Włodarczyk, Kazimierz: 
The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras (L'esistenza di derivate angolari di mappe olomorfe di domini di Siegel in una generalizzazione di algebre \( C^{*} \))
 Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni Serie 9 5 (1994), fasc. n.4, p. 309-328,  (English)
pdf (1.71 MB), djvu (395 Kb).  | MR1320583  | Zbl 0827.47030 
Sunto
Questo articolo ha lo scopo di avviare uno studio sistematico dell'esistenza di limiti e derivate angolari di mappe olomorfe di domini di Siegel di dimensione infinita in algebre \( J^{*} \). Poiché le algebre \( J^{*} \) sono generalizzazioni naturali di algebre \( C^{*} \), algebre \( B^{*} \), algebre \( JC^{*} \), algebre ternarie e spazi di Hilbert complessi, ne seguono diversi risultati significativi. Vengono esaminati alcuni esempi.
Referenze Bibliografiche
[2] 
R. B. BURCKEL, 
An Introduction to Classical Complex Analysis. Vol. 
I, 
Academic Press, New York-San Francisco 
1979. | 
MR 555733 | 
Zbl 0434.30002[3] 
C. CARATHÉODORY, 
Über die Winkelderivierten von beschränkten analytischen Functionen. 
Sitz. Ber. Preuss. Akad., Phys.-Math., 
IV, 
1929, 1-18. | 
Jbk 55.0209.02[4] 
C. CARATHÉODORY, 
Conformal Representations. 
Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge 
1952. | 
Zbl 0047.07905[5] 
C. CARATHÉODORY, 
Theory of Functions. Vol. 
2, 
Chelsea Publishing Company, New York 
1960. | 
Zbl 0056.06703[6] 
E. CARTAN, 
Sur les domaines bornés homogènes de l'espace de \( n \) variables complexes. 
Abh. Math. Sem. Univ. Hamburg, 
11, 
1935, 116-162. | 
Zbl 0011.12302[7] 
C. C. COWEN - 
CH. POMMERENKE, 
Inequalities for the angular derivative of an analytic function in the unit disk. 
J. London Math. Soc., (2), 
26, 
1982, 271-289. | 
fulltext (doi) | 
MR 675170 | 
Zbl 0476.30001[8] 
S. DINEEN, 
The Schwarz Lemma. 
Oxford Mathematical Monographs, 
Clarendon Press, Oxford 
1989. | 
MR 1033739 | 
Zbl 0708.46046[12] 
T. FRANZONI - 
E. VESENTINI, 
Holomorphic Maps and Invariant Distances. 
North-Holland Mathematics Studies 40, Amsterdam-New York-Oxford 
1980. | 
MR 563329 | 
Zbl 0447.46040[14] 
L. A. HARRIS, 
Banach algebras with involution and Möbius transformations. 
J. Functional Anal., 
11, 
1972, 1-16. | 
MR 352994 | 
Zbl 0239.46058[15] 
L. A. HARRIS, 
Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. 
Lecture Notes in Mathematics, 
364, 
Springer-Verlag, Berlin-Heidelberg-New York 
1974, 13-40. | 
MR 407330 | 
Zbl 0293.46049[16] 
L. A. HARRIS, 
Operator Siegel domains. 
Proc. Roy. Soc. Edinburgh, 
79 A, 
1977, 137-156. | 
MR 484600 | 
Zbl 0376.32027[19] 
L.-K. HUA, 
On the theory of automorphic functions of a matrix variable I - Geometrical Basis. 
Amer. J. Math., 
66, 
1944, 470-488. | 
MR 11133 | 
Zbl 0063.02919[20] 
L.-K. HUA, 
On the theory of automorphic functions of a matrix variable II - The classification of hypercircles under the symplectic group. 
Amer. J. Math., 
66, 
1944, 531-563. | 
MR 11134 | 
Zbl 0063.02920[22] 
W. KAUP, 
Bounded symmetric domains in complex Hilbert spaces. 
