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Meccanica. — Structural discontinuities to approximate some optimization problems 

with a nonmonotone impulsive character. Nota di A L D O BRESSAN e MONICA MOTTA, pre

s e n t a t a ! * ) da l Socio A. Bressan. 

ABSTRACT. — In some preceding works we consider a class Otf of Boltz optimization problems for La-
grangian mechanical systems, where it is relevant a line / = /r(.}, regarded as determined by its (variable) 
curvature function y(-) of domain [sQ, sx]. Assume that the problem & e 06* is regular but has an impulsive 

monotone character in the sense that near each of some points ê1 to £vy(') is monotone and \y' (*)| is very 
large. In [10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify £P 
into a structurally discontinuous problem (P. This is analogous to treating a biliard ball, disregarding its elas
ticity properties, as a rigid body bouncing according to a suitable restitution coefficient. Here the afore
mentioned treatment of i? is extended to the case where its impulsive character fails to be monotone. Let 
cr>Q to cr>mr be the successive maxima and minima of y(-) or -y(- ) near $r{r = 1, ..., v). In constructing the 
problem &, which simplifies and approximates &y as well as in [10] it is essential to approximate /r(.) by 
means of a line /c(.} with c(') discontinuous only at dx, ...,$v and with \c' (•) | never very large; furthermore 
now we must take the quantities cr> 0 t o cr> mr into account, e.g., by adding a «nonmonotonicity» type at Sr, 
which vanishes in the monotone case {r — 1, ..., v). Starting from[10] we extend to the afore-mentioned 
general situation the notions of weak lower limit J* of the functional to minimize, extended admissible process 

(which has an additional part in each [cr,,-_i,c,.f/]) and extended solution of the problem £P, or better 
(&v; <rr !, ..., o"r>Wr) where cr, z- = cr>i — cri-1 {i = 1, ..., mr; r = 1, ..., v). In the general case we consider 
the extended (impulsive) original problem and the extended functional to minimize. This has an impulsive part 
at each of the points $t to £v, as well as the differential constraints, complementary equations, and Pontrja-
gin's optimization conditions. Besides the end conditions at s0 and sly there ate junction conditions at 8t to 
Sv. In the general case being considered we state a version of Pontrjagin's maximum principle and an exis
tence theorem for the extended (impulsive) problem. We also study some properties of J* , e.g. when J* is a 
weak minimum. In particular, within both the monotone case and the nonmonotone one, we show that the 
quantity ]*, defined as a certain lower limit, equals the analogous limit; and this is practically a necessary 
and sufficient condition for the present approximation theory, started in [10], to be satisfactory. 

KEY WORDS: Analytical mechanics; Lagrangian systems; Control theory. 

RIASSUNTO. — Discontinuità strutturali per approssimare certi problemi di ottimizzazione con carattere im
pulsivo non monotono. In precedenti lavori abbiamo considerato una classe 0& di problemi di ottimizzazio
ne di Boltz per sistemi meccanici Lagrangiani, nei quali è rilevante una linea / = /r(.), considerata come de
terminata dalla sua funzione (variabile) di curvatura y(') di dominio [s0 , ^ ] . Il problema & e OtP sia regola
re ma abbia carattere impulsivo monotono nel senso che y(*) sia monotona e con |y ' (•) | molto grande vicino 
a ciascuno di alcuni punti $lt ..., £v. In[10] abbiamo costruito un procedimento entro la teoria del control
lo impulsivo, atto a semplificare & in un problema strutturalmente discontinuo S>. Ciò è analogo al trattare 
una palla da bigliardo, anziché per es. con la teoria dell'elasticità, considerandola come un corpo rigido rim
balzante secondo un opportuno coefficiente di restituzione. Qui estendiamo la suaccennata trattazione 
in [10] al caso che il carattere impulsivo di & sia non monotono. Siano cr0, ..., cr >mr i successivi massimi e 
minimi di y(*) o di — y(*) nella vicinanza di Sr{r = 1, ..., v). Nel costruire il problema £P semplificante e ap
prossimante £P, come in [10] è ora essenziale considerare una linea lc{.) approssimante ly{.) con c(') disconti
nua solo in $!, ..., Sv e con \c' (•) | mai molto grande; inoltre ora si deve tener conto delle suddette quantità 
crto, ...,cr>m per es., attraverso il «tipo di non monotonia» in Sr, che svanisce nel caso monotono 

(*) Nella seduta dell'11 marzo 1995. 
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(r — 1, ..., v). Partendo da[10] estendiamo alla suddetta situazione generale le nozioni di estremo inferiore 
debole J* del funzionale da minimizzare, processo ammissibile esteso (che ha parti addizionali in [crj_ i, cr> J ) 
e soluzione estesa del problema #>, o meglio (#>„; 07 ; 1 , ..., o-r Wr) ove 07̂ • = crì• — cri_1 (/'= 1, ...,mr; 
r = 1, ..., v). Nel caso generale consideriamo pure il problema originale (impulsivo) esteso e 'A funzionale esteso 
da minimizzare. Questo ha parti impulsive nei punti £1? ..., Sv, al pari dei vincoli differenziali, delle equa
zioni complementari e delle condizioni di ottimizzazione di Pontrjagin. Oltre alle condizioni ai limiti in sQ ed 
sl vi sono condizioni di giunzione in S1, ..., £v. Nel detto caso generale enunciamo una versione del principio 
di massimo di Pontrjagin e un teorema di esistenza per il problema (impulsivo) esteso. Studiamo anche al
cune proprietà di / * , tra l'altro quando esso è minimo debole. In particolare, nel caso monotono o no, mo
striamo che la quantità / * , definita come un certo limite inferiore, eguaglia l'analogo limite; e ciò è pratica
mente una condizione necessaria e sufficiente affinché la presente teoria di approssimazione, iniziata 
in [10], sia soddisfacente. 

1. INTRODUCTION 

In [10] we consider a certain class 0(P of Boltz optimization problems that can be 
represented by means of a differential manifold, where it is relevant a line / considered 
as determined by its (variable) curvature /(•) that has the arclength as argument and 
the domain t 0 ? ^ i ] (1). 

