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Fisica matemat ica . — An abstract setting for boundary problems with affine symme

tries. N o t a ( * ) di T U L L I O V A L E N T , p resen ta ta dal Socio G . Grioli . 

ABSTRACT. — Two symmetries of affine type for any mapping acting between Banach spaces are de
scribed and studied. These symmetries translate certain structural properties of boundary value problems 
for differential operators to an abstract setting. 

KEY WORDS: Symmetries for operators; Affine representations of Lie groups; Boundary value prob

lems; Elasticity. 

RIASSUNTO. — Una formulazione astratta di problemi al contomo con simmetrie affini. Vengono descritte 
e studiate due simmetrie di tipo affine per un operatore agente tra spazi di Banach. Tali simmetrie traduco
no, in un contesto astratto, delle proprità strutturali di problemi al contorno per operatori differenziali, co
me viene mostrato attraverso vari esempi. 

PREFACE 

For a mapping A : UÇ X —> Y, with X, Y real Banach spaces and U an open subset 
of X, we consider two symmetries of affine type (in the sense that they are defined 
starting from two affine representations of a Lie group G - one on X and the other on Y 
- related by a linear mapping r: X—» Y, which, when A «describes» a boundary prob
lem, can have the meaning of a «trace mapping»). 

The second symmetry seems unlike the first one, because it involves the representa
tions of G on X and Y through their differentials and depends on an inner product on 
Y. Nevertheless, after proposing and discussing, in Sect. 3, a définition of «potential» 
for A with respect to r and an inner product on Y, in Sect. 4 we prove (see Theorem 
4.1) that the second symmetry is a consequence of the first one when A has a «poten
tial» and satisfies (2.5), and the representations of G on X and Y have two easily stated 
properties (one of which is expressed in a particularly simple manner using the notion 
of the derived algebra of a Lie algebra, and is trivially satisfied if the Lie group G is 
semi-simple). 

In Sect. 5 we examine closely a situation which is typical when the mapping A «de
scribes» a boundary value problem for a differential operator and r is a «trace map
ping». Finally, in Sect. 6 we present some relevant examples arising from the study of 
Neumann's problems, and, in particular, of the «traction problem» in linear and non
linear elastostatics. We observe that a consequence of Theorem 4.1 applied to Example 
2 in Sect. 6 is that for any hyperelastic material (without internal structure) the princi
ple of the material frame-indifference implies the symmetry of the Cauchy stress: how
ever, as we remark in Sect. 6, this fact can be directly proved without difficulty. 

In a subsequent article devoted to a perturbation problem in the presence of affine 
symmetries we shall be dealing with an equation of the type A(x) + eB(x) = 0, where 

(*) Pervenuta all'Accademia il 31 ottobre 1995. 
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A : U —» Y is an operator having the symmetries considered in this paper, B : U —> Y is a 
given (perturbation) operator, and £ is a parameter; we shall show that a crucial role is 
played by the second symmetry of A when the first symmetry is present, in order to 
prove existence theorems. 

1. PRELIMINARIES 

We shall deal with a mapping A: U ç X —» Y, with X, Y real Banach spaces and U 
open in X. Let us denote by C1(X) the (Banach) space of continuous, affine mappings 
from X into itself equipped with the norm 

^^IMO)|L + sup{|Mx)-^(0)|L:|HL^l}, 
where || • |L is the norm of X, and by £(X) the subspace of &(X) whose elements are 
(continuous) linear mappings. The symbols 6L(Y) and £(Y) have an evident, analogous 
meaning. 

