
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Yakov Berkovich

On the number of solutions of equation xp
k

= 1 in a
finite group

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni,
Serie 9, Vol. 6 (1995), n.1, p. 5–12.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1995_9_6_1_5_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi
di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte
le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1995_9_6_1_5_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1995.



Rend. Mat. Ace. Lincei 
s. 9, v. 6:5-12 (1995) 

Teoria dei gruppi. — On the number of solutions of equation xp = 1 in a finite group. 
Nota di YAKOV BERKOVICH, presentata (*) dal Socio G. Zappa. 

k 
ABSTRACT. — Theorem A yields the condition under which the number of solutions of equation xp = 1 

in a finite p-group is divisible by pn + k (here n is a fixed positive integer). Theorem B which is due to Avi
noam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that con
gruences for the number of cyclic subgroups of order pk which are true for abelian groups hold for more 
general finite groups (for example for groups with abelian Sylow p-subgroups). 

KEY WORDS: Finite groups; p-subgroups; p-elements. 

k 
RIASSUNTO. — Sul numero delle soluzioni dell'equazione xp = 1 in un gruppo finito. H Teorema A fornisce 

condizioni per cui il numero delle soluzioni dell'equazione xp = 1 in un gruppo finito è divisibile per pn+k 

dove « è un fissato intero positivo. H Teorema B, che; è dovuto a Avinoam Mann, è una generalizzazione del 
teorema di Sylow. Si prova nei teoremi C e D che le congruenze relative al numero dei sottogruppi ciclici di 
ordine pk note per i gruppi abeliani valgono in effetti per classi più ampie di gruppi finiti, ad esempio per 
gruppi a sottogruppi di Sylow abeliani. 

1. INTRODUCTION 

Denote by N(t, G) the number of solutions of xt = 1 in a finite group G. If t\ \g\ 
then t\N(t, G) (Frobenius). But in some cases (see for example Theorems A, C) we 
can say considerably more about the number N(f, G). 

Ap-group G is said to be an Ln ^-group {n, k are positive integers) ì£Q1(G) = (x e 
e G\xp = l ) is of order pn and exponent p, G/Qi(G) is cyclic and exp G ^ p k . 

A 2-group G is said to be a U„ ^-group if it satisfies the following conditions: 

(Ul) G contains a normal elementary abelian subgroup R of order 2n ; 

(U2) G/R is of maximal class, exp G ^ 2k ; 

(U3) if T/R is a cyclic subgroup of index 2 in G/R then Oi(T) = R (obviously R 
is the only normal elementary abelian subgroup of order 2n in G). 

Note that Ln ^-group and [/2)£-groups were introduced in [2]. Obviously U\yk~ 
groups are 2-groups of maximal class. 

A subgroup H of ap-group G, exp G ^ pk, is said to be &-good if exp Q x {{x, H)) = 
= p for any element x of order pk in G. Notice that a &-good subgroup is (k + l)-good 
but the converse is not true. If H is &-good in G and H ^ F ^ G then H is £-good in F. 
Obviously Qx (G) is £-good if G is an Ln j,-group for any k, or Un ^-group for k > 2. 
Moreover N(pk, G) =pn+k~1 {moàpnJrk) if G is a L^^-group for any k, or Unyk-
group for k > 2. Next if H is &-good in G and A ^ H then A is &-good in G as well. As 
rule we consider only normal &-good subgroups of exponent p. 

(*) Nella seduta del 16 giugno 1994. 
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2. THE NUMBER OF CYCLIC SUBGROUPS IN A p-GROUP 

In this section we prove the following 

THEOREM A. Let n > \, k > 2 be positive integers. Suppose that a p-group G contains a 
k-good normal subgroup of order pn and exponent p. Then if G is not an Ln>k - or a U„tk 
-group and exp G ^ pk then N(pk, G) = 0 (modpn+k). 

PROOF. Suppose that G is a counterexample of minimal order. Take in G a £-good 
normal subgroup R of order pn and exponent p. 

