$\begin{cases} B_{k_1} = A_{k_2} \\ B_{k_2} = A_{k_3} \\ \vdots \\ B_{k_{n-1}} = A_{k_n} \end{cases}$$

REPRESENTATIONS OF $sl_a(3)$ at the roots of unity

(4.16)
$$\begin{cases} \alpha_{k_2} + \beta_{k_1} = 0\\ \alpha_{k_3} + \beta_{k_2} = 0\\ \vdots\\ \alpha_{k_n} + \beta_{k_{n-1}} = 0 \end{cases}$$

and $\alpha_{k_1} = 0$, $\beta_{k_n} = 0$ *i.e.* $s_{k_1} = 0$, $t_{k_n} = 0$. Notice that system (4.15) is equivalent to the following:

(4.17)
$$\begin{cases} r_{k_b} = r_{k_1} + b - 1 \\ t_{k_b} = t_{k_1} - b + 1 \\ s_{k_b} = b - 1 \end{cases}$$

with $2 \le h \le n$. Particularly $t_{k_1} = t_{k_n} + n - 1 = n - 1 = s_{k_n}$, so that: $1 \le t_{k_1} = n - 1 \le j$. Now we can write the relation $\alpha_{k_h} + \beta_{k_{h-1}} = 0$ explicitly:

$$a_{k_b} \frac{(\varepsilon^{j+2} - \varepsilon^{-j+2s_{k_b}})(1 - \varepsilon^{-2s_{k_b}})}{(\varepsilon^2 - 1)(\varepsilon - \varepsilon^{-1})} + a_{k_{b-1}} \frac{1 - \varepsilon^{2t_{k_{b-1}}}}{1 - \varepsilon^2} \varepsilon^{2 - t_{k_{b-1}} - 2s_{k_{b-1}} + j} = 0.$$

We point out that, as in our hypothesis the coefficients of the previous equation are different from zero when $2 \le b \le n$, system (4.16) has got a solution $(a_{k_1}, \ldots, a_{k_n})$ with $a_{k_j} \ne 0$ for each $j = 1, \ldots, n$, uniquely determined up to a scalar factor. Finally, if $a_{k_j} = 0$ for one j then $x \equiv 0$.

REMARK. If t = 0 in (4.13) $E_1(x) = 0$ if and only if r = 0 or r = i + 1. These are the only cases in which a vector $F_1^r F_{12}^t F_2^s v$ is annihilated by both E_1 and E_2 . Notice that, since $F_1^l = 1$, the set $\{F_1^r F_{12}^t F_2^s (F_1^{i+1}v): 0 \le r, t \le l-1, 0 \le s \le j\}$ is a basis of Ind(V).

From now on we will suppose t > 0 in (4.13).

PROPOSITION 4.4. Let x be of type (4.13), $x \neq 0$, such that $E_1(x) = E_2(x) = 0$. Then

(4.18)
$$2 + i + j - t \equiv 0 \pmod{l}$$

PROOF. Take
$$x = \sum_{k=1}^{t+1} a_k F_1^{r+k-1} F_{12}^{t-k+1} F_2^{k-1} v$$
 as in Lemma 4.3. Then

$$E_1(x) = -\sum_{k=1}^{t+1} a_k \varepsilon^{-k+1-i} \frac{1-\varepsilon^{2(t-k+1)}}{1-\varepsilon^2} F_1^{r+k-1} F_{12}^{t-k} F_2^k v + \sum_{k=1}^{t+1} a_k \frac{(1-\varepsilon^{2(r+k-1)})(\varepsilon^{2-2r-t+i}-\varepsilon^{t-2k+2-i})}{(\varepsilon-\varepsilon^{-1})(1-\varepsilon^2)} F_1^{r+k-2} F_{12}^{t-k+1} F_2^{k-1} v.$$

Since the first summand does not contain the vector $F_1^{r-1}F_{12}^{t}v$, if $E_1(x) = 0$, we must have:

$$(A) r = 0$$

or

(B)
$$1 - r - t + i \equiv 0 \pmod{l}.$$

Now, as

$$E_{2}(x) = \sum_{k=1}^{t+1} a_{k} \frac{(\varepsilon^{j+2} - \varepsilon^{-j+2k-2})(1 - \varepsilon^{-2k+2})}{(\varepsilon^{2} - 1)(\varepsilon - \varepsilon^{-1})} F_{1}^{r+k-1} F_{12}^{t-k+1} F_{2}^{k-2} v + \\ + \sum_{k=1}^{t+1} a_{k} \frac{1 - \varepsilon^{2(t-k+1)}}{1 - \varepsilon^{2}} \varepsilon^{3-t-k+j} F_{1}^{r+k} F_{12}^{t-k} F_{2}^{k-1} v ,$$