In order to introduce affine symmetries on the operator A, we need to consider a 
Lie group G, and affine r ep re sen t a t i onsg^^o fGonX a n d ^ ^ o f G o n 7 (this 
means that g •-» Qg is a homomorphism of group G into the group of invertible elements 
of &(X), and g 1 - *^ is a homomorphism of group G into the group of invertible ele
ments of &( Y)). We will suppose that mappings g*-*Qg and g •-» Qg are of class C1 , and 
denote by v *-> E^ and v •->• Ry their differentials at the identity element e of group G; so 
v »-» i^ and ^ H» R^ are continuous, linear mappings from the tangent space Te G to man
ifold G ate into C1(X) and GL(Y), respectively. For any g e G, let /g be the linear part of 
Qg, and lg be the linear part of Qg, so that 

Qg(x) = Ig(x) + Qg(0), Qg(y)=7g(y) + Qg(0) 
for all x e X and y EY. The differentials at e of mappings g*-*lg and g •-» ̂  will be denot
ed by v "-> Ly and v^>Lv\ they are continuous, linear mappings from Te G into £(X) and 
£(Y)y respectively. As, for all v eTeG, x eX, and y e Y", 

£*(*) = (^É)exp(At;)U)L=o' ^ ^ ) = f ^ QexpW W h = 0 > 

we have 

(1.1) R , ( x ) = L , ( x ) + R , ( 0 ) , Rv{y)=Lo(y)+Rv(0). 

2. SYMMETRIES FOR OPERATOR A 

We shall consider symmetries for the operator A : U —> Y expressed by the follow
ing property: an affine representation gi~^Qgofa Lie group G on X, an affine representation 
gt-^Qg of G on Y, a continuous, linear mapping x\ X —» Y, and an inner product 
hi > yi ) ^ ^ I %yi on Y exist such that Qg(U) cU, Vg e G, and 

(2.1) QgoT = ToQgy V g e G , 

(2.2) A(Qg(x)) =Tg(A(x)), VgeG and V * e U , 

(2.3) A(x)mRv(r(x)) = 0, VveTeG and V X G U . 
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Note that from (2.1) it follows that, for any v eTeG, x E X and A E R 

Qe^(Xv) M * ) ) = *(Qap(to) M), 

which implies, after differentiating at X = 0, that 

(2.4) Rv(r(x)) = r(Rv(x)); 

thus (2.3) can be written in the form 

(2.3)' A(X).T{RV(X)) = 0, VveTeG and V X G U . 

Note also that, in view of (1.1), (2.3)' implies 

(2.5) A(x).r{Rv(0)) = 0y VveTeG and VxeU. 

We shall prove (see Theorem 4.1) that, if (2.5) holds and operatore has a potential 
with respect to r and the inner product • on Y (in a sense that we shall make precise), 
then (2.2) implies (2.3)' (and hence (2.3), if (2.1) holds) provided the representations 
gi-^Qg and gt->Qg of G have the following properties (2.6) and (2.7): 

(2.6) Tg{y1)*Tg(y2) =yi*y2 > Yg E G and V ^ , y2eY, 

(2.7) the derived algebra of {Lv:v sTeG} is pointwise dense in the subspace 

{Lv:veTeG} of £(X). 

Of course, in (2.7) TeG has to be regarded as a Lie algebra (with the Lie algebra struc
ture induced by the Lie algebra of the Lie group G). Obviously, condition (2.7) is ful
filled i£TeG coincides with its derived algebra; this occurs, for instance, when the Lie 
group G is semisimple (see, e.g., [3, p. 313]). 

3. POTENTIALS FOR A MAPPING A: UcX->Y 

In this section: X, Y are real linear spaces, U is any subset of X, r: X —> Y is a linear 
mapping, /3Y is an inner product on Y, ((H, /?H), cpH) is a Hilbert completion of 
( Y, /3y) (/>. H is a Hilbert space with inner product /3H, and cpH is a linear isometry of 
(Y, /?y) onto a dense subspace of H), and/H denotes the canonical isomorphism of H 
onto ints dual H' . 

We will say that a function/: H —» R is a potential for a mapping A: U —> Y w/ï& re
vert to r #W /?y if / is Gâteaux-differentiable and 

(3.1) JH°<PH°A=f'o<pHoT\U , 

where / ' is the Gâteaux-differential of /. 