(i) Suppose that G/R is cyclic. Since G is not an Ln ^-group and exp Q j (G) = p 
(in fact Q i (G) ^ RC where C is a cyclic subgroup of order pk in G, and R is £-good) 
then |Û!(G) | =pn + 1. Hence N(pk,G) = \Qk(G)\ =pn+k - a contradiction. Thus 
G/R is not cyclic. 

(it) Suppose that G/R is a 2-group of maximal class. Take in G/R a cyclic sub
group T/R of index 2. Since G is not a U„ ^-group then Q1 (T) is of order 2n + * and 
exponent 2 for some choice of T (if G/̂ R is the ordinary quaternion group then it con
tains three cyclic subgroups of index 2). It follows from the structure of G/R that all 
elements from G — T satisfy xs = 1. Since k > 2 one has N(2k, G) = N(2*, T) + 
+ \G- T\ .By the above N(2*, T) = 2*+*. Since |G - T| = |T | = | G | / 2 is divisible 
by 2* + * (in fact, \G\ = \R\ \G/R\ ^ 2n21+k = 2n+k + 1) then 2*+* divides 
N(2k, G) - a contradiction. Thus G/R is not a 2-group of maximal class. 

It follows from (/) that G/R contains a normal subgroup H/R such that G/H is abe-
lian of type (p, p ). Let Gx /R, ..., Gp + ! /R be all subgroups of order p in G/R. It is easy 
to check that the following equality holds: 

(*) N(pk,G) = N(pk,0,) + ... + N(pk,G1+p) -pN(pk,H). 

Since | G | ^ pn + k we may assume without loss of generality that exp G ^ pk + 1. Then 
|G | >pn+k + \ \H\ ^ j p" + ^- 1 .S inceRis^ -good inHthenp w + ^ |pN(p \H) ( in fac t 
this is true if H is an Lnk- or U„ ^-group, in the contrary case this follows by induction). 
Therefore by assumptionpn +k X N(pk, G,) for some /. By induction G, is an Ln ^-group 
or a U^-group. 

Suppose that Gt- is an Ln ^-group. Since G/R is not a 2-group of maximal class we 
may assume that G\/R, ..., Gp/R are cyclic, and Gp + i/R is non-cyclic abelian with 
cyclic subgroup of index p (this follows from the classification of p-groups with a cyclic 
subgroup of index /?; it is important that k > 2). In particular / ^ p. Set St = Qi (Gt ), 
/ e { l , . . . , p } . Since 5,/R ^ $(Gt/R) ^ $(G/R) < GjR then St = S{ = R (here 
<P(G) is the Frattini subgroup of G). Hence Gif ..., Gp are L„ ^-groups. Then by the 
above N(pk,Gt)=pn+k-\ te{l, ...,/>}. By induction N(pk

fGp + 1) = 0 (mod 
/>*+^). Now (*) implies pn+k \N(pk, G) - a contradiction. 

Therefore G/ is a U„ ^-group. We may suppose that i = 1. Take in Gi /R a cyclic 
subgroup T1/R of index 2. By definition Ql(T1) = R. By supposition | G / R | ^ 
^ 2* + 1 > 8. As G/R is not a 2-group of maximal class (by (it)) it contains [3] exactly four 
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subgroups of maximal class and index 2: G1/R, ..., G4/R. Let Tj/R be a cyclic sub
group of index 2 in Gy/R ( / ^ 4). If Sj = Ûx (Ty ) then as above Sj < Tx so Sj = R for 
/ ^ 4. Thus Gy is a U„,*-group for y ^ 4 and N(/?*, G, ) = 2n+k~1 + | G | / 4 (/ ^ 4). If 
M/R is a maximal subgroup of G/R distinct from Gj/R (/ ^ 4) then by induction 
2*+* |N(2*,M). Then (*) implies N(2*, G) = 0 (mod 2*+*) and the theorem is 
proved. • 

REMARK. If G is not cyclic and is not a 2-group of maximal class it contains a normal 
subgroup R of type (/?,/?). Obviously R is £-good for any k > 2 (but in general it is not 
2-good). Hence the main result of [2] for p = 2 is a corollary of Theorem A. 