Let & be a regular problem in 0& for which in particular y ' (•) is continuous; but let 
it have a monotone impulsive character in that \y' (*)| is very large near each among 
some points 8X to Sv and /(•) is monotone there. In [10] we show a procedure of impul
sive control theory, useful to approximate and to simplify & into a structurally discon
tinuous problem £P: we replace /(•) with a convenient function <;(•), that together with 
c ' (•) is piecewise continuous and has at most the discontinuities <jr — c($* ) — c(â~ ) at 
* r ( r = l , . . . ,v)(2). 

In the present paper we extend [10] to the case when tP's impulsive character fails 
to be monotone near some £,. We do this rather quickly - practically without using any 
corresponding auxiliary problem & such as (3.19-20)^ for rj = 0 in [10] - by means of a 
process which is based on the (results obtained just in the) monotone case and turns 
out to be a limit process - see P3.6 (a). 

Thus, in order to solve the problem tP (or & ) in this general case, we first put v = 1 
and 8 = Sx, we assume that | y' (•) | is very large only in [$, â + £0]>

 a n d we approxi
mate the given problem & by means of a monotone impulsive problem, say &j, with 
v = m and(#!, ..., Sv ) replaced by d — (d\, ..., dm) where S = dx < d2 < ... < dm < â + 

(*) In [3] to [5] Aldo Bressan started a systematic (non linear) application of control theory to Lagran-
gian mechanical systems, by using coordinates as controls. This is based on the purely mathematical pa
per [1] (extended by [2]). A. Bressan's afore-mentioned work has been further developed by himself and 
other researchers: F. Rampazzo, M. Favretti, M. Motta and B. Piccoli - see [6-17]. The present paper be
longs to this research line. 

(2) To associate to tP the discontinuous problem ff is analogous to treating a billiard ball, unlike using, 
e.g., the elasticity theory, by considering it as a bouncing rigid body with a fixed restitution coefficient (that 
can be determined only approximately). [10] has been made in view of applications to any mechanical La-
grangian system belonging to the class introduced in [6, sect 5], say r5, or to its extension r defined 
in [9]. 
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+ s0 . Briefly speaking, we consider the discontinuities a, = Q ( ^ + ) - cd{df ) (i -
= 1, ...,m) of the corresponding curvature function Q ( - ) (with <JJGJ-I < 0 for y = 
= 2, ...,m); and we let i w tend to è + , keeping cr x to a OT fixed. By means of this limit, in 
section 3 we determine, up to a small arbitrariness, a new curvature function, say c(%), 
with a first order discontinuity only at S; and we extend to the present case the defini
tion of the weak infimum J* of the functional to minimize. Furthermore in section 4 we 
introduce (for v = 1) suitable extended admissible processes, which have some additional 
parts in the intervals [c(df ), c(dt

+ )] (/ = 1, ...ym), as well as the extended solution to 
cP. In effect we also consider an extended original problem with an extended functional to 
minimize. This has at d some impulsive parts (connected with the above intervals) as well 
as the differential constraints, the complementary equations, and Pontrjagin's opti
mization conditions. In section 4 we also state (for v = 1) the PMP (Pontrjagin's maxi
mum principle) with border and junction conditions. In sections 5-6 the above results 
are briefly extended to the general nonmonotone case with v ^ 1. In section 6 an exis
tence theorem for the solution to the extended problem is also considered. 

In accord with what was said in [10], we write a well posed extension of the opti
mization problems, considered in [10] within the monotone case, to the nonmonotone 
one; to do this we must add e.g. the nonmonotonicity type (o^ 2 > • • • > ° V , mi ) being consid
ered at each discontinuity point £,•(/ = 1, ..., v). Any change of it generally affects the 
solutions. Furthermore in the monotone case (for £,) it becomes empty. Therefore 
in [10], where only this case is dealt with, the above type is not mentioned explicitly; 
while here - see sections 4 to 6 - we speak of problem (£PV; aft lf ..., ar Wr) instead 
of (P. 

Let us briefly add, first, that the afore-mentioned weak infimum / * is defined 
in [10] by considering a certain functional / * depending on a curvature function ^ ( - ) 
(rj e R) that is linear in the small intervals [8it £/ + 77 J (/ = 1, ..., v); then/* is identi
fied with the lim inf J* for rj —> 0+ . In Remark 2.1 we briefly show on the basis of [10] 
that / * = lim J* ; and the existence of such a limit is basilar for the possibility of simpli
fying the given (regular) optimization problem into the impulsive problem £P hinted at 
above. 

Second, in[10, sect.5] the meaning of/* is enriched by showing that the above 
^('Ys linearity property can, briefly speaking, be weakened into c^i'Ys regularity and 
monotonocity on [8i9 £,- + rj J (/ = 1, ..., v). We note that this enrichment appears to 
hold also in the nonmonotone case, by its «quick reduction» to the monotone one hint
ed at above, notwithstanding this reduction involves only curvature functions having 
the above linearity property, for simplicity reasons. 

Third, in section 3, first / * is defined in the new case, again as a simple lower limit 
of a certain family / / . Then its meaning is enriched by broadening the family, say to 
J*,d: J* = li111 m£J*,d- Furthermore in section 3 it is shown that all these lower limits 
equal their corresponding limits; and more refined limit properties of/* are proved, 
which become simpler in case a solution to a certain auxiliary problem exists - see 
P3.6. 
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2 . O N T H E P R O B L E M S H A V I N G A N I M P U L S I V E C H A R A C T E R W I T H O U T M O N O T O N I C I T Y . 

A FIRST STEP OF THEIR REDUCTION TO THE MONOTONE CASE. 

CORRESPONDING AUXILIARY PROBLEMS 

We consider the Cartesian frame OciC2c$ (cr*cs = $„, Kronecker's delta) and the 
line / in the plane OciC2, of equation P = P(s) where s is the arclength on /. Let y(s) 
be /'s curvature at P(s) with the sign relative to c3 (when it exists). We assume that 
for some points {S0, ...,SV + 1} such that s0 =â0 < â1 < ... < Sv < âv + 1 =^j , y(-)'s 
restriction to ($,-,$;+1) has a continuously differentiable extension to [£,-, Si+1] 
U = 0, . . . ,v) . 