REMARK 3.1. Let ((X, fiK ), ç?K ) fe another Hilbert completion of{Y, /?y ), /^yK £e /£e 
canonical isomorphism of K onto its dual K', and let <p he the canonical linear isometry of 

the Hilbert space K onto the Hilbert space H so that q> o cpK = cptì. Iff: H —> R is a poten
tial for A with respect to x and /?y, then also the function f ° cp\ K-+R is a potential for A 
with respect to r and fi y 

PROOF. Let f:H-*R be a potential for A with respect to r and f}Y> and let 
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g =foçp. Then 

g'(<PKÌy)) =f'((p(<PK(y)))o<p=f'(<PH(y))°<p, 

for ail J G Y , and hence 

{g' oçpKot){x) = / ' ( ^ W ) ) 0 ( ? , VxeX. 

Thus, in view of (3.1), we obtain, for xeU, (gr ocpK ox){x) =jH{cpH(A{x)))ocp. 
Therefore g is a potential for A with respect to r and (5Y (i.e., JKOCPK°A = 

= g' ocpHox\u) if and only if jH{cpH(A{x))) ocp =jK((pK(A(x))), Vx G U. 
Well, this equality is true because 

JH(<PH(y))°<p =JK(<PK(y))> Vy e Y, 

and the last equality follows from the fact that, for all k G K, we have 

\(ÌH(<PH(y))°<p)(k) =jtì(cpH(y))(cp(k)) = PH(cpH(y)ìcp{k))y 

t ( / K ( ? > i e ( 3 0 ) ) ( A ) = j M ^ ^ • 

In concrete cases arising when the pair (A,x) describes a boundary problem, r is 
one-to-one and x(X) is dense in Y when Y has the topology defined by the inner prod
uct pY (DUt n o t f° r the original topology of Y). In this situation we can find other, 
equivalent definitions of potential for A with respect to x and /? Y • To this end, we con
sider on X the inner product f}x defined by putting 

(3.2) /*x(*i,*2) =/*y(r(xi) , T (* 2 ) ) 

for all Xi, x2 e l , and we observe that to any Hilbert completion ((H, /?#), cpH) of 
(Y,f}Y) one can associate the Hilbert completion ((H,/?#), \pH) of (X,/?x) where 
^ H = <PH ° x\ conversely to any Hilbert completion ((H, /?# ), t/>H) of (X, /3X) one can 
associate a Hilbert completion ((H, /3H), cpH) of (Y", /?y) such that ipH = (pH or, by 
taking as cpH the continuous, linear extension to Y of the linear isometry x(x) ^ipnM 
from the dense subspace r(X) of (Y,f}Y) into (H,/?#). 

Now, iffH:H-^R is a potential for A with respect to r and /?y, and we set 

(3.3) fY=fH°<PH, 

then, denoting byy# and/y the Gâteaux-differentials of fn and/y, we have 

fY(r(x)) =fk(cpH(x(x)))o(pH , V X G X , 

and hence, as /H(çH (x(x))) =jH(q)H(A(x))), Vx e U, we obtain 

(3.4) / y ( r ( x ) ) = y H ( ^ H ^ U ) ) ) o ^ H , V X G U . 

Conversely, if a function/y: Y - ^ J R satisfies (3.4) and a Gâteaux-differentiable func
tion/#: Y—>R is related to/y by (3.3), then clearly/H o<pH o/I = /£ ocpH o r | y , />., 
fH:H->R is a potential for 4̂ with respect to r and /?y. 

Furthermore, iifH\H—^R is a potential for A with respect to r and /3y, and the 
function fx'.X—>R is defined by 

(3.5) fx=fHoipH, 
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then fx(x) =fH(ipH(x))oipH, V X E X namely (as ipH — cpH or), 

fxM =fH(<PH(ipW))°ipH , V x e X , 

which gives 

(3.6) fxM=jH(<PH(AM))otpHi V x e U . 

Conversely, if a function fx : X —> R satisfies (3.6) and a Gâteaux-differentiable func
tion / # : H->R is related to /^ by (3.5), then evidently// *s a potential for A with re
spect to T and /?y. 

Thus (when r is one-to-one and r(X) is dense m(Y, (iy)) anJ Gâteaux-differentiable 
function fx:X—>R satisfying (3.6) and any Gâteaux-differentiable function fY: Y^R 
satisfying (3.4) can be called a potential for A with respect to r and j5y. 

