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Semiflows and semigroups 

Memoria (*) di EDOARDO VESENTINI 

ABSTRACT. — Given a compact Hausdorff space K and a strongly continuous semigroup T of linear 
isometries of the Banach space of all complex-valued, continuous functions on K, the semiflow induced by 
T on K is investigated. In the particular case in which K is a compact, connected, differentiable manifold, a 
class of semigroups T preserving the differentiable structure of K is characterized. 

KEY WORDS: Complex extreme point; Markov lattice operator; Cocycle; Banach-Stone theorem. 

RIASSUNTO. — Sistemi dinamici e semigruppi. Si considera un semigruppo fortemente continuo T di iso
merie lineari dello spazio di Banach delle funzioni continue, a valori complessi, su uno spazio di Hausdorff 
compatto K, e si studia il legame fra T ed il sistema dinamico continuo indotto da T in K. Nel caso in cui X 
sia una varietà differenziabile, si caratterizza una classe di semigruppi T che lasciano invariante la struttura 
differenziabile di K. 

A standard procedure in investigating a dynamical system (X, 0) acting on a set X 
consists in replacing (X, 0) by a semigroup T of linear operators defined in a Banach 
space intrinsically associated to the system. Historically, this approach was the main 
tool in the proof of the mean ergodic theorem, given by J. von Neumann in 1932, after 
B. O. Koopman had observed that a bijective map 0 of a measure space X onto itself, 
preserving a probability measure ju, defines a unitary operator T on L2(X, JU), whose 
action on any/e L2 (X, ft) is given by Tf = /o 0. This line of thought found its way into 
all chapters of measure theoretic dynamics and, later on, also into topological 
dynamics [5]. 

In all these instances, the investigation moves from a given dynamical system (X, 0) 
and builds around it a semigroup T of linear operators. This article deals with a sort of 
inverse problem, starting from a semigroup T and looking for a dynamical system 
(X, 0) whose associated semigroup is T. Of course, in such a general form the problem 
is so vague to be almost meaningless. What will be done here is much more specific and 
will only deal with a class of examples. Namely, starting with the Banach space C(X) of 
all continuous, complex valued functions on a compact Hausdorff space X, we will see 
how a semigroup of linear isometries of C(X) arises from a continuous cocycle on C(X) 
and from a semiflow of surjective continuous maps of X onto itself. 

In the particular case in which X is a compact, connected, differentiable manifold, 
we obtain a characterization of a class of semigroups of linear isometries of C(X) which 
preserve the subspace C00 (X) of all differentiable functions on X. 

(*) Gli argomenti contenuti in questa Memoria furono presentati nella conferenza del Simposio Mate
matico, tenutosi presso l'Accademia dei Lincei F8 febbraio 1996. 
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1. Let K be a compact Hausdorff space. A continuous map ip : K—*K defines a 
bounded linear operatore e £(C(K)) on the Banach space C(K) of all complex-valued 
continuous functions on K, endowed with the uniform norm, I f /E C(K), the value of 
Af at a point x e K is given by 

(1) Af(x)=f(jp(x)). 

The operatoryl is a Markov lattice operator (i.e. \Af\=A\f\ and^41^ = IR> where 1^ 
is the function equal to 1 at each point of K). Viceversa, for every Markov lattice opera
tor A e j£(C(K)), there is a unique continuous map ip : K—>K such that A is given by 
(1). The operatore is an isometry if, and only if, \p is surjective. But, even if tp is surjec-
tive, (1) is by no means the most general norm-preserving map of C(K) into itself. Ex
amples show, in fact, that there exist norm-preserving continuous maps of C(K) into 
C(K) which are not even linear and, a fortiori, are not represented by (1) [9]. 

A special feature of the operator A represented by (1) can be expressed in terms of 
extreme points. Let B(K) be the open unit ball of C(K), and let r(K) be the set of all 
complex extreme points of the closure of B(K). The set r(K) consists of all functions 
fe C(K) such that \f(x) \ = 1 for all x e K [9]. 

By (1), any Markov lattice operator A maps r(K) into r(K). Does this property 
- together with the surjectivity of ip - suffice to characterize linear isometries among all 
continuous linear operators on C(K)? 