Denote by c^ (G) the number of cyclic subgroups of order pk in a group G. Obviou
sly ck (G) = (N(pk, G) - N(pk ~ 1 , G))//>* " 1 (p - 1). But it is impossible to apply this 
formula for proof of the following 

COROLLARY 1. If G satisfies the condition of Theorem A and G is not an Ln>k- or a 
U„jfgroup then c^(G) = 0 (mod pn). 

It is sufficient to repeat the proof of Theorem A. • 

COROLLARY 2 [2]. Suppose that an irregular p-group G is not a group of maximal class, 
k > 2. If G is not an Lpj,- or Upj,-group then c^(G) = 0 (mod pp). 

PROOF. Take in G a normal subgroup R of orderpp and exponent/? [4]. By virtue of 
Theorem A it suffices to show that R is £-good for k > 2. Take in G an element x of or
der pk, set H = (x, R). Then H/R is cyclic and \H/R\ >p. Take in H a normal sub
group D of order pp~2 such that D < R. Let R < S < H such that \S:R\=p. Then 
S/D is abelian so its class is less than p and S is regular. Since Q\{H) — Qx (S) then 
exp Q i (H) = p and R is £-good. So Theorem A implies the result. • 

COROLLARY 3. Let a p-group G contains a 2-good normal subgroup R of order pn > p 
and exponent p. Then N(p, G) = 0 (mod pn ). 

PROOF. If X is an element of order/? in G — R then (x, R) does not contain a cyclic 
subgroup of order p2 (since R is 2-good). So the set of all solutions of yp = 1 is a 
disjoint union of subgroups (x, R) for appropriate elements x of order p in G - R (if 
G - R does not contain elements of order p then N(p, G) = \R\ =pn). • 

3. THE THEOREM OF AVTNOAM MANN 

Let 6 be a class of finite groups. Denote by nd(G) the number of ^-subgroups in a 
group G. 

A. Kulakoff proved that if G is a non-cyclic p-group of order pn, p > 2, and 
£ e { l , . . . , » - l } then j(p*, G) = 1 + p (mod/?2); here j(/>*, G) is the number of 
subgroups of order pk in G. The same assertion holds for 2-group G unless it is not 
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cyclic or a 2-group of maximal class [1]. The following theorem which is due to A. 
Mann permits to transfer some counting theorems from p-groups onto arbitrary finite 
groups. 

THEOREM B. (A. Mann, Counting p-subgroups, unpublished manuscript). Let 6 be a 
class of p-groups of fixed order, let S be a Sylow p-subgroup of G, and assume that any 
6-group M satisfies \M\ < \S\. Suppose that ne(S) = nQ{Q) (modp) for all maximal sub
groups Q of S. Then ne(G) = nQ{S) (mod/?2). 

PROOF. We may assume that all 0-groups are non-identity. 
Let Wl be the set of all 0-subgroups of G which are not contained in S. 
Consider the action of S on 3)? by conjugations. Then the length of an 5-orbit equals 

to pt for an appropriate positive integer t. Obviously Ns (A) ^ S for any A e W. Denote 
by %Jl0 the union of all S-orbits of length/?. It is sufficient to show that \ïïl0 | = 0 (mod 
p2). Take A G Tt0 and set NS(A) = Q. Then \S: Q\ = /?, i.e. Q is maximal in S, so by 
condition nd(Q) = nQ{S) (mod/?). Denote by t(Q) the number of all elements of 2ft0 

which are normalized by Q. Note that any element of Wl0 is normalized by exactly one 
maximal subgroup of S (if X and V, distinct maximal subgroups of S, normalize A G %Jl0 

then (X, V) = S normalizes A - a contradiction). Therefore |3K0 | — 2 t{Q) where Q 
runs over the set of all maximal subgroups of S. If t(Q) = 0 (mod/?2 ) for all maximal in 
S subgroups Q then \Ti0 \ = 0 (mod/?2 ). Let A, Q are taken as before, Tx = AQ. Then 
TieSyl^G) , A is normal in Tx and NS{TX) = Q = S D Tx. Let (TU...,TH> 