One can determine / by means of the two-dimensional Cauchy problem - see [10, 
p. 37] 

(2.1) dP/ds = T, dT/ds = y(s)c3xT for a.e. j e l > 0 , J i ] , 

(2.2) P(s0)=P0, T(s0) = T0 ( |T 0 | = l,c3-T0 = 0 = OP0-c3) 

in the unknown function d(s, /(•)) = (P(s), Pf U)) of s. 
In connection with the line /y(.) we consider the Boltz optimization prob

lem (3) 
si 

(2.3) $&(-), «(•)] = J" LU, 6>{s\ u(s)]ds + Y[8>{Sl )] -> inf 
Jo 

under the differential constraint 

(2.4) dP/ds = <p[s, (P(s), u(s)] (e R) for *.*. j e |>0, J J 

and the initial and control constraints 

(2.5) P(j0) = P o , «(•) e 1 i=$(Uo,* i l U), 

where U is a compact subset of Rm, £B(U0 > ^i ], £7) denotes (the set of Borei measurable 
functions from Uo,^] to 17, T(') eC1(R), while ç?(#) and L(') have the forms 

>U, J>,^) = 9 1 U s>,*,0fr, r(')), rW] r'W + f°U s*,*,#U, r(-)), rtoL 
(2.6) « LU, ^ « j ^ U s>,«,0U, r(-)), rW] r'M+L°|>, $>,*,0U, r(-)), rWL 

VU, J > , « ) E ( P = U 0 , ^ 1 ] XRXU, where JI->©(J, /(•)) solves problem (2.1-2). 

We also assume that for / = 0, 1 the functions gr'U, &, u, 0, 7), p ^ U , #>, «, 0, 7), 
1/ U, £P, «, 0, 7) and LJ

tg>(s, &, u, 0, y) of U, 6>
> u, 0, y) are continuous on 

®id=[s0,Si]xRxUxR4XR, and for some constant C 

(2.7) |p ' ' ( j , 0>, «, 0, *) | ^ C(l + \P\ ) VU, 0>, «, 0, e) e ©J (/ = 0, 1). 

Briefly, here we consider again the regular physical system S studied in [10] and 
having the properties PI. 1-3 in [10, sect.l], but we disregard its monotonicity property 

(3) We shall often use e.g. (2.1)*(-) or {2.\)c{'] for (2.1) where the function y(-) is replaced by #(•) or c(-), 

respectively. More generally, we denote by (r.s)z(-) or (r.s)c(-) the formula obtained from (r.s) in the above 

way. 



STRUCTURAL DISCONTINUITIES TO APPROXIMATE ... 9 7 

Pl.4 there; and we aim at extending the results of [10] to this general case. More ex
plicitly we consider a regular instance of the optimization problem (2.1-5) - i.e. an in
stance of the latter problem with v = 0 and with y(-) replaced by a given curvature 
function %{') eC1{[s0,si])) and we first assume that %(•) has an impulsive character, for 
the sake of simplicity, near one instant 8 G {S0, sx ). This means that, e.g., for some small 
£o > 0> \x (')I is verY large in {8,8+ e0) while it has an ordinary size on [s0, 8) U 
U{8 + eoxSi~\. Furthermore we assume that %(•) may be very complex on [8, 8 + e0] 
and that, for some m > 1, it has there the following monotonicity type of order m\ 

(i) /or some d0 to dm with 8 = d0< d^< ...< dm = 8+ s0 , i» [£, 5 + e0]z(*) « 
monotone {only) on each of the intervals [dj-i/dj] ( /= 1, ...,m), so that 

(2.8) o,
/-+1(T/- < 0 for i <m , where at• = c{ — c{ _ ! (/ = 1, ...,m) 

with Cj = x(dj){j = 0, ..., m). 

Of course, the interval [8, 8 + s0] has now the role of the interval [^, b{\ men
tioned in e.g. [10, Pl.4] for v = 1. In the case m > 1 being considered, one may call 
(<j2, ..., <rw ) x( ') ' s nonmonotonicity type in [£, £ + s0] ~ s e e (y) above (3.2). In the case 
m = 1 this type becomes empty and #(•) just has the monotonicity property [10, Pl.4], 
ai being always determined by c{%) and v2 to <rOT. 

In order to simplify the treatment of the above regular problem, it is convenient 
- roughly speaking - , first, to schemetize or approximate this by means of a problem 
such as [10, (2.1-2)c(,) U (2.4-6)c(,)] with both a monotone impulsive character and v = 
= m > 1; and second, to take the limit of this as £0-*0+ . 

In more details, in analogy with the replacement of the regular problem & with the 
impulsive one £P made in [10], as a FIRST STEP we replace problem (2.1-5)x(,) with an 
impulsive problem (2.1-5)c(,) where now c{*) is regarded to depend on dx to dm, 

(2.9) J 0 < £ = ^ I < ^ 2 < .. . <dm<8+s0<dm + 1=s1 

holds, and - see (2.8)3 

(2.10) c{dfz ) = cf", where cf = Q- i, Q+ = c{ {i = 1, ..., m) ; 

furthermore c{*) satisfies (at least approximately) conditions such as 

c{s) =x(s) Vye [s0,8)y 
(2.11) 

c{s)=xl8+{s-dm){sl-8)/{sl-dm)i V 5 € ( 4 , ^ ] , 

{it) %{•) being an extension to {8,Si] for %(•)* restriction to {8+ s0>JiL w^ 
\x'{') I of ordinary size. 

Of course the function c{*) is required to have a continuously differentiable 
extension on any interval [di-lydii7 which leaves it a large arbitrariness in any 
interval {di-itdi) (/ = 2, ...,m) (4). In order to reach our results quicker, we 
can use this arbitrariness to assume that c{*) is constant on {di-Ì9di) {I = 2, ...,m). 

(4) In analogy with [10, ftn.l], this arbitrariness has a counterpart in the widespread treatment of a bil
liard ball as a rigid body bouncing according to a certain restitution coefficient: the (precise) choice of this. 
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Later it will be clear that the same results can be reached under much weaker 
assumptions. 

