Rendiconti Lincei Matematica E Applicazioni

Daniela Bubboloni
 Solvable finite groups with a particular configuration of Fitting sets

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 6 (1995), n.1, p. 13-22.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1995_9_6_1_13_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1995.

Teoria dei gruppi. - Solvable finite groups with a particular configuration of Fitting sets. Nota di Daniela Bubboloni, presentata (*) dal Socio G. Zappa.

Abstract

A Fitting set is called elementary if it consists of the subnormal subgroups of the conjugates of a given subgroup. In this paper we analyse the structure of the finite solvable groups in which every Fitting set is the insiemistic union of elementary Fitting sets whose intersection is the subgroup 1.

Key words: Solvable finite groups; Fitting sets; Nilpotent groups.

Riassunto. - Gruppi risolubili finiti con una particolare configurazione degli insiemi di Fitting. Un insieme di Fitting si dice elementare se è costituito dai sottogruppi subnormali dei coniugati di un dato sottogruppo. In questo lavoro si analizza la struttura dei gruppi finiti risolubili in cui ogni insieme di Fitting è unione insiemistica di insiemi di Fitting elementari la cui intersezione si riduce al sottogruppo unità.

Introduction

By group we shall always mean finite group and we shall use throughout the notations of [2]; in particular if G is a group and $T \leqslant G$ we set $s T=\{S \leqslant G: S \leqslant T\}$, $s T^{G}=\left\{S \leqslant G: S \leqslant T^{g}\right.$ for some $\left.g \in G\right\}$, sn $T=\{S \leqslant G: S \operatorname{sn} T\}$, sn $T^{G}=\{S \leqslant G$: $S \operatorname{sn} T^{g}$ for some $\left.g \in G\right\}$ where $S \operatorname{sn} T$ means that S is a subnormal subgroup of T.

A Fitting set of a group G is a collection \mathscr{F} of subgroups of G such that: i) if $T \unlhd S \in$ $\in \mathfrak{F}$, then $T \in \mathscr{F}$; ii) if $T, S \in \mathscr{F}$ and $S, T \unlhd S T$, then $S T \in \mathscr{F}$; iii) if $S \in \mathscr{F}$ and $g \in G$, then $S^{g} \in \mathfrak{F}$. This definition was introduced and developed by Anderson in [1]. The most familiar example of Fitting set of a group G is given by the set of the p-subgroups of G; more generally, given a Fitting class \mathfrak{F}, the so called trace of \mathfrak{F} in $G \operatorname{tr}_{\mathfrak{F}}(G)=\{H \leqslant$ $\leqslant G: H \in \mathfrak{F}\}$ is a Fitting set of G. We shall focus on the case $\mathfrak{F}=\mathfrak{N}^{k}$ with $k \in N$, where $\mathfrak{N}^{1}=\mathfrak{R}$ is the class of nilpotent groups and \mathfrak{l}^{k} is defined inductively by $\mathfrak{l}^{k}=$ $=\left(G: G / F(G) \in \mathfrak{N}^{k-1}\right)$. Let G be a group and \mathscr{F} a Fitting set of $G: V \leqslant G$ is called \mathfrak{F}-maximal if $V \in \mathscr{F}$ and from $V \leqslant U \leqslant G$ with $U \in \mathcal{F}$, it follows $U=V ; V \leqslant G$ is called an \mathfrak{F}-injector if for every $K \operatorname{sn} G, V \cap K$ is \mathscr{F}-maximal in $K ; V \leqslant G$ is called an injector if V is a \mathscr{F}-injector for some Fitting set of G.

A fundamental result in the theory of Fitting sets guarantees that if G is a solvable group and \mathscr{F} a Fitting set of G, then \mathscr{F}-injectors exist and constitute a conjugacy class [2, VIII, 2.9]. This means that the theory of Fitting sets is, in particular, a generalization of the classical theory of Sylow and Hall subgroups.

There is a very strong link between Fitting sets and injectors: namely if G is a solvable group and $H \leqslant G, H$ is an injector of G if and only if $s n H^{G}$ is a Fitting set of G [2, VIII, 3.3].
(*) Nella seduta del 3 novembre 1994.

We shall call elementary a Fitting set \mathfrak{F} of a group G if there exists $H \leqslant G$ such that $\mathscr{F}=s n H^{G}$. By the result quoted above, we can deduce that every Fitting set of a solvable group contains an elementary Fitting set; moreover most of the well-known Fitting sets are elementary. These two facts have been the initial motivation for our research. To be more precise let us introduce the following definition: if G is a group and \mathscr{F}_{i} for $i=1, \ldots, n$ are Fitting sets of G such that $\mathscr{F}_{i} \cap \mathscr{F}_{j}=\{1\}$ for $i \neq j$, then the set $\mathscr{F}=\bigcup_{i=1}^{n} \mathscr{F}_{i}$ of subgroups of G is called the disjoint union of the \mathscr{F}_{i} and it is denoted by $\bigcup_{i=1}^{n} \mathscr{F}_{i}$. Then the problem is the following: how many Fitting sets can we construct via the disjoint union of elementary Fitting sets or, from another point of view, can we classify those solvable groups for which every Fitting set is given by the disjoint union of elementary Fitting sets? A first useful observation is that a solvable group is nilpotent if and only if every Fitting set is an elementary one. The next step is to investigate the structure of solvable groups in which the Fitting set of the nilpotent subgroups is a disjoint union of elementary Fitting sets. This will be described in section 1. In the next section 2 we shall treat the analogous problem for the Fitting set $\operatorname{tr}_{\mathfrak{R}^{2}}(G)$ and this will shortly lead to the solution of our general problem. These topics and others related to them also constitute a section of my PhD thesis on Fitting sets [5].