S = T0} = Sylp (NG(Q)). HBzMo mdNs(B) = Q then BQ e {Tly ..., TH}9 say 
BQ = T{. Denote by m{Tt) the number of all elements of S3Î0 which are normal in T, ; if 
B0 is one of them then B0Q = Ti is that element of the set { T j , , . . . , Tn } which con-

n 

tainsB0. Hencet(Q) = 2 w( ï / ) . Obviouslym{Ti) = nd(Ti) — nQ{Q) (mod/?) (if£ e 
/ = l 

e 3K0 and B < T{ is not normal in T/ then/? divides the number of Trconjugates of B; 
hence the number of such B in T{ is divisible by/?). Therefore p\m{T{). Because 
Ns(Ti) = Q fo r /e {1, ...,n} then any S-orbit of the set {Tly ..., Tn] is of length/?. If 
{Tj, ..., Tp } is such an S-orbit then in view of m{Tx ) = ... = m(Tp ) one has m{Tx ) + 
+ ... + m{Tp) = pm(T1) = 0 (mod p2). Summing over all 5-orbits of the set 
{Tj, ..., T„ } one obtains t(Q) = 0 (mod/?2), and the theorem is proved (since Q is an 
arbitrary maximal subgroup of S). • 

COROLLARY 1. If S G Sylp(G), \S\ >pk ^p then the following assertions are 
equivalent'. 

(a) V > G ) ^ 1 + P (mod/?), 

(b) s(pk,G) = l (mod/?2), 

(c) S is either a 2-group of maximal class with \S\ > 2k + 1, or S is a cyclic 
group. 

PROOF. If S G Sylp(G), G is a group from {b)y then s(pk, S) = 1 (mod/?2) by Theo-
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rem B, and (a), (c) are true by Kulakoffs Theorem and[l]. Similarly one proves the 
remaining implications. For example, if S is not a 2-group of maximal class and is not 
cyclic then s(pk, G) = s(pk,S) = 1 + p (mod p2) by[l] , Kulakoffs Theorem and 
Theorem B. • 

Suppose that a p-group G is not cyclic and is not a 2-group of maximal class. 
If k > 1 then ck(G) = 0 (modp). This result for p > 2 is due to G. A. Miller, and for 
p = 2 to the author [1]. 

COROLLARY 2. Let S e Sylp (G). Suppose that S does not contain as a maximal subgroup 
a cyclic group or 2-group of maximal class. Then Q ( G ) = Ck(S) (mod p2) for k > 1. 

PROOF. In fact if Q is a maximal subgroup of S thenp divides Ck (S) — ck (Q) by [1] 
and Miller's Theorem. Now the result follows from Theorem B. • 

As, in Corollary 2, ck (G) = ck (S) (modp) then ck (G) = 0 (modp) if S is noncyclic 
and is not a 2-group of maximal class, k > 1. 

Corollary 1 was proved by P. Deligne [5] for \S\ = pk + *, and by M. Herzog [6] for 
k=l. 

4. THE NUMBER OF CYCLIC SUBGROUPS IN A GROUP 

WITH ABELIAN SYLOW SUBGROUPS 

In this section we consider the number of cyclic subgroups of given order in finite 
groups with Sylow subgroups satisfying certain special conditions. 

THEOREM C. Let S e Sylp (G), ûi(S) is abelian of order pn. Then cx (G) = 1 + p + 
+ ... +pn~l (mod/?*). 

PROOF. Obviously Qi(S) is elementary abelian. 
Denote by 33Î the set of all subgroups of order p in G which are not contained in S. 