Often, when X and Y are function spaces, the pair ((H, /?#), V H ) is a functional 
completion of (X, fix), so that ^ H is the identity function from X onto a dense sub-
space of H. In this case the condition (3.6) takes the simpler form 

fx \u =JH°<PH°A . 

4. THE MAIN RESULT 

We are now in a position to prove the main result of this paper, which has been pre
sented in Sect. 2. 

THEOREM 4.1. Let X, Y be real Banach spaces, let U be an open subset ofX, let x\X-^ 
-*Ybea continuous, linear mapping, let {yx, y2 ) •-» y\ • y 2 be an inner product on Y defining 
a topology weaker than the topology of Y, and let A: U —>Y be a C ̂ mapping. If A admits 
a potential with respect to r and the inner product • having a symmetric second Gâteaux-
differential, and (2.1), (2.5), (2.6), (2.7) hold, then symmetry (2.2) implies (2.3). 

PROOF. Let/: H —> R be a potential with respect to r and • having a symmetric sec
ond Gâteaux-differential/", and let (2.1), (2.2), (2.5), (2.6), (2.7) be fulfilled. From 
(2.2) it follows that, for all v e TeG, X e R, and xeU, A(gexp{Xv) (x)) = lexpixv) (A(x)), 
which yields 

(4.1) A'(x)(Rv(x))=L!:(A(x)). 

On the other hand, using (2.6) we obtain y2 •Texp(xv) (ji ) = J\ •Lp(^) (yi ) f o r all 1; e 
E.TeG, yìy y2^Y and A G R, and this easily gives 

(4.2) Lv (A(x)) • r(x1 ) = -Lv (r(x1 )) •A(x) for all v E TeG, x e U , and xxeX. 

From (4.1) and (4.2) it follows, for all v e TeG, x e U", and x ^ X , 

A'(x)(Rv(x)).r(x1)= -LArix^.AM, 

namely, by (2.4), 

(4.3) A'(x)(RvM)'T(x1)= -r(Lv(x1)).A(x). 

Since, in view of (3.1), 

JH°<PH°A'(X) =/"(<PH(r(x)))oç9Hor, Vxe U, 
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we have, for any x eU and ^ , £2
 G X> 

A'{x)(è1).è2 = pH(4>H(A'{x)(£l)),<pH(i2)) = 

= )3H(yH-1(/"(ç'H(rW)))(<p„(r(§1))),<pH(f2)) = 

= (f"('PH(r(X)))(<PH(r(ê1))))(q}H^2)), 
where PH denotes the inner product on the Hilbert space H, qpH is a linear isometry of 
(Y, (in) onto a dense subspace of H, and/H denotes the canonical isomorphism of H 
onto its dual (see Sect. 3). Thus, for any x eU and any vx, v2e TeG, we have 

{ A' (x)tf^ (*)).TCR,, (*)) = ( ( / " (<pH(r(x)))){cpH(r(^2(*)))))(?«(r(i^ (X)) ) ) , 

and hence 

(4.4) A ' (xKK, (*)). T(R„2 (*)) = A ' (x)(R„2 (x)). rtf?,, (*)), 

because 

( / " (cpH(r(x))(g>H(y, )))(<?„(y2 ))) = ( / " (ç>H(r{x))(q>H(y2 )))(?>„(y, ) ) ) , 

for any X G U and any yx, ^2 G y . 
Combining (4.3) and (4.4) we obtain A(x) •r((LVlLV2 — LV2LVl )(x)) = 0 for any 

x e U and any z^, v2 G Tf G. Then, in view of (2.7), we have 

A(x) • T(L^ (X)) = 0 , Vx e U and Mv eTeG , 

and this implies (2.3)' because of (2.5). To conclude the proof it is sufficient to recall 
that, by (2.1), properties (2.3) and (2.3)' are equivalent. • 