1. Solvable groups in which the trace of \mathfrak{l} is the disjoint union of elementary Fitting sets

In what follows if π_{i} for $i=1, \ldots, n$ are sets of primes with $\pi_{i} \cap \pi_{j}=\emptyset$ for $i \neq j$, then we shall write $\bigcup_{i=1}^{n} \pi_{i}$ instead of $\bigcup_{i=1}^{n} \pi_{i}$.

Lemma 1.1. Let G be a solvable group with $\operatorname{tr}_{\mathfrak{R}}(G)=\bigcup_{i=1}^{t} s M_{i}^{G}$, where $s M_{i}^{G}$ are elementary Fitting sets of G and $\pi_{i}=\pi\left(\left|M_{i}\right|\right)$. Then the M_{i} are nilpotent Hall subgroups of G and $\pi(|G|)=\bigcup_{i=1}^{t} \pi_{i}$.

Proof. First of all we observe that if P is a p-subgroup of G, then $P \leqslant M_{i}^{g}$ for some $i=1, \ldots, n$ and $g \in G$. Therefore $\pi(|G|)=\bigcup_{i=1}^{t} \pi_{i}$. We show now that the M_{i} are Hall subgroups of G. If $p\left|\left|M_{i}\right|\right.$, then there exists a p-group $P_{i} \neq 1$ with $P_{i} \leqslant M_{i}$. Let $P \in$ $\in \operatorname{Syl}_{p}(G)$ with $P \geqslant P_{i}$; then $P \leqslant M_{k}^{8}$ for some $k=1, \ldots, n$ and $g \in G$. If $k \neq i$, then $P_{i} \in$ $\in s M_{i}^{G} \cap s M_{k}^{g}=1$ contrary to the assumption; it follows that $k=i$ and $|P|=|G|_{p}=$ $=\left|M_{i}\right|$. To show that $\pi_{i} \cap \pi_{j}=\emptyset$ for $i \neq j$, let p be a prime such that $p\left|\left|M_{i}\right|,\left|M_{j}\right|\right.$. Then, since M_{i}, M_{j} are Hall subgroups of G, there exist $1 \neq P \in \operatorname{Syl}_{p}(G)$ and $x \in G$ such that $P \leqslant M_{i}$ and $P^{x} \leqslant M_{j}$. It follows $P \leqslant M_{i} \cap M_{j}^{x^{-1}}$ and consequently $P \in s M_{i}^{G} \cap$ $\cap s M_{j}^{g}=1$, a contradiction.

Lemma 1.2. Let G be a solvable group and let N_{i} for $i=1, \ldots, t$ be nilpotent Hall subgroups of G such that $\pi(|G|)=\bigcup_{i=1}^{t} \pi_{i}$, with $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$. Then the following statements are equivalent:
i) $\operatorname{tr}_{\mathfrak{M}}(G)=\bigcup_{i=1}^{t} s N_{i}^{G}$, with $s N_{i}^{G}$ elementary Fitting sets of G;
ii) $C_{G}(x)$ is a π_{i}-group for every $i=1, \ldots, t$ and $1 \neq x \in G \pi_{i}$-element;
iii) every element in G is a π_{i}-element for some $i=1, \ldots, t$.

Proof. $i) \Rightarrow$ ii) Let $1 \neq x \in G$ be a π_{i}-element and $r\left|\left|C_{G}(x)\right|\right.$ a prime; then there exists $y \in C_{G}(x)$ with $o(y)=r$ and $\langle x, y\rangle=\langle x\rangle \times\langle y\rangle \in \mathfrak{M}$. It follows that $\langle x, y\rangle \leqslant N_{j}^{g}$ for some $j=1, \ldots, t$ and $g \in G$: we cannot have $j \neq i$ because x would be a π_{j}-element contradicting $\pi_{i} \cap \pi_{j}=\emptyset$ and $x \neq 1$. Hence $i=j$ and $r\left|\left|N_{i}\right|\right.$, that is $r \in \pi_{i}$.
ii) \Rightarrow iii) Let $1 \neq x \in G$, with $o(x)=m_{i} m$ where $1 \neq m_{i}$ is π_{i}-number and $1 \neq m$ is a π_{i}^{\prime}-number. Then there exist $y \neq 1$ and $z \neq 1$ in G such that $y z=z y$ with y a π_{i}-element and z a π_{i}^{\prime}-element, contrary to $i i$).
iii) \Rightarrow i) By assumption N_{i} is a nilpotent π_{i}-Hall subgroup of G. It follows that $s N_{i}^{G}$ is the Fitting set of the π_{i}-subgroups of G and $\operatorname{tr}_{\mathfrak{N}}(G) \supseteq \bigcup_{i=1}^{t} s N_{i}^{G}$. Let $M \in \mathfrak{l}$ with $M \leqslant G$; then we have $M=M_{1} \times \ldots \times M_{t}$, with M_{i} a π_{i}-Hall subgroup of M making use of $\bigcup_{i=1}^{t} \pi_{i}=\pi(|G|)$. Assume $M_{i} \neq 1 \neq M_{j}$ for $i \neq j$; then there exist $x_{i} \in M_{i}, x_{j} \in M_{j}$ with $o\left(x_{i}\right)=p_{i} \in \pi_{i}, o\left(x_{j}\right)=p_{j} \in \pi_{j}$ and $x_{i} x_{j}=x_{j} x_{i}$. Therefore $o\left(x_{i} x_{j}\right)=p_{i} p_{j}$ contrary to iii). Hence $M=M_{i}$ for some $i=1, \ldots, t$ and then $M \leqslant N_{i}^{g}$ for some $g \in G$. This means $\operatorname{tr}_{\mathfrak{R}}(G) \subseteq \bigcup_{i=1}^{t} s N_{i}^{G}$. Finally the fact that $s N_{i}^{G} \cap s N_{j}^{G}=1$ for $i \neq j$ is a trivial consequence of $\pi_{i} \cap \pi_{j}=\emptyset$.