As well as in [10, sect.2], we regard the above problem (2.1-5)c(,) as a limit of a se
quence formed by some suitable problems that involve implementable processes (we 
mean connected with continuous curvature functions). Therefore we consider the 
^-tuples rj = (rj1, ..., rjm) eD = Dd with d = (dl9 ...,dm), where 

(2.12) Dd±{yl:$ = d1<d1 + ril<d2<d2 + r)2<...<dm<dm + r]m<8+eo}, 

and for any rj e D we use the function 

Ci-i + ^i(s-di)/rii9 se(dt-,di + rçj, 
(2.13) cY1)d(s)=cy}(s) = ^ 

cla^s)], se^= U (dt- + 7)j,di+1], 

where / runs on {1, ...,m} while the function <xv('):3v—>R reads 

(2.14) a {s)±di+l-
 t + 1 {di+l-s) se [di + r)iydi + l] ( / = 1 , . . . , /») . 

di+i-dj-rjj 
Incidentally (2.13)3 can be replaced with 

' Cyis) =q Vre [di + r)j,di+1] (i = 1, . . . ,w - 1), 
(2.13)' , 

^ CO = c(ari (s)) Vr e Ww + T?W , ̂  ] . 

We define 9^(0 [1^(0] to be what <p [L] becomes by replacing c(-) in (2.6) with 
Cyji') (rj e D); more generally we call (r.s)^ the formula obtained from (r.s.) by replac
ing c9 <p, L, and 3 with cv, <pv, Lv, and ^, respectively. Furthermore we assume that for 
any rj e D the class, say AdPv, of the admissible processes (#>(•)> «(•)) for the regular 
(approximating) problem (2.1-5)^ is non-empty and we set 

(2.15) J*d =3* = inf {3V (É): f G Aff, } , / / =3* = liminf § . 

As well as in [10, (2.15)], we regard (2.3)c(,) as the task of determining the above 
weak infimum 3*. We refer to this in speaking of the weak optimization (or minimiza
tion) problem (2.1-5)c('\ 

REMARK 2.1. In the general case v ^ 1, by the definitions (2.15) -see [10, (2.15)] - re
garded as valid in this case, we have that 

This is necessary and practically sufficient for the theory started in [10] to be satis
factory. The extension of (2.15') to the nonmonotone case will be performed explicitly 
only in the case v = 1, for the sake of simplicity — see P3.6 (a). 

The proof of (2.15)' is short on the basis of [10]. In fact, up to a misprint, 
[10, (4.1)x ] asserts that $* =3* - Furthermore in [10] it is in effect deduced that, 
given any s > 0, for some u e il and some â1(s) > 0, [10, (4.2)1.3Ì hold for all 
rçe£(0,<Me))nD, being understood that u{t) = u{^ (/)] - see [10, (3.1)] -
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and that Ç-(#>(•), «(•)) is an admissible process of problem [10, (1.2-4)^(,)]. There
fore [10, (4.1)i, (4.2)1.3] imply the first of the relations 

3* + 2 £ > 3 , ( ? ) ^ 3 * VijeB(o,Me))nD 

- see below [10, (2.13)]. The second follows by the definition (2.15)2 (regarded as valid 
for v ^ 1). Thus, by the arbitrariness of s(> 0) we conclude that 

3* ^ limsup 3*. 
r j ( e D ) ^ 0 

This and the definition[10, (2.15)2] of 3* yield (2.15)'. • 

We remember that, as shown in [10, sect. 5], the weak infimum 3* remains invari
ant if we replace the simple family #i — {c^ (•)}>,eD having the linearity property [10, 
(2.11)] with any family 3r= {c^ (•)]> 6 D e F - see [10, Def.5.1] - consisting of continuous 
approximations of the function c(-) that are increasing and satisfy certain weak condi
tions but are not necessarily linear in any interval {diidt• 4- rjj] (/ = 1, ..., w). 

REMARK 2.2. By the properties of any family &e F asserted in [10, sect. 5], the ana
logue for $ of equality (2.15)', referring to 3rx holds and it can be proved practically like its 
original version. 

After [10, sects. 3, 4], for 19 e D we set 

(2.16) s=^(t) = 

p o + W i - * o ) f (e|>o,<*i]), ' e [ 0 , 1 ] , 

= J ^• + (t - 2/ + 1) ij,. (e UiJi + r)ii), / e [2/ - 1, li], 

[^• + ^ + {di+1-di-7}i)(t-2î) (e W/ + î7,-,i/ + 1])> te[li, 2/ + 1] , 

where / runs on { l , ...ym}; hence by (2.13) and (2.16) one has 

(2.17) d(t)=c,[p,(t)] = 

fc{s0+(d1-s0)t]9 te[0, 1] , 

= \ci_l + <j{{t - 2/ + 1), te [2i - 1, lily (i = 1, ..., m), 

[cidi + W/+1 -/ / /)(* ~ 2/), * E [2/, 2/ + 1] , 

so that c(') is independent of 77 G D. Furthermore, for v = /# we recall the following op
timization problem depending on the parameter rj E D - see [10, (3.19-20)^, p. 43] -
and we do this by writing d explicitly in some places, like in the sequel and unlike what 
we did in [10] where d was fixed at the outset. 

2 v + 1 

(2.18),^ %,dlì\= j £,>rf|>, 3>(t),û(t)]dt+nâ>(2v + l)]-+m£(ç={8>(-), «(•))), 
0 

under the differential, initial, and control constraints 

(2.19),, rf dff,/dt = frird(t,9>,û(t)), &(0) = !?0, « ( - ) e € = ffi([0, 2v + 1], U), 
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where 

. N \fv,i{t,d>,u)±fVidUìv(t),3>,uìp'v(t), 
(2.20L d < ^ 

[ Ki(t,99u)±L^d[^(t),&,u'\p!n(t). 

We remember from[10] that the function s = pVtd(t) = pv(t) is a bijection of 
[0, 2v + 1] onto t o , ^ i ] , now being v = m; and it mutually transforms the (optimiza
tion) problem (2.18-20)^>d into problem (2.3-5)c^( '\ More precisely 

P2.1. Under (2.9) and (2.12) the conditions 

(2.21) u(t)=u[^(t)]y 8>(t) = !P[p,(t)] V/e[0,2».+ l ] , rjeD 

imply that (/)«(•) e l i *#«(•) e Û, (ii) #>(•) j o t e flfe (Cauchy) problem (2.4)^ ( '} U 
U (2.5)i iff &(') solves problem l(2.19)ri}d]1)2 *#^ («0 remembering (2.3)^ ( , ) and 
(2.18),,, 

(2.22) â ^ W O , ^ ' ) ] =3, ,rf[^(0, «(•)]. 