An answer to this question is provided by the following result which was stated 
in [9] in a slightly weaker form than the one that is needed now, and which, - for this 
reason - will be re-obtained here. 

Let H and K be two compact Hausdorff spaces and let A e £(C(K), C(H)) be such 
that \\A\\ ̂  1 and 

(2) AI\K)cI\H). 

For any y e H, the map C(K) 3f*-^Af{y) is a continuous linear form on C(K). Hence, 
there is a unique regular Borei measure fiy on K for which 

Af(y) = lfd/iy:=(f,/*y). 

According to the following lemma [9], the measure juy is concentrated at a single point 
of K. 

LEMMA 1. For every y e H there exist a complex constant co(y ), with \<o{y)\ = I, and a 
point x E K such that 

(3) fxy = œ(y)ôX9 

where ôx is the measure with mass 1 concentrated at the point x; i.e.: (/, juy ) = co(y) f(x), 
forallfeC(K). 

The fact that the support of fiy is a singleton implies that the point x E K for which 
(3) holds is unique, and therefore co{y) is unique. Choosing/= 1^ one sees that co(y) is 
a continuous function of y E H. Letting x = tp(y), the continuity of the map ip :'H—>K 
is an easy consequence of the Urysohn lemma, and can be established as in [9]. 
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In conclusion the following theorem holds, that is essentially Theorem 1 of [9] (to 
which the uniqueness of co and ip is added). 

THEOREM 1. If A e £{C{K), C(H)) is such that ||/4|| ^ 1 and (2) holds, there exist a 

unique function a> e r(H) and a unique continuous map ip: H—>K such that 

(4) Af=co-(foip), 

i.e.: Af{y) = co(y) f(ip(y))yforallfE. C(K) and all y e H. Furthermore, A is a linear isom-
etry of C(K) into C(H) if and only if ip is surjective. 

The linear isometry A is surjective if, and only if, ip is a homeomorphism. On the 
other hand, a surjective isometry A (which is linear by the Mazur-Ulam theorem) clear
ly satisfies condition (2). Hence, Theorem 1 implies the Banach-Stone theo
rem [3]. 

Assume from now on, H = K. It may be worth noticing that a weaker condition 
than 

(5) Ar(K)cr(K) 

suffices to imply that a lattice operatore is a Markov operator. If A e £(C(K)) is a lat
tice homomorphism, there exist a function y e C(K) and a map %\K->K such that 
Af{x) = y{x)f{%{x)) for al l /e C(K) and all A; G K, and % is continuous in every point x G 
GK where y(x) * 0 [5]. Since \Af(x)\ = \y(x)\ |/(*(x))| and i l | / | (x ) = y(x)|/OfU))|, 
then \y(x)\=y(x) for all X G K , /.<?. y(K)cR+. If fer(K), then |4ftx)| = 
= y(x) l/OfOO) I = y(#). Hence, if 4 / e T(K), then y = 1K. Therefore % is continuous, 

Af — fo% for all / e C ( K ) , and A is Markov lattice homomorphism. But then, if 
feTXK), \Af(x)\ = 1 V X G X , I.<?. ^ / G ^ X ) . That proves 

LEMMA 2. I / i e £(C(K)) is a lattice homomorphism for which A r(K) Ci T{K) ^ 0, 
then A is a Markov lattice homomorphism. 

Therefore (5) holds. 

2. Let T: R+ —» £(C{K)) be a strongly continuous semigroup of linear isometries 
of C(K) such that 

(6) T(t)I\K)cI\K) V f ^ O . 

By Theorem 1, for every tsR+ there exist a unique continuous surjective map 
(j)t:K->K and a unique function ateT(K) such that 

(7) T(t)f=ar(fo<t>t) V / G K + , V / G C ( K ) , 

z>. 7 W ( x ) = atf((/>t(x)), for a U / e R + , / € C(K), x e l 
The fact that T is a semigroup implies that a0 = 1, 0O is t n e identity, and 

(8) o^ + h• (/o0^ + t2) = atl-(at2 o(/>tl)-(/o<^ o0 / 2) 

for all tlf t2 in J?+ and all / G C(K). Choosing/= 1K, then T(^)lx = a, , and 

(9) a/1 + /2 = a/1-(«/2°0/1) , 
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showing that the function a: R+ xK^>T={ÇeC: |£ | = 1 } mapping (t,x) to 
at(x) is a continuous cocycle. 