Lemma 1.3. Let G be a solvable group such that $\operatorname{tr}_{\mathfrak{M}}(G)=\bigcup_{i=1}^{t} s N_{i}^{G}$ with $N_{i} \neq 1$. Then $t \leqslant 2$.

Proof. Let $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1, \ldots, t$. We have $\pi_{i} \neq \emptyset$ and, by Lemma 1.1, it follows that $\pi_{i} \cap \pi_{j}=\emptyset$ for $i \neq j$. Assume $t \geqslant 3$; let $p_{i} \in \pi_{i}$ for $i=1,2,3$ and let H be a $\left\{p_{1}, p_{2}, p_{3}\right\}$-Hall subgroup of G. By 1.2 every element in G is a π_{i}-element for a suitable $i \in\{1, \ldots, t\}$, hence every element in H is a p_{i}-element for a suitable $i \in\{1,2,3\}$. Then using the theorem on page 172 in [4], we deduce that the order of H is divisible at most by two primes, a contradiction.

This lemma allows us to consider only those solvable groups for which the trace of \mathfrak{l} is a disjoint union of two elementary Fitting sets. It also leads to a very useful result about the behaviour of quotients of this type of group.

Corollary 1.4. If G is a solvable group with $\operatorname{tr}_{\mathfrak{M}}(G)=s N_{1}^{G} \bigcup_{s N_{2}^{G}}$ and $N \unlhd G$, then $\operatorname{tr}_{\mathfrak{R}}(\bar{G})=s \bar{N}_{1}^{\bar{G}} \cup^{\cdot} s \bar{N}_{2}^{\bar{G}}$, where \bar{H} stands for $H N / N$ for every $H \leqslant G$.

Proof. Let G be a solvable group with $\operatorname{tr}_{\mathfrak{M}}(G)=s N_{1}^{G} \cup_{s} N_{2}^{G}$. By Lemma 1.1 N_{1}, N_{2} are nilpotent Hall subgroups of G such that $\pi_{1} \cup^{\circ} \pi_{2}=\pi(|G|)$, where $\pi_{i}=$ $=\pi\left(\left|N_{i}\right|\right)$, and therefore $G=N_{1} N_{2}$. Moreover, by Lemma 1.2, every element in G is a π_{1}-element or a π_{2}-element. We set $\bar{H}=H N / N$ for each $H \leqslant G, \bar{\pi}_{i}=\pi\left(\left|\bar{N}_{i}\right|\right)$ for $i=$ $=1,2$ and observe that \bar{N}_{1} and \bar{N}_{2} are nilpotent Hall subgroups in \bar{G}. Then, by $\bar{\pi}_{i} \subseteq \pi_{i}$ and $\bar{G}=\bar{N}_{1} \bar{N}_{2}$, it follows that $\bar{\pi}_{1} V^{\dot{\pi}} \bar{\pi}_{2}=\pi(|\bar{G}|)$. Now choose $\bar{x}=x N \neq 1$ in \bar{G}; then we have $o(\bar{x}) \mid o(x)$ and \bar{x} is a $\bar{\pi}_{1}$-element or a $\bar{\pi}_{2}$-element. Therefore, by Lemma 1.2, we obtain that $\operatorname{tr}_{\mathfrak{R}}(\bar{G})=s \bar{N}_{1}^{\bar{G}} \cup^{\circ}{ }_{s} \bar{N}_{2}^{\bar{G}}$.

In order to prove our main result, that is Theorem 1.7, we need the following two lemmas. We shall omit the proof of the second which may be obtained by induction on the order of the group.

Lemma 1.5. Let G be a solvable group such that $\operatorname{tr}_{\mathfrak{R}}(G)=s N_{1}^{G} \cup_{s N_{2}^{G}}$ and let $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1$, 2. If $1 \neq L \leqslant G$ is a π_{i}-group and $1 \neq M \leqslant N_{G}(L)$ is a $\pi_{2^{-}}$ group, then LM is a Frobenius group with Frobenius complement M.

Proof. Obviously $L M \leqslant G$ and $1<L \unlhd L M$. On the other hand if $1 \neq x \in L$, then we have $C_{M}(x)=M \cap C_{G}(x)=1$ because, by assumption, M is a π_{2}-group, while by Lemma 1.2 $C_{G}(x)$ is a π_{i}-group and, by 1.1, $\pi_{1} \cap \pi_{2}=\emptyset$.

Lemma 1.6. Let G be a solvable group such that $\operatorname{tr}_{\mathfrak{M}}(G)=s N_{1}^{G} \bigcup^{0} N_{2}^{G}$ and let $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1$, 2. If $O_{\pi_{1}}(G)>1$, then the ascending nilpotent series coincides with the $\pi_{1}^{\prime} \pi_{1}$-series: in particular $F(G)=O_{\pi_{1}}(G), F_{2}(G)=O_{\pi_{1} \pi_{1}^{\prime}}(G), F_{3}(G)=$ $=O_{\pi_{1} \pi_{1}^{\prime} \pi_{1}}(G)$.