For #(•) e 11 and 77 e D we call £?(•, #(•), ?7,_a0 the solution in [s0, 1̂ ] of the problem 
(2A)c*i{m) U (2.5)b while for «(•) E U and >? E D~d we call £P( -, «(•), >?, i ) the solution in 
[0, 2m + 1] of problem [(2.19)y?)j]i)2; and we set 

(2.23) ^,dM.) = (#>( -, «(•), ij, A «(•)), ^,/ffi(.) = (£( -, «(•), i?, </), «(•)) • 

After Theorem 4.1 in [10, p. 44] the above impulsive problem (2.1-5)c(,) can be reduced 
to the ordinary (auxiliary) optimization problem (2.18-19)0,,, in the sense that 

(2.24) JÌ=IóU = ^{3oAkd,uì'ueU}. 

3. SECOND STEP FOR THE REDUCTION 

O F T H E N O N M O N O T O N E C A S E T O T H E M O N O T O N E O N E . 

A SIMPLE DEFINITION AND SOME PROPERTIES OF THE NEW WEAK INFIMUM / * 

In the Second Step we let dm tend to S by keeping S = dx< ... < dm. Before study
ing this limit we consider fi^j (t) — ̂  (/), a^ [/^ (t)], and c(t)-cd (t) given by (2.16) and 
(2.17), as functions of (rj, d, t) defined for t E [0, 2m + 1] and rj eD, of course in con
nection with a given admissible choice of %{•) - see (2.11-12). 

P3.1. Those functions are continuous on A X [0, 2m + 1] and their derivatives w.r.t. t 
are uniformly continuous on Aj—A X (/, j + 1) (J = 0, ..., 2m), where 

(3.1) A= {(77, d):$ = d1<d1 + Y)1<d2<...,<dm<dm + r)9i<$+e0}. 

Then, by (2.20)^j, our assumptions imply the following proposition. 

P3.2. For every R > 0 the functions tp^jit, &, u) and L^ji*, &> u) are meaningful 
and uniformly continuous on Ay X [ — R, R] X U (j = 0, ..., 2m). 

Now it is not difficult to see that, first, 
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P3.3. For some R>0 the solution &(*>u(m),r),d) of problem ^(2.19)^^1^2 in 
[0, 2m + 1] exists and has a C°-norm less than R V(TJ, dy u) E A X 11. 

Second, by (2.18-19) and (2.23), 

P3.4. The functions Ç^j^and 3,, j [f̂ , j,« ] 0/(17, d, u) are continuous w.r.t. (rj9 d)eA 
uniformly w.r.t. u ell. 

For d regarded as fixed at the outset, as it is done in [10], proposition P3.4 practi
cally reduces to P3.9 in [10, p. 44]; and its proof, briefly sketched above in the general 
case, is in effect a straightforward generalization of the reasoning presented in [10, 
sect. 3] just to prove P3.9 there. 

It is natural to define the weak infimum J* of the functional to minimize by 

(3.2) / * = liminf J / (keeping S = dl < ... < dm) - see (2.15). 

We now call S the point (£, ..., 8) e Rm, so that (0, 8) is the only point (rj, d) <=A 
with dm + rjm = $; and we prove that 

P3.5. J,v has the following two properties 

(3-3) '*=' # %,i^ ( o>^ >*=>»« 
being 

(3.4) 7,%-inf{3,,</tf, ,rf ,«]:«eÌÌ} V( r j , J ) e4 ; 

furthermore 

(3.5) Ud = J*,d V ( i , , i ) e 4 . 

PROOF. Fix any e > 0. Then by P3.4, for some p0 > 0 

(3.6) \3o,ilhà,^-3,,jlhd,^\<z 

\f(r),d,u)eÂXU with M < p0 , \d - S\ < p0 . 
Furthermore by definitions (2.15)3?4 and (3.2), for some px e (0, p0) the first of the 
inequalities 

(3.7) 7* ^JI + e^ 3<uK<w,*] + e V(0, ^ , « ) e j x û with \d-£\< Pl 

holds; and the second follows from theorem (2.24). 
The definition (3.3)2 of ]* implies that, for some p e ( 0 , p i ) , some (rj,d,v) e 

eAxU satisfies the conditions |i?| < p, \d - $\< p, and the first one of 

(3.8) J*+*>hrthl*l= Schisi fotv±vop-t2eÛ. 
Then by definition (3.8)3 and P2.1, (3.8)2,4 also hold. The first of the inequali
ties 

(3.9) 7* ~ J # ^ 3<w[Êo,2,*] " %^hi^ + 2£ < 4£ 

follows from (3.7-8). Since p < p0, by using (3.6) first with (17, J, #) = (0, 5, ?) and 
then with (r),dyu) = (rj,d,v) we deduce (3.9)2. 
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By ss arbitrariness (3.9) yields the first of the inequalities 

(3.10) 7 * ^ 7 # , 7 # ^ 7 * -
By the definitions (3.2) of / * and (3.3)2 of ]*, (3.10)2 is an exercise on infimum lim

its. Thus (3.3)i has been proved. 

Equality (3.5) follows from (2.15)i, 2 , (3.4) and (3.8)2. Then - remembering (3.6) -

by (3.3)2 and (3.4), for some (rj,dfv) e A X I t , we have the inequalities 

(3.11) M<po, \d-$\<po, | / # -7 ,M<£, 3vAhd,vi<JÏ,d + e. 

By (3.4) with t] = 0 we have the first of the relations 

(3.12) )l, ^ 3o,_*[Êo,&*] ^ 3 M té,,**] + e <]* + 3s . 

By (3.11)i,2, (3.6)i holds for u=v; this yields (3.12)2. By (3.11)3|4 we deduce 
(3.12)3. The arbitrariness of s > 0 yields the first of the relations 

(3.13) kt^J*, j**ut. 

Now we note that by (3.4) some further choice of (77, dy v) e A X 11 satisfies 
(3.11)i.3 and the first of the relations 

(3.14) ft, > 3o,*[Êo,&*] " e > 3,,dÛ,,d,vi ' 2e^J*d -2e>]*-J>e. 