5. REMARKS ON THE CASE WHEN OPERATOR A DESCRIBES A BOUNDARY PROBLEM 

Mapping A can describe a boundary value problem for a differential operator, as we 
shall see in the next section. In this case y is a product of Banach spaces, say Y = YiX 
X ... X Yr, and spontaneously there are Banach spaces Xx, ..., Xr in each of which X is a 
dense subset, and for each/ = 1, ..., r there is a continuous, linear mapping ry from Xj 
onto Yj. In this section we place ourselves in this situation, and we put r(x) = 
= (xj (x))j = it.<t) r Vx G X. The meaning of r is that of a «trace mapping». Furthermore, in 
concrete cases related to boundary value problems for differential operators the follow
ing facts occur: 

(/) X, Xj, ..., Xr, y , Yx, ..., Yr are spaces of Rn-valued functions (for some n). 
A norm || • || is assigned on the linear space of real valued functions that are the n com
ponents of the elements x of X, and one considers on X a norm defining the product 
topology. A norm on Xx, ..., Xr, Y\, ..., Yr is chosen in a similar way. 

(it) X is invariant under composition with all affine mappings from Rn into 
itself. 

(Hi) If an element x of X takes its values in a one-dimensional, linear subspace of 
Rn, then ti(x)> ...,Tr(x) take their values in that subspace. 
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(iv) The affine representation g >-» Qg of G on X arises from an affine representa
tion g*->ag oi G on Rn m. the following way: Qg(x) = ag ox. 

When this occurs it is easy to see that, for every g e G, Qg remains continuous (and 
hence a homeomorphism) also when the linear space X is equipped with the topology 
defined by each of the seminorms x *-» \\tj (x)\\Yj. , / = 1, ..., r, and also with the topology 
induced on X by that of each Xj,j = l, ..., r; thus Qg can be extended to an affine 
homeomorphism Qg1 from Xj onto itself, and, for each g e G and/ = 1, ..., r, there is 
Cj{g) G JR such that 

\\rj(lg(X))\\Yj^Cj(g)\\rj(X)\\Yj, V x e X . 

Then, putting for each (xJ)J = 1 . . .^eXj X ... XX, 

5 ( ( r , V ) ) y - i , ) = ((ty° £)(*' ')),•-!,.. . , , , 

it is easy to verify that /g is a one-to-one, continuous, linear mapping (and hence a linear 
homeomorphism) from Yx X ... X 7 r onto itself such that lgot = tolg. Oi course, lg is 
the linear part of the affine mapping Qg from Yx X ... X Yr into itself defined by 
putting 

Qg((Tj(xJ))j = it.mmtr) = ( (r yo^')(*0)y = 1,...,, 

for all (xy)yai r e X ! X ... x X r 

In conclusion: if the conditions (/'), («), («ï) ^^ satisfied, then for every representation 
g*->QgofG on X of the type described in {iv) there is an affine representation g^>Qgof G on 
Y which satisfies (2.1). 

6. EXAMPLES FROM NEUMANN'S PROBLEMS 

In this section we present some examples of concrete operators A satisfying the 
symmetry assumptions (2.1), (2.2) and (2.3); they arise from the study of Neumann's 
boundary problems of the divergence type, in particular from the treatment of the 
«traction problem» in finite elastostatics and in linearized elastostatics. 

To this end, let us denote by Mm x n the set of real m X n matrices, by Mn the set of 
real n X n matrices, by Mf the set of Z e Mn such that det Z > 0, by I the unit element 
of the ring M„, by Sym„ the set of symmetric elements of M„, by Skew» the set of skew 
symmetric elements of M„, and by 0 * the set of elements Z of M / such that ZT = 
= Z - 1 , where ZT is the transpose of the matrix Z. 