 $E_1(x) = E_2(x) = 0$ if and only if the following system has got a non trivial solution for each k = 2, ..., t + 1:

$$\begin{cases} a_k \frac{(\varepsilon^{j+2} - \varepsilon^{-j+2k-2})(1 - \varepsilon^{-2k+2})}{(\varepsilon^2 - 1)(\varepsilon - \varepsilon^{-1})} + a_{k-1}\varepsilon^{4-t-k+j}\frac{1 - \varepsilon^{2(t-k+2)}}{1 - \varepsilon^2} = 0, \\ a_k \frac{(1 - \varepsilon^{2(t+k-1)})(\varepsilon^{2-2t-t+i} - \varepsilon^{t-2k+2-i})}{(\varepsilon - \varepsilon^{-1})(1 - \varepsilon^2)} - a_{k-1}\varepsilon^{-k+2-i}\frac{1 - \varepsilon^{2(t-k+2)}}{1 - \varepsilon^2} = 0. \end{cases}$$

Particularly, for k = 2 this is equivalent to require that

$$(\varepsilon^{j+2} - \varepsilon^{-j+2})(1 - \varepsilon^{-2}) - \varepsilon^{2-t+j+i}(1 - \varepsilon^{2r+2})(\varepsilon^{-2r+i-t+2} - \varepsilon^{-i+t-2}) = 0.$$

We distinguish the following two different cases:

$$(A): r = 0 \Rightarrow$$

$$0 = (\varepsilon^{j} - \varepsilon^{-j})(\varepsilon^{2} - 1) - \varepsilon^{2-t+i+j}(1 - \varepsilon^{2})(\varepsilon^{i+2-t} - \varepsilon^{-i+t-2}) =$$
$$= (\varepsilon^{2} - 1)(\varepsilon^{j} - \varepsilon^{-j} + \varepsilon^{4-2t+2i+j} - \varepsilon^{j}) \Leftrightarrow$$
$$\Leftrightarrow \varepsilon^{4-2t+2i+j} = \varepsilon^{-j} \Leftrightarrow 2 - t + i + j \equiv 0 \pmod{l},$$

$$(B): \quad 1 - r + i - t \equiv 0 \pmod{l} \Rightarrow$$

$$0 = (\varepsilon^{j} - \varepsilon^{-j})(\varepsilon^{2} - 1) - \varepsilon^{2-t+i+j}(1 - \varepsilon^{2r+2})(\varepsilon^{1-r} - \varepsilon^{-r-1}) =$$

$$= (\varepsilon^{j} - \varepsilon^{-j})(\varepsilon^{2} - 1) - \varepsilon^{1+j}(1 - \varepsilon^{2r+2})(\varepsilon - \varepsilon^{-1}) =$$

$$= (\varepsilon^{2} - 1)(\varepsilon^{j} - \varepsilon^{-j} - \varepsilon^{j} + \varepsilon^{2r+2+j}) \Leftrightarrow \varepsilon^{2r+2+j} = \varepsilon^{-j} \Leftrightarrow r + 1 + j \equiv 0$$

The above relation, together with (B), is equivalent to (4.18).

DEFINITION 4.5. We say that a $sl_{\varepsilon}(3)$ -module is nice if it is of type (i, j) with $2 + i + i \neq j \leq l$ or i = l - 1.

PROPOSITION 4.6. A nice representation is irreducible.

PROOF. Let us consider a representation of type (i, j) generated by a vector $v \neq 0$. Proposition 4.4 shows that if

$$2 + i + j \not\equiv t \pmod{l}$$

for any t such that $1 \le t \le j$, the representation $\operatorname{Ind}(V)$ contains no weight vector $x \ne \Rightarrow \alpha v, \beta F_1^{i+1} v$, with $\alpha, \beta \in C$, such that $E_1(x) = 0 = E_2(x)$. Now, since $E_1^l = E_{12}^l = E_2^l = 0$, the algebra generated by E_1, E_2 is nilpotent, therefore if $W \subset \operatorname{Ind}(V)$ is a subrepresentation of $\operatorname{Ind}(V)$, there exists a weight vector $w \in W$ such that $E_1(w) = 0 = E_2(w)$. This forces w to be a multiple scalar of v or of $F_1^{i+1}v$ and therefore $W = = \operatorname{Ind}(V)$.

REPRESENTATIONS OF $sl_a(3)$ at the roots of unity

Finally it is easy to verify that $2 + i + j \neq t$ for any *t* such that $1 \leq t \leq j$ if and only if $2 + i + j \leq l$ or i = l - 1.

PROPOSITION 4.7. If V is a $sl_{\varepsilon}(3)$ -module of type (i, j) and is not nice there exists a nice submodule W of V such that the quotient V/W is a nice representation.

PROOF. Let V be a representation of $sl_{\varepsilon}(3)$ of type (i, j) with $2 + i + j \ge l + 1$, $i \ne z l - 1$. Take $\overline{x} = F_2^{2+i+j-l}F_1^{i+1}v$, then \overline{x} is a weight vector killed by both E_1 and E_2 which spans a proper subrepresentation Φ of V, with basis $\{F_1^rF_{12}^tF_2^s\overline{x}: 0 \le r, t \le l-1, 0 \le s \le l-i-2\}$. Φ is irreducible, indeed it is the representation of type ([l-j-2], l-i-2), generated by $F_1^{j+1}\overline{x}$, which can be easily seen to be nice. (By [l-j-2] we mean the integer $k \in [0, l-1]$ such that $k \equiv l-j-2 \pmod{l}$. Finally the quotient V/Φ is the representation of type (l-i-2, i+j+1-l) generated by $F_1^{i+1}v$ and this is nice too.