Consider, as in the proof of Theorem B, the action of R = Qi(S) on 3K by conjuga
tions. The length of an R-orbit is equal to a power of p. Let 3K0 = { C E S R | 

|R :N R (C) | <pn}. It suffices to prove that pn \ |2Wo|. 
Set 31 = {NR (C) | C G M0 }. By definition of $l0 all elements of the set 31 are non-

trivial subgroups of R. We prove that any Q e 31 normalizes spn elements of the set $Jl0, 
i is a non-negative integer. Let Ce3l0, Q = NR(C). Then T1 = QC = Qx C, 
\R:Q\ =pr (0<r<n). 

In particular NR(C) = CR{C). Take x eNR(T1). Since {x, 7\) is contained in a 
Sylow p-subgroup of G then (x, Tj) is elementary abelian (it is generated by elements 
of order/?). In particular x centralizes C whence x EQ. Therefore Q = NR(TI ) = 7\ fi 
fi R. Now if* E 2\ - Q t h e n Q U ) ^ Q > l,/>. (x) e3K0. We prove that CR(x) = Q. 
We have x = yz where C = (y), Z G Q . If « E C R (X) then « G Q ( 3 / ) = Q , hence 
CR(X) = Q for anyx eT1- Q. Let {T^,....... Tm) be the R-orbit of ^ , ^ = |R: Q | = 
= p r . Obviously T, n Ty = Q = NR(Ty) = T;nR for / ^y, /,y E {1, . . . , /»}. By the 
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above \Q\ =pn~r. Since \TX \ =p\Q\ =pn~r+1 then Tx contains exactly ^ ( T J -
— C\ (Q) —pn~r elements of the set %R (moreover by the above these elements are con
tained in 3KQ). The same is true for any subgroup T2, ..., Tm. Therefore the subgroups 
T1, ..., Tm together contain exactly mpn~r =prpn~r =pn elements of the set Wl0 (de
note the set of such elements by 39?i). By the above 133^ | = p". 

Set mQ = {CeWl0 \NR(C) = Q}. Assume WlQ * 3Ki; take C G 3KQ - 2 ^ . Then 
U^CQïiT^...,^}. For {Ul9 ..., UM{1)}, the R-orbit of U1? set 3ft2 = 
= {C e Hft0 |C ^ Uiy i e {1, ..., /»(/)}}. Then SKi H 2ft2 is empty (since T, HUy = Q 
for all /,y) and 13K2 | = pn • Continuing so further we present XRQ in a disjoint union of 
sets of length pn. Hence pn | |3WQ |. 

Then we have by the above the following partition 3K0 = U WIQ (see definition 

of the set $1). Therefore pn | |3Ko|, and the theorem is proved. • 

REMARK. If S in Theorem C is elementary abelian then the result follows from the 
Frobenius Theorem since N(p9 G) = N( \S\, G). 

COROLLARY. If S eSylp(G), Q1(S) ^ Z(S) {in particular if S is abelian) and 
\Qx{S)\=pn thenpn\N{p,G). 

In the same manner we prove the following 

THEOREM D. Let Se Sylp(G), k > 1 be an integer, exp S ^ pk. If Qk- X{S) ^ 

< Z(Qk(S)) and |Û*_!($) | =pn then ck{G) = 0 (mod pn -k + i> 

PROOF. Set R = Qk _ x (S). Then R is abelian of exponent^ ~* and order pn. If S is 
abelian then exp Qk(S)j'Qk_\{S) =p. 

First we prove that c^{S) = 0 (mod pw~^ + 1 ) . Let C be a cyclic subgroup of 
order pk in 5. Then CR is abelian and |CR:R| =p. So ck(CR) = (\CR\ - \R\)/ 
jpk " 1 (p — 1 ) = pn " k + *. If Q is a cyclic subgroup of order p^ in S, Cx is not contained 
in CR then CR H Q R = R and CXR contains exactlypn ~k + 1 cyclic subgroups of order 
pk. Hence the set of all cyclic subgroups of order pk in S is a disjoint union of subsets of 
length pn~k + 1 and the claim is proved. 