Bearing Neumann's problems for second order differential operators in mind, we 
make the following two choices of the spaces X, Xj, Yj considered in the previous 
section: 

X=Wk + 2'p(Q,Rm), 

X2 = Wk + l>p{QyR
m)y 

Y2 = Wk + 1-1/p>p(dQyR
m), 

X = Ck + 2>x(Q,Rm), 

XI = Yl = Ck'x(QyR
m)i 

X2 = Ck + 1>x(Q,Rm), 

Y2 = Ck + 1>x(dQ,Rm)> 
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where Q is a sufficiently smooth, bounded, open subset of Rn, and 1 <p eR, A G 
e]0, 1[, and/>(£ + 1) > n. They are spaces of Revalued functions; their definitions and 
properties can by found, for instance, in Valent [2]. For both choices of these spaces, 
we take as x i : Xx —> Y± and r2:X2^>Y2 the functions defined by putting, for any Xi G 
G. Xx and x2 e X2, 

T1(x1)=X1, *2 (*2 ) = *2 Ufl > 

and we take as a completion of Yx X Y2 the pair ((H}PH), q>H), where H is the 
product 

L2{Q,Rn) xL2(3QyR
n), 

cpH is the identity function from Yx X Y2 into H, and /?H is the inner product on H de

fined by 

PHÌ(yi,y2)>(yi,y2)) = \yi(t)-yi(t)dt + jy2(t)-y2(t)doy 

Q dQ 

with • denoting the inner product on Rn. Thus, by (3.2), we have 

Px(x\>x2)= \x1(t)'x2(t)dt + I x1(t)'x2(t)do9 Vxx, x2eX. 
Q dQ 

Moreover, we take as U the set of orientation-preserving diffeomorphisms of Q on
to a subset of Rn belonging to X. We observe that, since X is continuously embedded in 
Cl(Q, Rn), U is open in X (cfr. [1, Ch. 2, Th. 1.4]). 

Here, we deal with a (Neumann) operator A:U ->Y1X Y2 of the form 

(6.1) A(x) = (-divS(x),S(x)\dQv), 

where v is the outward, unit normal to dQ and S(x) is the mapping from Q into Mm x „ 
obtained from a given smooth function s: Q X Mn^MmXn by setting 

(6.2) $(*)(/) = j(f, &(/ ) ) , V; G Q , 

with Sx the gradient of x. (In Valent [2, Chapter II], it is proved that, actually, A maps 
X into Yi X y2 f° r both previous choices of the spaces X, Yx, Y2 > provided s and .Q are 
sufficiently smooth). 

EXAMPLE 1. We take as G the group of translations of Rn and define gg, Qg for any 
g G G and r by putting 

(6.3) ft(*)=,g°*, Qg(y\>y2) = (gQyi,g°y2), r(x) = (x,x\dQ) 

for allx GX and (3^ j 2 ) G ^ i x ^ 2 - Then conditions (2.1) and (2.2) are evidently satis
fied. Also condition (2.3) is satisfied, by virtue of the divergence theorem; indeed, 
since Te G is the set of constant functions from Rn into itself and F^ (x) = v, Vx G X and 
V ^ G T ^ G , condition (2.3) becomes 

- Jdiv5(x)+ J$(*)v = 0, VxeU. 
Q dQ 

EXAMPLE 2. Let m = n. Then mapping A defined by ((6.1), (6.2)) is the («-dimen-
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sional version of the) finite elastostatics operator. In the physical context, Q represents a 
reference configuration of an elastic body and function x represents a deformation of 
the body, while function s defines the elastic response in the sense that s(t, dx{t)) is the 
first Piola-Kirchhoff stress at point t when the body is deformed by x. In accordance 
with the principle of material frame-indifference, and the balance of angular momen
tum we suppose that 

(6.4) s(t, RZ) = Rs(t, Z) , VU, Z, R) e Q X M„+ X 0+ , 

(6.5) s(t, Z)ZT= Sym„ , V(f, Z) G Q X M„+ . 

In this example we take as G the group of isometries of Rn {i.e., functions from Rn into 
Rn of the type y •-> c + Ry, with c eR and R e 0 * ), and define r and Qg, ^ for each 
isometry g of R" as in (6.3). 