Theorem 1.7. Let $G \neq 1$ be a solvable group. Then the following statements are equivalent:
i) there exist $1<N_{1}, N_{2}<G$ such that $\operatorname{tr}_{\mathfrak{M}}(G)=s N_{1}^{G} \bigcup_{s N_{2}}^{G}$;
ii) N_{1}, N_{2} are nilpotent Hall-subgroups of $G, G=N_{1} N_{2}$ and $\pi_{1} \mathscr{U}^{\circ} \pi_{2}=$ $=\pi(|G|)$, where $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1,2$.

If $O_{\pi_{1}}(G)>1$, then there are two possibilities for the structure of G :
a) $G=F_{2}(G)$ is a Frobenius group with Frobenius complement N_{2};
b) $G=F_{3}(G), F_{2}(G)$ is a Frobenius group whose complement, N_{2}, is cyclic of
odd order and $G / F(G)$ is a Frobenius group whose complement $N_{1} / F(G)$ is cyclic of order dividing $\prod_{p_{i} \in \pi_{2}}\left(p_{i}-1\right)$.

Proof. $i) \Rightarrow$ ii) Let $G \neq 1$ solvable with $\operatorname{tr}_{\mathfrak{R}}(G)=s N_{1}^{G} \bigcup_{s N_{2}}^{G}$ and $1<N_{i}<G$. Let $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1,2$. By Lemma 1.1, the N_{i} are nilpotent Hall subgroups of G and $\pi_{1} \bigcup^{\bullet} \pi_{2}=\pi(|G|)$, hence $G=N_{1} N_{2}$ and $\pi_{2}=\pi_{1}^{\prime}$. The solvability of G implies $O_{\pi_{1}}(G)>1$ or $O_{\pi_{2}}(G)>1$ and, reordering the π_{i}, we can assume $O_{\pi_{1}}(G)>1$. Therefore by Lemma 1.6, $F(G)=O_{\pi_{1}}(G), F_{2}(G)=O_{\pi_{1} \pi_{1}^{\prime}}(G), F_{3}(G)=O_{\pi_{1} \pi_{1}^{\prime} \pi_{1}}(G)$. Now N_{1} is a π_{1}-Hall subgroup of G : this implies $N_{1} \geqslant F(G)=F$ and, by Lemma $1.5, N_{2}$ is a Frobenius complement in the Frobenius group $N_{2} F$. Therefore the Sylow subgroups of N_{2} are cyclic or generalized quaternion [3, V. 8.7]; but $N_{2} \in \mathfrak{N}$ and therefore we can have either N_{2} cyclic or $N_{2} \simeq C \times Q$ with C cyclic, Q generalized quaternion and $(|C|, 2)=1$.

Now set $\bar{H}=H F / F$ for each $H \leqslant G$ and $\bar{\pi}_{i}=\pi\left(\left|\bar{N}_{i}\right|\right)$ for $i=1$, 2 . Obviously $\bar{\pi}_{1} \subseteq$ $\subseteq \pi_{1}$ and $\bar{\pi}_{2}=\pi_{2}$. Because $N_{i} \neq 1, G$ is not a nilpotent group and therefore $1 \neq \bar{G}=$ $=\bar{N}_{1} \bar{N}_{2}$; moreover, by 1.4, $\operatorname{tr}_{\mathfrak{R}}(\bar{G})=s \bar{N}_{1}^{\bar{G}} \bigcup^{\bullet} \bar{N}_{2}^{\bar{G}}$.

Let us show that $\bar{N}_{2} \unlhd \bar{G}$. Let $\bar{L} \leqslant \bar{G}$ minimal normal: then \bar{L} is nilpotent and this implies $\bar{L} \leqslant F(\bar{G})=O_{\pi_{2}}(\bar{G})<\bar{N}_{2}$, since \bar{N}_{2} is a π_{2}-Hall subgroup of \bar{G}. In particular the elementary abelian p-group \bar{L} is contained in a p-Sylow \bar{P} of $\bar{N}_{2} \simeq N_{2}$; but \bar{P} is cyclic or generalized quaternion. Consequently it contains only one subgroup of order p which moreover is inside the centre of \bar{P}. This gives \bar{L} cyclic and $\bar{L} \leqslant Z(\bar{P})$; then by nilpotency of \bar{N}_{2}, we have $\bar{L} \leqslant Z\left(\bar{N}_{2}\right)$. Assume $\bar{N}_{2} \notin \bar{G}$. Then $g \in \bar{G}$ exists so that $\bar{N}_{2}^{g} \neq$ $\neq \bar{N}_{2}$ and from $\bar{L}=\bar{L}^{g} \subseteq Z\left(\bar{N}_{2}\right)^{g}=Z\left(\bar{N}_{2}^{g}\right)$, it follows that $C_{\bar{G}}(\bar{L}) \geqslant\left\langle\bar{N}_{2}, \bar{N}_{2}^{g}\right\rangle>\bar{N}_{2}$. Now $\bar{G}=\bar{N}_{1} \bar{N}_{2}$, hence there exists $1 \neq b \in C_{\bar{G}}(\bar{L}) \cap \bar{N}_{1}$. Taking $1 \neq l \in \bar{L}$, we obtain a $\bar{\pi}_{2^{-}}$ element whose centralizer in \bar{G} is not a $\bar{\pi}_{2}$-group, contrary to Lemma 1.2.