Since T is strongly continuous, for all x e K 

l im|K-l | | = limJ|rU)lK-lK|| = 0 
t | 0 / | 0 

(where || || denotes the uniform norm on C(K)). In view of (9), (8) yields/o0, i + / 2 = 
= f°<j>t1°</>t2>

 for al l /GC(X), i.e.: <t>tl +12 = <ptl <></>t2, V^, t2eR+. For ^ 0, let 
5(f) e £(C(K)) be defined by S(t) = cTtT(t), so that 

(io) S(t)f=fo4>t9 

for all / ^ 0 and all / e C(K), and 5: t*-*S(t) is a semigroup. For all x G X, 

lim (JU)/(x) - / ( * ) ) = lim (a,(x) T(t)f(x) -f{x)) = 0. 
/1 o • * | o 

Since X is compact, then 

Mm|lSU)/- / | | = 0. 
t i 0 

Thus, S : 1?+ —» j£(C(K)) is a strongly continuous Markov lattice semigroup, and, as a 
consequence, its infinitesimal generator D : CD(D) cC(K) —>C(K) is a deriva
tion [1]. 

Let X: Q(X)cC(K)^C(K) be the infinitesimal generator of T. Let Q(X) H 
fi 6&(D) * {0}, and l e t / * 0 be contained in (D(X) fi (©(D). Since, for all* G X and all 
t> 0, 

(l/t)(T(t)f-f)(x) = ((a,(x) - \)/t)S(t)f(x) + (l/t)(S(t)f-f)(x), 

and since lim S(t)f(x) =f(x), if /(#) ^ 0 then lim ((a,(x) - l ) / / ) exists, and 
* 4 o /1 o 

(11) Xf(x) = lim ((at(x) - 1 )//)/(*) + D/(x). 
/ I 0 

THEOREM 2. i/" (D(X) Pi (D(D) contains some f with f(x) ^ 0 at all points x EK (or, 
equivalently, if 1^ e 0Ê)(X) fi Q(D)\ then (D(X) = (D(D\ and there is a continuous func
tion j3: K^R such that 

(12) X = i/3I + D. 

Furthermore 

(13) at{x)=eifr'i*))* VteR+. 

PROOF. In view of what has been seen before, lim ((at(x) — l)/t) exists for all 
14 o 

XEK. Since |a /(x) | = 1, the limit is purely imaginary. By (11), setting 

(14) i/3(x) = lim((ai(x)-l)/t) 
t i o 

yields a continuous function /?: K —> R for which Xf = iff 4- Df. If g e ®(D), replacing/ 
by g in (11) shows that g G <D(X), whence O(D) c Q(X). The same kind of argument es
tablishes the opposite inclusion, and therefore Q(D) = (0(X). 
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By (9), for any t ^ 0 

,. at + bW-at(x) ah{(j)t{x))- 1 . . 
km =at(x)hm = iat(x)p{<pt(x)). 
h io h h io h 

Hence, for all x E K and all t ^ 0 the right derivative of at (x) exists and is continuous. 
Hence [2], t*-*at{x) is of class C1 on R+, and 

— at(x) =ip((/)t(x))at(x). 

This fact, together with the initial condition a0(x) = 1, yields (13) and completes the 
proof of the theorem. 

By (9), for t,seR+9 T(s)at = as
t(aio(j)s) = at + s. Hence, again by [2], ate 

e Q(X) for all / e R + if, and only if, / *-*at(x) is of class C1 on R+ . That proves 

LEMMA 3. # tf#<i cw/y if ate. <3)(X) ybr all t eR+ there exists a continuous function 
P-.K-^R for which (13) holds. 