THEOREM 4.8. Every subregular representation of $U_{\varepsilon}(sl(3))$ is a nice representation.

PROOF. Let us take a subregular representation W of $U_{\varepsilon}(sl(3))$. As the algebra generated by E_1 and E_2 is nilpotent, the set

$$B := \{ w \in W : E_1(w) = 0 = E_2(w) \}$$

is nontrivial; moreover K_1 and K_2 act diagonally on B. Take then $u \in B \setminus \{0\}$ such that $K_1 u = \varepsilon^x u$, $K_2 u = \varepsilon^y u$: u spans W since W is irreducible. Consider the subspace V of W generated by the set $\{F_2^r u: 0 \le r \le l-1\}$; V is stable under the action of F_2 , E_2 , K_2 , K_1 . In particular V defines a representation of the subalgebra \tilde{u} of $\mathcal{U}_{\varepsilon}(sl(3))$ generated by E_2 , F_2 , K_2 , $K_1^2 K_2$. Let V' be an irreducible \tilde{U} -submodule of V. V' is then an irreducible representation of $sl_{\varepsilon}(2)$, since $K_1^2 K_2$ is central in $\tilde{\mathcal{U}}$. We then see that V' is stable under K_1 as $K_1 = \lambda K_2^{(l-1)/2}$ with $\lambda \in C$.

Define $\operatorname{Ind}(V')$ as the representation induced by V' on $sl_{\varepsilon}(3)$ in the natural way. Then W is a quotient of $\operatorname{Ind}(V')$ since the set $\{F_1^r F_{12}^t \tilde{v} \colon \tilde{v} \in V', 0 \le r, t \le l-1\}$ is stable under the action of $E_{\alpha}, F_{\alpha}, K_j$ for any $\alpha \in Q^+, j = 1, 2$. Now, if $\operatorname{Ind}(V')$ is nice, $W = \operatorname{Ind}(V')$. Otherwise, by Proposition 4.7, $\operatorname{Ind}(V')$ contains a proper nice subrepresentation Φ such that $\operatorname{Ind}(V')/\Phi$ is nice. Write $W = \operatorname{Ind}(V')/T$ where T is a subrepresentation of $\operatorname{Ind}(V')$. Then, if $T \cap \Phi \neq \{0\}, T \supset \Phi$ so that $W = \operatorname{Ind}(V')/T \subset \operatorname{C}\operatorname{Ind}(V')/\Phi$, but since $\operatorname{Ind}(V')/\Phi$ is irreducible, $W = \operatorname{Ind}(V')/\Phi$.

On the contrary, if $T \cap \Phi = \{0\}$ then $W \supset \Phi/T \simeq \Phi$ so that $W = \Phi$.

COROLLARY 4.9. The dimension of any subregular representation of $U_{\varepsilon}(sl(3))$ is divisible by l^2 .

Acknowledgements

I would like to express my gratitude to Professor Corrado De Concini for the patient interest with which he followed this paper.

References

- [1] C. DE CONCINI V. G. KAC, Representations of quantum groups at roots of 1. Progress in Math., 92, Birkhäuser, 1990, 471-506.
- [2] C. DE CONCINI V. G. KAC, Representations of quantum groups at roots of 1: reduction to the exceptional case. International Journal of Modern Physics A, vol. 7, Suppl. 1A, 1992, 141-149.
- [3] C. DE CONCINI V. G. KAC C. PROCESI, Quantum coadjoint action. Journal of the American Mathematical Society, 5, 1992, 151-190.
- [4] C. DE CONCINI V. G. KAC C. PROCESI, Some remarkable degenerations of quantum groups. Comm. Math. Phys., 157, 1993, 405-427.
- [5] V. G. DRINFELD, Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258.
- [6] V. G. DRINFELD, Quantum groups. Proc. ICM, Berkeley, 1, 1986, 798-820.
- [7] W. HESSELINK, *The normality of closures of orbits in a Lie algebra*. Commentarii Math. Helvet., 54, 1979, 105-110.
- [8] M. JIMBO, A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69.
- [9] S. Z. LEVENDORSKII YA. S. SOIBELMAN, Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Comm. Math. Phys., 139, 1991, 141-170.
- [10] G. LUSZTIG, Quantum groups at roots of 1. Geom. Ded., 35, 1990, 89-114.
- [11] J. TITS, Sur les constants de structure et le théorème d'existence des algebres de Lie semi-simple. Publ. Math. IHES, 31, 1966, 21-58.

Dipartimento di Matematica Università degli Studi di Pisa Via Buonarroti, 2 - 56127 PISA