Thus we have $\bar{N}_{2} \unlhd \bar{G}$ and $\bar{N}_{2} \in \mathfrak{N}$, hence $F(\bar{G}) \geqslant \bar{N}_{2}$; on the other hand we have already observed that $F=O_{\pi_{1}}(G)$ and $F_{2}(G)=O_{\pi_{1} \pi_{1}^{\prime}}(G)$, therefore $F(\bar{G})=$ $=O_{\pi_{2}}(\bar{G}) \leqslant \bar{N}_{2}$. It follows $F(\bar{G})=\bar{N}_{2}$, namely $F_{2}(G)=N_{2} F$ and $F_{2}(G)$ is a Frobenius group with Frobenius complement N_{2}.

If $\bar{N}_{1}=1$, we obtain $\bar{G}=\bar{N}_{2}$ and therefore $G=F_{2}(G)$ has the structure a).
If $\bar{N}_{1} \neq 1$, we obtain $\bar{G}=F(\bar{G}) \bar{N}_{1}$ and, applying Lemma 1.5 to \bar{G}, we get that \bar{G} is a Frobenius group with nilpotent Frobenius complement \bar{N}_{1}; hence $G=F_{3}(G)$.

We observe that 2$\}\left|N_{2}\right|$: otherwise $\bar{N}_{2} \simeq N_{2}$ would contain only one subgroup $\langle i\rangle$ of order 2, characteristic in $\bar{N}_{2} \unlhd \bar{G}$ and therefore normal in \bar{G}. It follows that $\langle i\rangle \leqslant$ $\leqslant Z(\bar{G})$; hence $2\left|\left|C_{\bar{G}}(x)\right|\right.$ for every $x \in \bar{G}$. Then, by Lemma $1.2, \bar{G}$ does not contain non-trivial $\bar{\pi}_{1}$-elements and, in particular $\bar{N}_{1}=1$, a contradiction.

It follows then that N_{2} is cyclic of odd order.
Finally we consider \bar{N}_{1} : this is a nilpotent Frobenius complement in \bar{G}, hence \bar{N}_{1} is cyclic or $\bar{N}_{1} \simeq C \times Q$ with C cyclic, Q generalized quaternion and $(|C|, 2)=1$. We observe now that \bar{N}_{1} is embedded in the automorphism group of the Frobenius kernel $\overline{F_{2}(G)} \simeq N_{2}$ of \bar{G}; but \bar{N}_{2} cyclic implies Aut $\left(N_{2}\right)$ abelian and therefore \bar{N}_{1} is cyclic.

Moreover if $\left|N_{2}\right|=\prod_{p_{i} \in \pi_{2}} p_{i}^{\alpha_{i}}$, we obtain $\left|N_{1}\right|\left|\left|\operatorname{Aut}\left(N_{2}\right)\right|=\varphi\left(\left|N_{2}\right|\right)=\right.$ $=\prod_{p_{i} \in \pi_{2}} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)$, and from this, considering that $\bar{\pi}_{1} \subseteq \pi_{1}$ and $\pi_{1} \cap \pi_{2}=\emptyset$, we have $\left|N_{1}\right| \mid \prod_{p_{i} \in \pi_{2}}\left(p_{i}-1\right)$. This means that if $\bar{N}_{1} \neq 1$, then G has the structure described in b).
$i i) \Rightarrow i$) We start with G a solvable group and N_{1}, N_{2} two nilpotent Hall subgroups of G such that $G=N_{1} N_{2}$ with $\pi_{1} \cup^{\cup} \pi_{2}=\pi(|G|)$, where $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$. Taking G of type a) or b) we can assume, without loss of generality, that $O_{\pi_{1}}(G)>1$. By Lemma 1.2 , proving $i i$) is equivalent showing that each element in G is a π_{1}-element or a $\pi_{2^{-}}$ element. We analyse separately the cases a) and b).

If G is of type a), then $G=F_{2}(G)$ is a Frobenius group with complement N_{2} and kernel $F(G)$; hence we have $|F(G)|=|G| /\left|N_{2}\right|=\left|N_{1}\right|$. This means that $F(G)$ is the only π_{1}-Hall subgroup of G and therefore $F(G)=N_{1}$. By the Frobenius partition, each element in G is in $F(G)$ or in a Frobenius complement. Then it is either a π_{1}-element or a π_{2}-element.

If G is of type b), then the Frobenius complement N_{2} of the Frobenius group $F_{2}(G)$ is a π_{2}-Hall of G. Therefore the Frobenius kernel $F\left(F_{2}(G)\right)=F(G)$ is a π_{1}-Hall of $F_{2}(G)$ while $F_{2}(G) / F(G) \simeq N_{2}$, Frobenius kernel of $G / F(G)$, is a π_{2}-group. Furthermore each non-trivial π_{2}-element in G belongs to $F_{2}(G) \backslash F(G)$: namely the elements in $F(G)$ are π_{1}-elements and $F_{2}(G) \unlhd G$ contains N_{2} which is a π_{2}-Hall of G and therefore $F_{2}(G)$ contains each π_{2}-element of G.