The second follows from (3.6), valid for u = v again; by (3.4) (3.14)3 holds, while 
(3.11)3 yields (3.14)4. By e's arbitrariness (3.13)2 also holds. We now deduce (3.3)3 

from (3.3)i and (3.13). • 

It is worth noting that 

P3.6. (a) For the weak infimum ]* - see (3.2) - we have that 

(3.15) 7 * = lim J*d = lim J*d. 

(b) If (i) {Ço,s,ûs }s>o is anJ among the infinitely many minimizing sequences of 
problem (2.18-20)0 ^ and (ii) us = « M ) ( / o ^ j , which determines us>rjd for s > 0 and 
(77, d) e A, then 

(3.16) 7*= Hm'3of*(fo,W= JW x % L</(^,^) = 

= lim 3H,J(£» diUy 

(c) If (Hi) problem (2.18-20)0j<? has a solution £o,&«* an& (#>) #* = #17, J °/̂ ,</> 
^/(C^ determines u^jfor (r),d) e A, then e.g. the lower limit in (3.3) can be replaced by 
the limit for (77, d) —> (0, £), i.e. ybr Jw + rjm —> £ + , with (77, d) e 4: 

(3.17) /*=3o,*Uo,*,«*]= liP 3 , , J [ ^ , J , « * ] = lim 1 ^ j £ ^ ] . 

Note, first, that by (b) there is some sequence useVi such that J* equals the R.H.S. of 
(3.16)3. 

Second, in all the limits considered in P3.6 we can restrict (rj, d) by the conditions 
(rjyd) e A and r^ = d{ — dt• _ 1, which in effect eliminates the interval W/ - 1 + >7/ -1 > ^ ] 
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(/ = 2, . . . , /»). This result is natural and it is expected to be reached directly if, instead 
of using our two-step treatment of the nonmonotone case, one extends directly the 
whole treatment of the nonmonotone case written in [10]. 

PROOF OF P3.6. Consider any e > 0. Then for some p0 > 0 (3.6) holds; and by 
(3.2), for some 2 with (d) S = 2X < ... < 2m < S + p0 the first of the relations 

(3.18) / * + 4e > h + 3e £ 3o,2(Êo,2,i) + 2e ^ 3,,</(Ê,,j,5) ^ ìli 

V(77 ,^)eZn[B(0,po)xB(^p0)] 

holds. Furthermore by (2.24) some « e l l renders (3.18)2 true. Now by (d) and (3.6) 
we easily deduce that 

(3.19) \3oj(hd,t) -3,,dCZ,,d,,)\<2s V ( ï î , J ) 6 2 n [ l i ( 0 , p o ) x B ( i p 0 ) ] . 

This implies (3.18)3. Lastly (3.4) yields (3.18)4. By es arbitrariness (3.18) implies 
that 

/ * ^ limsup 3 ^ . 
(q,<f)(eZ)->((>,$) 

Then, by (3.3)1>2, (3.15)! holds; and (3.5) yields (3.15)2. 
To prove part (b) we first deduce (3.16)! from (3.3)3 and the assumptions in (b). 

Now we consider any e > 0. By (3.16)i, for some S s N 

l /*-3o,*(fo,*,5 j) |<e >/s>S. 

Furthermore, for some p0 , (3.6) holds. Then, by putting û = us in (3.6)i, one easily 
sees that 

l7*-3,.rf(Ì,,i ,*)|<2e V( ) j , i ) e î n [B(0 ) po)xB(^po) ] , Vx > 5. 

By s's arbitrariness this yields (3.16)2. Lastly assumption (ii) in (b) and P2.1 for u = us 

- see (2.22-23) - yield (3.16)3. 
To prove part (c) we first deduce (3.17)i from (3.3)3 and assumption (Hi). Thus, 

setting us — u* (s ë N * ) , {ÎQ,S,ûS}S>Q is a minimizing sequence of problem (2.18-
20)0j |; and by assumptions (it) and (iv), us>7]j = u^j for all ^ > 0 and all (rj, d) e Zi. 
Therefore, by part (b\ (3.16) and (3.17)! imply (3.17)2f3. • 

We are now particularly interested in the afore-mentioned limit (rj, d) (s A) —» 
—»(0, £) and hence in the case (rj,d) = (0, £). In this (2.16) yields 

(3.20) j30(') = 

"*<>+ (*-*<>)'> * e [ 0 , 1] , 

£, f e [ l , 2/»], 

£ + (sx - S)(t - 2m), * e [2w, 2w + 1] , 
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(3.21) ? ( / )= lim c^r}{t)] = { 

(3.22) 

while (2.16) and (2.17) imply 
rd> 0+ (*-*>)']> f e [ 0 , 1] , 

c/_i + Œi(t-2i+ 1), te [2i - 1, 2 / ] , 

Q , / E [ 2 / , 2 / + 1 ] , 

<:[£ + (Ji - 8){t ~ 2w)], / e [2/w, 2/w + 1] , 

for / = 1 to /» and / = 1 t o w - 1 . Thus by (2.6) and (2.20) 

(Vo(t,!P,u) = 

^[s0 + (â-s0)ty^ui(â-s0)y / e [ 0 , 1 ] , 

p 1 ^ , ^ , ^ © ^ , ^ - ) ) , ^ - ! + <J/(/-21 + 1))^. , / e [ 2 / - 1 , 2 / ] , 

0 , / e [2/, 2 / + 1 ] , 

ç>[£ + Ui - £)(/ - 2m), fP, ulisx - S), / G [2/», 2/» + 1] , 

Lo (/,#>,«) = 

Xbo + ( * - J 0 ) ^ * ] ( * - * o ) , / e ^ 0 , 1] , 

L 1 (*, 0>, «, 0(*, *(•)), <:,•-! + crf.(/ - 2/ + 1)) <jf., / e [2/ - 1, 2 / ] , 

0 , / e [ 2 / , 2 / + 1 ] , 

L[£ + (^ - $ ) ( * - 2 w ) , ^P,«](JI - £ ) , / e [ 2 w , 2w + l ] , 

for / = 1 to m and / = 1 to w - 1. By (3.22)1 it follows that 

(3.23) 3>(t) = const V/ € [2/, 2/ + 1] (/ = 1, ..., m - 1). 