Denote by TI the set of all cyclic subgroups of order pk in G which are not contai
ned in S. Consider the action of R on H)? by conjugations. Assume that $1 is not empty. 
Let Tt0={Cs^&\NR(C)> 1}. It suffices to prove tha tp*-* + 1 | |STCo I -

Take C G Wi0 and set Q = NR{C), \R:Q\=pr,T1 = CQ. Then 0 < r < n. If 7\ ^ 
^ e S y l ^ G ) then T ^ u ^ ) , Q ^ Qk.,(Sx) ^ Z(Qk(S1)) H Tt ^ Z{TX) and 
Tx /Qk _ j ( Ti ) is cyclic. Therefore Tj is abelian and | T1 : Û* _ l ( Ti ) | = p . Set | Tj | = 
= pt. Then ck(Tx) =pi~k (see the formula for Q, in section 1). If x e NR{TX) and 
(x, Ti ) ^ S2 e Sylp (G), then x G Z((X, TX )) (since x G Qk _ ! (52 )) ^ Z(Qk (S2 )) and 
Tx ^ Û! (52)), sox G CR(C) = NR(C) = Q. Thus NR{T, ) = Q and 7\ n R = Q. LetZ 
be a cyclic subgroup of order pk in Tx ; then ZQ = Tl, Q ^ NR (Z) ^ NR ( T1 ) = Q and 
NR(Z) = Q (recall that R is abelian). In particular Z G Wl0. Let {7 \ , ..., Tm } be the R-
orbit of Tl9 m = \R: NR{T1)\ = \R: Q\ =pr. Obviously Tly ..., Tm are not contained 
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in S and Q ^ T{ f! T; ^ Qk-i(Tj), i ;* / , i,je { 1 , . . . , / # } . Therefore Tlf ...,Tm con

tain together exactly mck(T1) =pr + i~k distinct cyclic subgroups of order p^ (denote 

the set of these subgroups by SKj ). Set | Q \ = ps. Then r = n — s, t — s ^ \, r + t — 

-k = n-s + t - k ^ n - k + l . Therefore pn~k + 1 | |3Ki | . 

Set $l = {NR(C)\CeWl0}, MQ = {C G SR0 \NR(C) = Q} (Q G 31). 

If C, Q as above then M1 Ç WlQ. 

As in Theorem C the set SKQ (Q G 31) is a disjoint union of subsets of lengths divisi

ble bypn~k + 1 (one of them is % ) . Therefore p"~k + l[ \WlQ\. Let Z G 3 K - 2 « ô , 

NR(Z) = Q(1) . Then 3KQn$WQ ( 1 ) is empty mdpn~k+1 | \TtQ{1)\. So Ti0= U 2RQ 

is a partition. Therefore p " _ y è + 1 | \$Jl0 | and the theorem is proved. • 

COROLLARY. If S G Sylp (G) , exp S ^ pk > p. \Qk - i (5) | = pn, #W û ^ (5) à" abelian 

then ck(G) = 0 (modpn~k + 1). 

QUESTION 1. Let G, S, n be as in Theorem Q 1 < k < n. Denote by e(pk, G) the num

ber of elementary abelian subgroups of order pk in G Whether is the congruence e(pk, G) = 

= e(pk
yS) (modpn~k + 1) true? 

The answer on Question 1 is affirmative if S is elementary abelian itself [5]. If 

S G Sylp (G) is abelian of rank n > 1 and k > 1 then, as follows from Theorem D, 

ck(G)=ck(S) ( rnodp*) . 

QUESTION 2. Le/ 5 G Sylp (G) , J = logp |£ : $(S) | , |̂ S" | = p*. Whether is the congruen

ce s(p< ~ \ G) = s{p* ~ \ S) (mod pd) true? 

QUESTION 3. Is it true Theorem C if QX(S) is of order pn and exponent p? 

QUESTION 4. Suppose that S G Sylp (G) , \S: (xp \x e S) | ^ pp and S is not of maximal 

class. Whether is true that cx{G) = 1 + p + ... +pp~1 (mod pp)? 
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