It is evident that (2.1) holds and that (2.2) follows from (6.4) (combined with (6.1) 
and (6.2)). We now show that (6.5) (combined with (6.1) and (6.2)) implies symmetry 
(2.3). Since TeG is the set of (affine) functions v: Rn -> Rn of the type v(t) =c + Wt, 
(t e Rn ), with c eRn and W G Skeww, and Rv (x) =voxy\/v eTeG and Vx G X, condi
tion (2.3)' (equivalent to (2.3)) says that 

- ï((àivS(x))(t))-(c + Wx(t))dt+ [ (S(x)(t)v(t))-(c + Wx(t))do = 0 
Q 3Q 

tot aìlc eRn
 yW E Skew„ and x eX, where • denotes the inner product of Rn . In view 

of (6.2) and the divergence theorem, this condition becomes 

whx(t)s(t,dx(t))Tdt = 0, ViFGSkew, and V X G X , 
Q 

namely 

dx(t)s{t, dx(t))Tdt G Sym„ , Vx G X . j' 
Then, in order to conclude our proof, it suffices to observe that the last condition is sat
isfied if (6.5) holds. 

REMARK. Suppose that there is a C^functions w: Q XMn^R such that 

(6.6) s(t9 Z) = dzw{t, Z), V(/, Z) G Q X M + , 

and set 

(6.7) fx(x)= lw(t,dx(t))dt 
Q 

for x G U. Consider on X the inner product j3x, and observe that the Gateaux-differen
tial ft (x) of fx at 3c is (the continuous, linear form on (X,f}x)) defined by 

f'(x)(x)= lw(t,dx(t))dx(t)dt, ( X G X ) , 
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namely, in view of the divergence theorem, by 

f'(x)(x) = - ^ ({divS(x))(t))*x(t)dt + J {S(x)(t)v(t))-x(t)do. 
Q dQ 

Then 

(6.8) £(x)=jH{A(x~))oT, W E U , 

where / H is the canonical isomorphism of H onto its dual defined by putting 

JHÌyi>y2)(yi,y2) ^pH^uyihiyuyi)) 

for all (y1,y2), {y\,y2) eH. Note that, in the particular case we are discussing, (6.8) 
coincides with (3.6), because here q)H(A(x)) = A(x) and ipH = x. Thus, when (6.6) 
holds, the function fx defined by (6.7) is a potential for A with respect to x and the inner 
product f}H on 7 1 x y 2 j (see Sect. 3). Consequently, in view of Theorem 4.1, symmetry 
(2.2) implies (2.3) when (6.6) holds. On the other hand, this is in agreement with the 
fact that symmetry (6.5) is a consequence of (6.4) when (6.6) holds. In order to see that 
(6.4) implies (6.5) provided (6.6) holds, we observe that, for any fixed teQ and 
Z e M,, from (6.4) it follows that 

s{t, (exp W) Z) = (exp W)s(t, Z), Vì^ E Skew, , 

which easily gives dzs(t, Z)ZW= Ws(t,Z), Vl^sSkew, , and hence 

dzs(t, Z)ZWZT = Ws(ty Z)ZT, W E Skew, . 

Now, if (6.6) holds, this implies Ws{t, Z)ZT = 0, Vw E Skew,, namely (6.5), because 
dzs(t,Z) E Sym, by (6.6), while ZWZT E Skew,. 

EXAMPLE 3. Let m = n, and 

(6.9) S(x) = \ 2 sijhkdkxh 

where x^ is the h-th component of the Revalued function x, and the s^ are given real-
valued functions defined on Q such that 

(6.10) Sijhk = hkij> 

(6.11) sijhk = $jihk • 

In this case, the mappings! defined by ((6.1), (6.2), (6.9)) is the («-dimensional version 
of the) linear elastostatics operator. Functions sijhki (i,j,h,k = 1, . . . ,«) , having the 
properties (6.10) and (6.11) can be obtained from the M,-valued function 
s( = (Sjj)ij = i,...,,) in Example 2 by putting sijhk{t) = dZbks#(t, I); indeed, symmetries 
(6.10), (6.11) follow from the symmetries (2.2) and (2.3) of s. Here we take as G the 
tangent space at the identity function from Rn into itself to the manifold of isometries 
of Rn; thus G is the (additive) group of (affine) functions g: Rn —»R* of the type 
g(t) = c + Wt, (t E Rn ), with c sRn and WE Skew,. Furthermore, we consider the 
(affine) representations g*-*Qg of G on X and ^ ^ of G on ^ X Y2 defined by 
putting 