Assume now that there exist $1 \neq x \in G, p \in \pi_{1}$ and $q \in \pi_{2}$ such that $p, q \mid o(x)$. Then there exist also a π_{1}-element $y \neq 1$ and a π_{2}-element $z \in F_{2}(G) \backslash F(G)$ such that $y z=$ $=z y=x$. Notice that $F_{2}(G)$ is a Frobenius group with Frobenius kernel $F(G)$, hence the only element of $F(G)$ centralized by $z \in F_{2}(G) \backslash F(G)$ is 1 ; then $y \notin F(G)$, that is $1 \neq \bar{y}=$ $=y F(G) \in \bar{G}=G / F(G)$. By hypothesis, \bar{G} is a Frobenius group whose kernel is, as already observed, a π_{2}-group; therefore the π_{1}-element \bar{y} must lie in a Frobenius complement and then it does not centralize $\bar{z} \in F_{2}(G) / F(G)-\{1\}$ contrary to the fact that y centralizes z.
2. Solvable groups in which every Fitting set is a disjoint union of elementary Fitting sets

If G is a group and \mathscr{F} is a Fitting set of G, we denote by $G_{\mathscr{F}}$ the \mathscr{F}-radical of G, that is the union of all the normal subgroups of G belonging to \mathscr{F}. We begin this section with two easy but useful remarks.

Remark 2.1. Let \mathscr{F} be a Fitting set of the group G and suppose that $s n M_{i}^{G}$ are ele$\underset{k}{\operatorname{mentary}}$ Fitting sets of G for $i=1, \ldots, k$ such that $\mathscr{F} \subseteq \bigcup_{i=1}^{k} s n M_{i}^{G}$. Then $\mathscr{F}=$ $=\bigcup_{i=1}^{k} \operatorname{sn}\left[\left(M_{i}\right)_{\mathscr{F}}\right]^{G}$, with $\operatorname{sn}\left[\left(M_{i}\right)_{\mathscr{F}}\right]^{G}$ elementary Fitting sets of G.

Remark 2.2. Let G be a solvable group.
a) If $\mathscr{F} \supseteq \operatorname{tr}_{\mathfrak{M}}(G)$ is a Fitting set of G such that $\mathscr{F}=\bigcup_{i=1}^{k} s n M_{i}^{G}$, with $s n M_{i}^{G} \neq \mathfrak{I}$ elementary Fitting sets, then $k \leqslant 2$ and the $N_{i}=F\left(M_{i}\right)$ are such that $\operatorname{tr}_{\mathfrak{M}}(G)=$ $=s N_{1}^{G} \bigcup_{s} N_{2}^{G}$.
b) If there exists an elementary Fitting set of G containing $\operatorname{tr}_{\mathfrak{M}}(G)$, then G is nilpotent.

Theorem 2.3. Let G be a solvable, but not nilpotent group. Then the following two statements are equivalent:
i) $\operatorname{tr}_{\mathfrak{M}^{2}}(G)$ is a disjoint union of elementary Fitting sets;
ii) $G \simeq\left\{\binom{x}{\alpha x+\beta}: \alpha \in H \leqslant G F\left(p^{n}\right)^{\times}, \beta \in G F\left(p^{n}\right)\right\}$ where $n=\operatorname{ord} p(q)$, for each $q||H|$.

Proof. $i) \Rightarrow$ ii) Let G be a non-nilpotent solvable group with $\operatorname{tr}_{\mathfrak{R}^{2}}(G)$ the disjoint union of elementary Fitting sets. $\mathrm{Tr}_{\mathfrak{R}^{2}}(G) \supseteq \operatorname{tr}_{\mathfrak{R}}(G)$ and Remark 2.2 imply that $\operatorname{tr}_{\mathfrak{R}^{2}}(G)=\operatorname{sn} M_{1}^{G} \bigcup_{s n} M_{2}^{G}$ with $M_{i} \neq 1$. Moreover, setting $N_{i}=F\left(M_{i}\right)$, we have $\operatorname{tr}_{\mathfrak{R}}(G)=s N_{1}^{G} \bigcup_{s} N_{2}^{G}$. By Theorem 1.7, if we put $\pi_{i}=\pi\left(\left|N_{i}\right|\right)$ for $i=1,2$, then we obtain $G=N_{1} N_{2}$ with $1 \neq N_{i} \neq G$ nilpotent π_{i}-Hall subgroups of G and $\pi_{1} \cup^{\circ} \pi_{2}=$ $=\pi(|G|)$. Furthermore G is of type $a)$ or of type b) as in Theorem $1.7 i i)$. We consider separately the two types explaining the corresponding structure of G in the case a) and the impossibility of case b).
G of type a). In this case G is a Frobenius group with kernel $N_{1}=F(G)$ and complement N_{2}. Then $N_{2}=F\left(M_{2}\right) \leqslant M_{2}$; it cannot be that $N_{2}<M_{2}$ otherwise we would have $M_{2} \cap N_{1} \unlhd M_{2}$ with $M_{2} \cap N_{1} \in \mathfrak{N}$ which gives $N_{2}=F\left(M_{2}\right) \geqslant M_{2} \cap N_{1} \neq 1$ contrary to $\pi_{1} \cap \pi_{2}=\emptyset$; therefore $M_{2}=N_{2}$ is a Frobenius complement in G. We observe that $G \in \mathfrak{N}^{2}$, that is $G \in \operatorname{tr}_{\mathfrak{R}^{2}}(G)=s n M_{1}^{G} \dot{U}_{s n M_{2}^{G}}$; on the other hand $G \notin s n M_{2}^{G}$, otherwise $G=N_{2}$, contrary to $N_{1} \neq 1$. Hence $G=M_{1}$ and, using the fact that \mathfrak{N}^{2} is closed
with respect to subgroups, we obtain $s G=s n G \bigcup^{\circ} s H^{G}$ with H a Frobenius complement of G. But $s n G=\{T \leqslant F(G)\} \cup\{T \leqslant G: T>F(G)\}[3, \mathrm{~V}, 8.16]$ hence if $T \leqslant G$, setting $F=F(G)$, the alternatives are: $T \leqslant F, T>F, T \leqslant H^{g}$ for some $g \in G$. We show that this implies F minimal normal in K for each $K \leqslant G$ with $K>F$. Assume that there exists $K \leqslant G$ with $K>F>\bar{F}$ and $1 \neq \bar{F} \triangleleft K$. Then $K \cap H=\bar{H} \neq 1, \bar{F} \bar{H} \leqslant G$ and also $\bar{F} \bar{H} \nLeftarrow F$ as well as $\bar{F} \bar{H} \not \not F F$, because $\bar{F} \bar{H} \cap F=\bar{F}(F \cap K \cap H)=\bar{F} \neq F$. Finally $\bar{F} \bar{H} \notin$ $\notin H^{g}$ since $1 \neq \bar{F} \notin H^{g}$ for every $g \in G$. It follows that $\bar{F} \bar{H} \notin s n G \cup_{s} H^{G}$, a contradiction. In particular F is elementary abelian, say $|F|=p^{n}$ with $\{p\}=\pi_{1}, n \geqslant 1$ and if we consider H imbedded in $\operatorname{Aut}(F) \simeq G L(n, p)$, then F is an irreducible H-module.