The hypothesis of Theorem 2 is satisfied if X e JE(C(K)); in which case <D(D) = 
= C(K), and, by the closed graph theorem, D E JS(C(X)). But there are no non-trivial 
bounded derivations of C(K) [8] (*). As a consequence (f)t is the identity for all / ^ 0. 
By (13), at{x) = e

lt^x\ and the following lemma holds. 

LEMMA 4. If X E 4C(K)), flfew X = # I, OK/ T(/) = emx)I for all teR+. 

In particular T is the restriction to JR+ of a strongly continuous group of isometries 
of C(K). 

Let now S : R+ —» £{C(K)) be a strongly continuous Markov lattice semigroup of 
linear isometries of C(K), let D be its infinitesimal generator and let 0 be the continu
ous semiflow uniquely associated to S by (10). If /3: K —> R is a continuous function, the 
bounded perturbation X of D given by (12) generates a strongly continuous semigroup 
T. Defining a / using (13), then 

/ x _ i \ P(4>s(x))ds _ i\P(4>s{x))ds i \ MsM)ds _ 
at\ +t2 W' ~ e o ~~ e o e n ~ 

h t2 h t2 

_ ijp{<f>s(x))ds i\P((pn+s(x))ds _ i\p{<t>s{x))ds i\^Mt^x)))ds _ ( v / . vv 
— £ 0 ^ o — ^ o ^ 0 "" &t\ V#J Ot/2 VÇ̂ YI v^// • 

As a consequence, the semigroup generated by the right hand side of (12) and the 
semigroup defined by the right hand side of (7) have the same infinitesimal generator. 
That proves 

C1) Here is a direct proof of this fact, following essentially an argument given in [6] in a different 
context. Choose any r e (0, 1). Any function/G C(K) can be written 

/=/(*) 1K + (/-/(*) 1*)'(/-/(*) l K r r , 
where x is any point of X. If D is any bounded derivative of C(K), then 

(Df)(x) = [(f-f(x) lKYD((f-f(x) lKy-) + (f-f(x) lKy-'D((f-f(x) 1KY)1W = 0, 

for all x e K, whence Df = 0. 
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LEMMA 5. If a derivation D defines a strongly continuous Markov lattice semigroup of 
linear isometries of C{K), every hounded perturbation (12) of D defined by a real-valued 
continuous function j3 on K is the infinitesimal generator of a strongly continuous semigroup 
of linear isometries of C(K). 

This lemma will be instrumental in characterizing all bounded perturbations of X 
that generate semigroups of linear isometries of C(K). 

The infinitesimal generators of strongly continuous semigroups of linear isometries 
of a complex Banach space 8 have been characterized in [10] in terms of conservative 
operators. Let Z: (D(Z) c 8-» 8 be a closed, densely defined, linear operator. It was 
shown in [10] that Z generates a strongly continuous semigroup of linear isometries of 8 
if, and only if, Z is m-dissipative and, furthermore, conservative (i.e., for every z e 
e ®(Z), there is some continuous linear form v on 8 such that (z, v) = ||z||, ||v|| = 1 and 
dt(Zz, v) = 0). 

Going back to the infinitesimal generator X of the semigroup T of linear isometries 
of C(K), let Y = L + X be a perturbation of X by an operator L e £(C(K)), and assume 
that also the strongly continuous semigroup generated by Y consists of linear isometries 
of C(K). 

For every/G Q(X) = (D( Y), there is some continuous linear form X on C(K) such 
that 

(15) </,A> = |l/ | | , ||A|| = 1 
and dt(Xf X) = 0. Since, by the Lumer-Phillips theorem [7] applied to Y, di(Yf X) ^ 
^ 0, then di(Lf X) ^ 0 . Thus, the bounded linear operator L generates a contraction 
semigroup of C(K), and the latter inequality holds for all continuous linear forms X on 
C(K) satisfying (15). Applying now the result of [10] to Y, one sees that there is some 
continuous linear form /i on C(K) such that (/,/*) =.||/||, IMI = 1 a n d $i(Yf JU) = 0, 
i.e.: di(Lfju) + di(Xffi) — 0. The Lumer-Phillips theorem applied to X implies that 
di(Lf ju) ^ 0, and, in conclusion, di(Lf ju) = 0. The bounded operator L, being m-dis
sipative and conservative, generates a uniformly continuous group of linear isometries 
of C(K). Lemma 5 and Lemma 4 yield 

THEOREM 3. If X generates a strongly continuous semigroup T of linear isometries of 
C(K\ every bounded perturbation of X generating a semigroup of the same kind is expressed 
by ifSI + X, where (5 : K^>R is any continuous function. 