Remark that, by (2.10-11) and (3.20-23), c(')'s values in (dhdi+1), i.e. those of £(•) 
there, are irrelevant, as far as the limits at S are concerned. 

The results (3.22-23) allow us to simplify the auxiliary problem (2.18-19)0,$ by can
celling the intervals (2/, 21 + 1) for / = 1, ..., m — 1. Thus in the simplified problem, 
say (2.18-19)', c(-):[0,m + 1] —> JR has the definition 

(3.24) ?<>,*(')=?(*) = « 

"d>o+ ( * - * > ) ' ] , ' e [ 0 , 1] , 

*/_! + * / ( / - / + ! ) , / E [ / - 1 , / ] ( / = 1 , . . . , /» ) , 

c[£ + (Sì - 8){t -m)], t e [m, m + 1] . 

4. O N THE (SECOND-STEP) IMPULSIVE PROBLEM (&v;<Trti, . . . , a r W r ) 

I N T H E N O N M O N O T O N E C A S E F O R V = 1 . 

EXTENDED FUNCTIONAL TO MINIMIZE; ORDINARY AND IMPULSIVE PARTS 

OF DIFFERENTIAL CONSTRAINTS, COMPLEMENTARY EQUATIONS, 

PONTRJAGIN'S CONDITIONS; BORDER AND JUNCTION CONDITIONS 

By means of the preceding limit (77, d)—>(0, 8) we have in effect associated to our 
original regular problem both (a) an impulsive problem ^ , i.e. (2.1-5)ci') with the cur-
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vature <:(•) defined on the whole set fro^iAW* ^ a w a v compatible with (2.11): 

(4.1) c(t)=X(t) V/E [>„,*), c(t)=x(*) V f E ^ ] ; 

and (/3) the monotonicity type (<rl9 ..., <jm). 

REMARK 4.1. Since in the limit problem dm = S 

(4.2) C(S+)-C(S-) = <JX+ . . . + < v , 

form > I it suffices to know the «nonmonotonicity type» (a2, ..., o-w ); consequently in the 
monotone case considered in [10] there is no need to know any monotonicity type. 

Because of the «nonmonotone» monotonicity type now associated to problem ^ , 
this cannot be treated like in [10]; in fact above formula (3.24) we replaced the corre
sponding auxiliary problem (2.18-19)0 with a simplified one, called (2.18-19)'. Thus it 
would be better to speak of the problem (&i; <ri, ..., am). 

Let s*-*d(s) = 6(s, c(-)) = (x(s),y{s), x' (s),y' (s)) be the solution to the Cauchy 
problem (2.1-2)c(,) in the case (4.1). Referring to this we construct pfr, &, u) and 
Lfr, &yu) by means of (2.6) and we set - see [10, (3.16)] 

, x \?ï(c>6>yu) = 9
1[ây6>yuyd(8)>c] , . ^ 

(4.3) \ t u = 1, . . . ,*»). 
\Li(c9^iu)^Ll{^^u>e(i)9c'\ 

To introduce extended solutions - see [10, (6.9)] - in the present framework, we 
consider the process 

(4.4) ?=(^(- ) ,«( - ) ,{^( ' ) , «,-(•)}/. i , . . . ,J 

where the function #>(•): fro > ^I 1 \ {£}"-* # is AC on both fr0, 8) and (£, j j ], and where, 
calling U the set of control values, 

(4.5) «e^8(ko,^i] , U), ^ ( - ) e ACŒcy. ! ,£ , ] ) , «f. e $(fo_ n ql U) 

(i = 1, ...ym). 

Furthermore we define the extension of the functional 3(0 to minimize - see 
( 2 . 3 ^ - b y 

(4.6) 3Œ-3W-), *(•)]'+ 2 ya-w«/W]i . 

In our simple problem ( ^ j crx, ..., <rw) the differential constraints (in #>(•) and 
tP/(#)) and the complementary equations (in A(*) and A,(#)) have the ordinary parts in 
fro>*i]\{*} " see[10, (6.17)] 

(4.7) dtP/ds = ?fr, *P, *(*)], <&M = -Açj^fr, 0>, «(*)] + L , k , 0>, u(s)] 

for a.e. .ye fr0,^i], and the impulsive parts 

(4.8) d(Pi/dc = <pi[s, &i,Uj(c)], dXi/dc= -X^ig>[cy 8>
iiui{c)~] +L f >[>, 5>,-,«l-(r)] 

for a.e. c e [c/_i,c,-] ( /= 1, ...,#z). Furthermore we have the control constraints 

(4.9) « W e D , Ui(c)eU ( /= 1, ..., #z), 
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the initial and junction conditions for &{•) and &{{") 

(4 10) \^(s0) = s>0, (?(s-) = (p1(c0), g>jcm) = g>(s+), 

\9>i(c,) = 3>i+1{ci) ( / = 1 , . . . , » - 1 ) , 

and the terminal and junction conditions for A(#) and A/(*) 

Ms1)= -Y'[g>(Sl)l, Ms-) = x1(c0), xm(cm) = x(s+), 

X-(q) =X-+1(ct-) ( /= 1, ...,/» - 1). 

Note that (4.10)4 and (4.11)4 are lacking in the analogue [10, (6.18)] of 
(4.10-11). 

Similarly, Pontrjagin's optimization condition has the ordinary part 

(4.12) \{s) <p[s, &{s), u(s)i - Us, &(s), u(s)i = 

= max {X(s) <p[s, &(s), u] - L[sy 8>(s), «]: ueU} 

for a.e. se [ J 0 , ^ I 3 - see[10, (6.19)] - as well as the impulsive parts 

(4.13) XMçiic, ^M^Uiic)} - me, S>
i{c)yui{c)i = 

=SLX {*i(c) ?dc, %>(c), u] - Lilc, 9i(c)9 «]: u e U} 

for a.e. ce [c/_ i, q] and at^ 0 (/ = 1, ...,m). 