If 2$\}|H|$ then H is a nilpotent complement in the Frobenius group G, hence H is cyclic. Then by II, 3.10 in [3], there exists a monomorphism $a: H \rightarrow G F\left(p^{n}\right)^{\times}$such that $x^{b}=a(b) x$ for each $x \in F$, where we identify F with $G F\left(p^{n}\right)$ and the operation on the right side is the product in the field. This gives

$$
\left.G \simeq\left\{\binom{x}{\alpha x+\beta}: \beta \in G F\left(p^{n}\right), \alpha \in a(H) \leqslant G F\left(p^{n}\right)^{\times}\right\}\right\}
$$

Now, due to the fact that F is minimal normal in K for each $K \leqslant G$ with $K>F$, the same argument applies to every subgroup in H and enables us to deduce that n is the order of p modulo q, for each $q||H|$.

If $2||H|$, then applying the same argument again to $C \leqslant H$ with $| C \mid=2$, we obtain $n=\operatorname{ord} p(2)$; but $(|H|,|F|)=1$ implies p odd and therefore $n=1$, thus $F \simeq C_{p}$ and H is embedded in $\operatorname{Aut}\left(C_{p}\right) \simeq C_{p-1}$. In particular H is cyclic and $|H| \mid p-1$; then the argument applies to H itself and this leads to

$$
G \simeq\left\{\binom{x}{\alpha x+\beta}: \beta \in G F(p), \alpha \in H \leqslant G F(p)^{\times}\right\}
$$

with $q \mid p-1$ for each $q||H|$.
G of type b). In this case it is $G=F_{3}(G), F_{2}(G)$ is a Frobenius group with complement N_{2} and $G / F(G)$ is a Frobenius group with complement $N_{1} / F(G)$. We observe, first of all, that $N_{1} \in \mathfrak{N}$ and therefore $N_{1} \in \mathfrak{N} \mathfrak{N}^{2}$. On the other hand $N_{G / F(G)}\left(N_{1} / F(G)\right)=N_{1} / F(G)$ and, due to the fact that a Frobenius complement is selfnormalizing, it follows that $N_{G}\left(N_{1}\right)=N_{1}$. Hence $N_{1}=F\left(M_{1}\right)$ is not subnormal in any subgroup of G in which it is properly included and therefore $N_{1}=M_{1}$. Now from $F_{2}(G) \in \mathfrak{N}^{2}$ and $F_{2}(G) \notin N_{1}$, we obtain $F_{2}(G) \in \operatorname{sn} M_{2}^{G}$, hence $\operatorname{sn} F_{2}(G) \subseteq \operatorname{sn} M_{2}^{G}$: in particular we have $1 \neq F(G) \in s n M_{2}^{G} \cap s n M_{1}^{g}$, a contradiction.
$i i) \Rightarrow i$) Let G be a group as in $i i)$, that is, up to isomorphism, $G=G F\left(p^{n}\right) \times H$ with $H \leqslant G F\left(p^{n}\right)^{\times}, x^{b}=x b$ for each $x \in G F\left(p^{n}\right)$ and $b \in H$, where n is the order of p modulo q for each q such that $q||H|$. Obviously G is a Frobenius group with kernel $F=G F\left(p^{n}\right)$ and complement H. We show that F is minimal normal in K for each $K \leqslant G$ with $K>F$. Assume that there exists $K=F L$ with $1 \neq L \leqslant H$ and $N<F$ minimal normal in $F L$; without loss of generality we can assume $|L|=q$ with q a prime. Then N is an irreducible L-module. Moreover, if $|N|=p^{k}$,
again by II, 3.10 in [3], we have $k=\operatorname{ord} p(q)$; but $q||H|$, therefore ord $p(q)=n$ and $N=F$, a contradiction.