Qg(x) =x+g\â , Qg(yi,y2) = {yi+g\â>y2+g\da)' 
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Then (2.1) holds with x defined by r(x) = (xy x \ dQ ), (x e X). Here e - 0, and R» (x) = 
= z; for all* E Xand allz; eTeG = G; moreover lv {ji, y2 ) = (j i , 3>2 ) for all*> e TV G and 
all (3;! j 2 ) G 7 1 x y 2 . Thus (2.2) becomes ,4(x + g\Q) = A(x)y Mg E G and \/x EX, 
namely ^4(^|^) = 0, Vg E G; this condition is satisfied, for, in view of ((6.10), (6.11)), 
we have s^u = sijkh and hence S(g \Q ) = 0, Vg E G. As regards condition (2.3), we ob
serve that here (2.3)', which is equivalent to (2.3), becomes 

- f ((div5(x))U))-(^ + Wt)dt + f (S(x)(t) v(t))-(c + Wt)do = 0 
i2 dQ 

for all x E X, c E 1?" and W E Skew„ (where • denotes the inner product onR") , and we 
note that, by the divergence theorem, this condition means that, for all x E X, the 
matrix 

2 \sijhk{t)dkxh{t)dt\ 

is symmetric. Thus (2.3)' is a consequence of (6.11). 

7. CONCLUDING REMARKS 

In this article our intention is to present and analyze the framework within which 
next papers of the present author devoted to the local analysis of solutions of perturba
tion problems with affine symmetries could find their natural context. In such papers 
we shall consider an equation of the form F(x, e) = 0 with F a mapping from X X R 
into Y such that F(% 0) has the symmetries described and discussed here. As a first step 
we shall deal with a mapping F affine in e, and hence with an equation of the 
type 

(7.1) i4(x) + eB(x) = 0 , 

where A and B are given mappings from X into Y9 and A has the symmetries considered 
in sect. 2. 

We remark that, when A is the finite elastostatics operator defined in Example 2 in 
the previous section the meaning of B is that of a loading operator. An interesting 
example of (loading) operator B = (BlyB2) is the following: 

(7.2) 
\Bl(x)(t)=bl(t,x(t)ydx(t))y tsQy 

B2 (x)(t) = b2 (/, *(/), (cof dx(t)) v{t)), tedQy 

where cof dx(t) is the matrix of cof actors of the matrix dx{t) and 

b1:QxRnxMn^Rn
 y b2:dQxRnXRn->Rn 

are given functions. Observe that (cof dx(t)) v(t) is an element of Rn parallel to the nor
mal to the boundary of x{Q) dXx{t)y and that example (7.2) includes the simple but sig
nificant case when B describes the load which acts on a heavy elastic body submerged 
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in a quiet, homogeneous, heavy liquid; in this case 

'Bi(x)(t)=/ti(t)u, teQ, 

B2 (x)(t) = -pc2 ((*(/)•«) cotdx{t)) v(t), / e dQ , 

where u is a fixed element or R3 with \u | = 1, /zx is a real-valued positive function de
fined on £2, //2 is a positive constant, and • denotes the inner product o n R 3 . 

Only the case oidead loadings {i.e. the case when B is a constant operator) has been 
completely studied from the point of view of the local existence and bifurcation analysis 
(see [1, and references therein]). 

In a subsequent paper we succeed in associating to any abstract (perturbation) op
erator B, at any (x0, g0 ) G X X G, certain linear subspaces of Te G that serve to discrim
inate situations of essential singularity from those in which the singularity is apparent. 
Moreover, a local existence theorem is proved for the equation (7.1) when A possesses 
the symmetries considered in this article. Thus a wide variety of those perturbation 
problems with symmetries where boundary operators appear will be treated in a unitary 
way. In particular, such theorem applies to the perturbation problems arising, in finite 
elastostatics, when one deals with loadings which depend on the unknown deformation 
x in a general manner (live loadings), as in example (7.2). 
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