3. Sufficient conditions for the existence of a cocycle of class C1 will now be inves
tigated in the case in which K is a compact, connected, n-dimensional differentiable 
manifold of class C °°. 

Let C°° (K) cC(K) be the space of all complex-valued C°° functions on K. Let 
Q):K—>T and ip:K^>K be continuous functions. For any/GC(K) consider the 
function 

(16) K3x*-*ù)(x)f(i/>(x)). 
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LEMMA 6. If the function (16) is C00 whenever f is C00, then both co and I/J are C00. 

PROOF. Choosing/= 1K shows that a> is of class C °°. The differentiability of ip fol
lows when one chooses local coordinates on X as test functions / . 

Let A e £(C(K)) be defined by (4), where co:K-*T and ip:K-*K are continu
ous. 

COROLLARY 1. The functions co and \p are of class C00 if, and only if AC00 (X) c 
cC°°(X). 

Let D be a (non-identically vanishing) C °° vector field on X, and let 0 : R X X -> X 
be the C °° flow defined by D. The derivation D is the infinitesimal generator of the 
strongly continuous Markov lattice group S : JR--»«£(C(X)) defined by (10) for all 
t e R , / E C(X), x e K Furthermore, C °° (X) is the space of all differentiable vectors of 
the group S. Thus, C°° (X) is a core of D and S(f)C °° (X) e C °° (X) % e R . Viceversa, 
let 5 : R -» JE(C(X)) be a strongly continuous Markov lattice group satisfying this latter 
inclusion. Then a l l / e C00 (X) are differentiable vectors of the derivation D generating 
S, and therefore DpfeC°°(K) for allp = 1, 2, ... . That shows that D is a C00 vector 
field on X. 

LEMMA 7. If a: R X K-+T is a continuous cocycle such that at e C °° (X) ybr #// 
/ e R ; /fe function t*->at(x) is of class C°° o« R for all x eX. 

PROOF. For f0 E R and r > 0, let a: R—> [0, 1] be a C°° function such that 

a(t) = l l£\t-t0\^r, 

0 < a(t) < 1 if r < \t - tQ | < 2r, 

or(f) = 0 if | * -*o l ^ 2 r . 

In view of (9), 

j a / + J(x)a($)<& = a,(x) J as{(pt(x))o(s)ds, 

z.£. 

J a,(x)a(j-*)<& = {*,(*) J a,(0,(x))aOOiy. 
— 00 — 00 

Given £0 e R, there exist r > 0 and a neighbourhood U of £0 i*
1 R f° r which 

+ 00 

— 00 

whenever t e U. Differentiation with respect to £ E U shows that the function t »-» a, is 
of class C1 for all x E X, and that 

+ 00 + 0 0 ^ , v + 00 

- J a , (x )a ( j - / ) i r = a/(x) J (Da,)0/(x)aU)iy + —^—^ J a ^ ^ W l a d l à . 
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Iterating this computation, one shows that t*-*at(x) is of class C°° for all x eK and 
completes the proof of the lemma. In conclusion, the following theorem holds, which 
provides a characterization of a class of strongly continuous groups of isometries of 
C(K), which preserve r(K) and the differentiate structure of K. 

T H E O R E M 4. If the strongly continuous group T : R —* J £ ( C ( K ) ) of linear isometries of 

C(K) satisfies the condition: T(t)C °° (K) c C °° (K) for all t eR, then the infinitesimal gen
erator XofT is given by {12), where D is a C °° vector field on K, and j3: K-^Ris the C °° 
function defined by (14). Furthermore, C00 (K) is a core of X. 

Viceversa, if at e F{K) is a continuous cocycle such that at e C °° (K), and ifD is a C °° 
vector field on K, then T(t)C œ(K)cC°° (K) for all t E R. 
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