Now let $T \leqslant G$ with $T \nexists F, T \ngtr F$ and consider $T \cap F=\bar{T} \unlhd T$. We have $\bar{T}<F$ and $N_{G}(\bar{T}) \geqslant T, F$ since F is abelian; hence $N_{G}(\bar{T}) \geqslant T F$ and thus $\bar{T} \triangleleft K=T F$ with $K>F$. Using the fact that F is minimal normal in K, it follows that $\bar{T}=1$. Then $p \nmid|T|$: otherwise, considering $P \in \operatorname{Syl}_{p}(T)$ we would have $1 \neq P \leqslant T \cap F$ since F is the only p-Sylow in G, contrary to $T \cap F=1$. Thus T is included in a p^{\prime}-Hall subgroup of G, namely in H^{g} for a suitable $g \in G$. Considering that $s n G=\{T \leqslant F\} \cup\{T \leqslant$ $\leqslant G: T>F\}[3, \mathrm{~V}, 8.16]$, this shows that $s G=s n G \dot{U}_{s} H^{G}$. But $s n G$ is a Fitting set of G and H nilpotent Hall subgroup of G implies that $s H^{G}=s n H^{G}$ is a Fitting set of G. Since $G \in \mathfrak{R}^{2}$, this means that $\operatorname{tr}_{\mathfrak{R}^{2}}(G)$ is a disjoint union of elementary Fitting sets of G.

Corollary 2.4. Let G be a non-nilpotent solvable group. Then the two following statements are equivalent:
i) $\operatorname{tr}_{2^{k}}(G)$ is a disjoint union of elementary Fitting sets for some $k \in N$, $k \geqslant 2$;
each $q\left||H| .\binom{\right.$ ii) $\left.G}{q}: \beta \in G F\left(p^{n}\right), \alpha \in H \leqslant G F\left(p^{n}\right)^{\times}\right\}$, where $n=\operatorname{ord} p(q)$, for
Proof. $i) \Rightarrow i i)$ Since $\operatorname{tr}_{\mathfrak{M}_{k}}(G) \supseteq \operatorname{trg}_{\mathfrak{R}^{2}}(G)$ for each $k \geqslant 2$ we obtain, by Remark 2.1, that $\operatorname{tr}_{\mathfrak{R}^{2}}(G)$ is a disjoint union of elementary Fitting sets and then, by Theorem 2.3, G has the structure described in $i i)$.
$i i) \Rightarrow i)$ If the structure of G is as in $i i)$, then $G \in \mathfrak{M}^{2}$ and so $\operatorname{tr}_{\mathfrak{R}^{k}}(G)=\operatorname{tr}_{\mathfrak{R}^{2}}(G)$ for every $k \geqslant 2$. Thus, by Theorem 2.3, $\operatorname{tr}_{\mathfrak{g}^{k}}(G)$ is disjoint union of elementary Fitting sets, for each $k \geqslant 2$.

Theorem 2.5. Let G be a non-nilpotent solvable group. Then the following statements are equivalent:
${ }^{i}$) every Fitting set of G is disjoint union of elementary Fitting sets of G;

iii) every Fitting set of G is a disjoint union of at most two elementary Fitting sets.

Proof. $i) \Rightarrow i i)$ It is a trivial consequence of Theorem 2.3.

$$
\text { ii) } \Rightarrow \text { iii) Let } G \simeq\left\{\binom{x}{\alpha x+\beta}: \beta \in G F\left(p^{n}\right), \alpha \in H \leqslant G F\left(p^{n}\right)^{\times}\right\} \text {with } n=\operatorname{ord} p(q)
$$

for each $q||H|$ and \mathfrak{F} a Fitting set of G. Due to the facts established in the proof of

Theorem $2.3 i i) \Rightarrow i$) we have $s G=s n G \bigcup^{*}{ }_{s n H^{G}}$, with $s n G, s n H^{G}$ Fitting sets of G. But $\mathscr{F} \subseteq s G$ and then, by Remark 2.1, $\mathscr{F}=s n G_{\mathscr{F}} \cup_{s n}\left[H_{\mathscr{F}}\right]^{G}$ is the disjoint union of at most two elementary Fitting sets.
$i i i) \Rightarrow i)$ Straightforward.
Remark 2.6. In the groups as in Theorem $2.5 i i)$, the condition $n=\operatorname{ord} p(q)$ for each $q||H|$, does not force $| H \mid$ to be prime. For example consider $p=29, n=2$. Then $\left|G F\left(p^{n}\right)^{\times}\right|=2^{3} \cdot 3 \cdot 5 \cdot 7$ and there exists $H \leqslant G F\left(p^{n}\right)^{\times}$with $|H|=15$. The group $G=G F\left(29^{2}\right) \times H$, where the action is given by the product in the field, is of type $i i$), since $2=\operatorname{ord} 29(5)=\operatorname{ord} 29(3)$.

References

[1] W. Anderson, Fitting sets in finite soluble groups. Ph. D. thesis, Michigan State University, 1973.
[2] K. Doerk . T. Hawkes, Finite Soluble Groups. Berlin - New York 1992.
[3] B. Huppert, Endliche Gruppen I. Berlin - Heidelberg - New York 1967.
[4] G. Zacher, Sull'ordine di un gruppo finito risolubile somma dei suoi sottogruppi di Sylow. Atti Acc. Lincei Rend. fis., s. 8, vol. 20, 1956, 171-174.
[5] D. Bubboloni, Contributi alla teoria degli insiemi di Fitting. Tesi di dottorato, Università degli Studi di Firenze, 1992.