5. EXTENSION OF SECTION 4 TO THE CASE OF v > 1 DISCONTINUITY POINTS 

WITH ARBITRARILY GIVEN NONMONOTONICITY TYPES 

Now we briefly consider our impulsive (or better structurally discontinuous) prob
lem (£PV; <irfl, ..., <jr mr) (r being regarded to run on { l , ...,v}) in the general case 
(v ^ 1 •), where the single discontinuity point S (for <;(•)) is replaced by Si to Sv. We as
sume that 

(/) s0 < $i < ... < Sv < Si and Sr has the monotonicity type (<rr> i, ..., ar>mr ) in the 
sense that Sr corresponds to a short interval [ar, br ] where the regular system S (to be 
treated approximately) has an impulsive character of type (<rr? j , ..., ar Wr ) (r = 1, ..., v) 
- see (/) above (2.8) regarding ar = 8, br = S + sQ, and <jrj = 07. 

Now, e.g. expressions (4.3-4), (4.6), (4.8-9), and (4.13) simply become 

J <pfti(c, &, u) = 9
l [*„ P, u, d(âr), ci, 

(5.2) ?=(^(- )^( - ) ,{^ , / ( - ) ,^ / ( - )} /=i , . . . ,^ ; ,= i,...,v), 

(5.1) 

v ^ r ' ' ' 

(5.3) I f ] = 3UP(0,«(•)]+ E S L>-[e, 3>r ,(<:), «„•(<:)]<£:, 
r = 1 / = 1 J 

(5.4) 
d&rj/dc = <pr>i[c, 8>rJ, urJ{c)1, 

dXrJ/dc = -Xrìi<prJìg>[cìS
>

rìiìurìi(c)~\ +L,titìp[c9 ®Tiiy urJ(c)], 
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for a.e. e e \_cri-X, cri\ 

(5.5) u(s)eU, urJ(c)eU, 

and 

(5.6) XrJ(c)9rJ{c, ^^(c),^,^ - LrJlc, S>rJ(c),urJ(c)i = 

=S£ {K;i(c)-9r,dC> &r,i(c),u] - L^C, 8>rJ(c),u\. U E U} 

for a.e. c e [crj-.ìy crj] and <7r>,- ̂  0 respectively, where 

(5.7) cr> ! = <:(£" ), cfti - c r , / - i H- crr>/ (cr)Wr -<:(£ + )) 

for / = 1 to #zr and r = 1 to v. Furthermore (4.10)2,4,5 and (4.11) become 

(5.8) < 
I &r,i\Cr,i) = &r,i+l(cr,i) (* = 1, . . . , * » , - l ; r = 1, ..., v) 

and 

f A ( j 1 ) = - F ' [ S > U 1 ) ] , *(*,") = V i ( ' r , o ) > A ^ ( ^ ) = A(^+ ) , 
(5.9) «{ 

[ ^r,/(^,/) = K,i+i(cr,i) (* = 1> . . . ,w r - 1). 
Of course (4.7) and (4.12) need not to be changed. 

6. EXTENDED PROCESSES, PONTRJAGIN'S MAXIMUM PRINCIPLE, 

AND EXISTENCE THEOREM FOR THE GENERAL PROBLEM (^Pv ; 0",., i , . . . , <Tr,mr ) 

DEFINITION 6.1. (#) In connection with the general optimization problem 
(£PV ; orri, ..., <jfm ) we say that the process ? - see (5.2) - is an admissible {extended) pro
cess, if it solves the ODEs (4.7)i, (5.4)! and it satisfies the conditions (5.5), (5.8) and 
(5.9). 

(h) We say that the admissible process 

(6.D r = ( 5 * (•),«*(•), {^(•),<,-(-)},--i,...>^ ir=i>...,v) 
is an extended solution to the above problem if 

(6.2) $[<£* ] ^ 3[f] for all admissible processes f - see (5.2-3). 

One can easily prove that 

P6.1. For the afore-mentioned solution f *, we have that $[?* ] = / * where J* is the 
analogue for (#>v; <jr> lt ..., <rr>Wr) o/ zfo ẑ<?tf& infimum J* defined by (2.15) ybr 

Pontrjagin's maximum principle (PMP) - see [10, Theor. 6.2] - can be extended as 
follows. 

THEOREM 6.1 (PMP). Let f* be an extended solution to problem (&v; <jftlt ... 
..., ar yWr ). Then there are some functions A( • ) : [s0, Si ] —> R and A r> / ( • ) G ^4C( [crj ,- _ i, £r> / ] ) 
- see (5.7) - (/ = 1, ..., mr\ r = 1, ..., v), ^c/? ^ / (/) A(0 is AC on Ly0,£i], 
(£/_ i, Sj], (j = 2, ..., v), and (Sv,^], («) /Z>e ODEs (4.7)2 <z#̂  (5.4)2 tfre solved while 
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conditions (5.8) and (5.9) are satisfied, and {Hi) Pontrjagins optimization conditions 
(4.12) and (5.6) hold in their general versions for (c?v; <jr> 1? ..., <7r>Wr). 

In order to state the existence theorem below we consider the following sets 

(6.3) F* (s, &) = {(y0,y): 3>o ^ L(s7 8>,u),y = ç>{s, &,u),u s U} 

V{s,S>)e{[s0,s1]\{S1,...,Sv})xR, 

and 

(6.4) F*;{c, &)±{(y0,y):yo&Lfti(c, ^u)*^^ = <pr>i(c,&,u)<Trti>ueU} 

V(c,g>)e[crti-Ucrtii XR {i= 1, ...,mf;r= 1, . . . , v ) . 

THEOREM 6.2. !/"/$£ re& (6.3-4) #re convex, then an extended solution f * fo problem 
(tf>v; c7r> ! , . . . , crr>Wr) exists{5). 

In analogy with [10, Corollary 4.1] one can prove that by means of f* some mini
mizing sequences can be constructed. 

Let us note that in (6.1) £F* (•) is allowed to take some negative values - see also [10, 
p. 51]. This is not possible in various physical applications that we have in mind (in fact 
some among the phase conditions [10, (6.20)] have to be satisfied in them) - see e.g. [6, 
9-13]. In spite of this the present theory can be applied to several optimization prob
lems - such as problems 04) to (F) in [6], added with some monotonicity types - in that 
every admissible process (#*(')>#(•)) for them satisfies some among the phase condi
tions [10, (6.20)]. 

The present work has been performed in the activity sphere of the Consiglio Nazionale delle Ricerche, 

group n. 3, in the academic years 1992-93 to 1994-95. 
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