Symp. Math., 
Istituto Nazionale di Alta Matematica Francesco Severi, 
26, 
1982, 11-21. | 
MR 663020 | 
Zbl 0482.32012[24] 
M. KOECHER, 
An Elementary Approach to Bounded Symmetric Domain. 
Rice Univ., Houston, Texas 
1969. | 
MR 261032 | 
Zbl 0217.10901[25] 
A. KORANYI - 
J. WOLFF, 
Generalized Cayley transformations of bounded symmetric domains. 
Amer. J. Math., 
87, 
1965, 899-939. | 
MR 192002 | 
Zbl 0137.27403[26] 
A. KORANYI - 
J. WOLFF, 
Realization of hermitian symmetric spaces as generalized half-planes. 
Ann. of Math., 
81, 
1965, 265-288. | 
MR 174787 | 
Zbl 0137.27402[29] O. LOOS, Bounded symmetric domains and Jordan pairs. Univ. of California, Irvine 1977.
[30] 
B. D. MACCLUER - 
J. H. SHAPIRO, 
Angular derivatives and compact composition operators on the Hardy and Bergman spaces. 
Canadian J. Math., 
38, 
1986, 878-906. | 
fulltext (doi) | 
MR 854144 | 
Zbl 0608.30050[31] 
L. NACHBIN, 
Topology on Spaces of Holomorphic Mappings. 
Springer-Verlag, Berlin-Heidelberg-New York 
1969. | 
MR 254579 | 
Zbl 0172.39902[32] 
R. NEVANLINNA, 
Analytic Functions. 
Springer-Verlag, Berlin-Heidelberg-New York 
1969. | 
MR 279280 | 
Zbl 0199.12501[33] 
I. I. PJATETSKIJ-SHAPIRO, 
Automorphic Functions and the Geometry of Classical Domains. 
Gordon-Breach, New York 
1969. | 
MR 252690 | 
Zbl 0196.09901[35] 
W. RUDIN, 
Function Theory in the Unit Ball of \( C^{n} \). 
Springer-Verlag, New York-Heidelberg-Berlin 
1980. | 
MR 601594 | 
Zbl 1139.32001[36] 
D. SARASON, 
Angular derivatives via Hilbert space. 
Complex Variables Theory Appl., 
10, 
1988, 1-10. | 
MR 946094 | 
Zbl 0635.30024[37] 
J. H. SHAPIRO, 
Composition Operators and Classical Function Theory. 
Springer-Verlag, New York 
1993. | 
MR 1237406 | 
Zbl 0791.30033[38] 
H. UPMEIER, 
Symmetric Banach Manifolds and Jordan \( C^{*} \)-Algebras. 
North-Holland, Amsterdam, 
Math. Studies, vol. 
104, 
1985. | 
MR 776786 | 
Zbl 0561.46032[39] 
H. UPMEIER, 
Jordan algebras in analysis, operator theory, and quantum mechanics. 
Regional Conference Series in Math., 
67, 
Amer. Math. Soc., Providence, RI, 
1987. | 
MR 874756 | 
Zbl 0608.17013[44] 
K. WŁODARCZYK, 
Pick-Julia theorems for holomorphic maps in \( J^{*} \)-algebras and Hilbert spaces. 
J. Math. Anal. Appl., 
120, 
1986, 567-571. | 
fulltext (doi) | 
MR 864774 | 
Zbl 0612.46044[45] 
K. WŁODARCZYK, 
Studies of iterations of holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. 
Quart. J. Math. Oxford, (2), 
37, 
1986, 245-256. | 
fulltext (doi) | 
MR 841432 | 
Zbl 0595.47046[46] 
K. WŁODARCZYK, 
Julia's lemma and Wolff's theorem for \( J^{*} \)-algebras and complex Hilbert spaces. 
Proc. Amer. Math. Soc., 
99, 
1987, 472-476. | 
Zbl 0621.46041[47] 
K. WŁODARCZYK, 
The angular derivative of Fréchet-holomorphic maps in \( J^{*} \)-algebras and complex Hilbert spaces. 
Proc. Kon. Nederl. Akad. Wetensch., 
A91, 
1988, 455-468; 
Indag. Math., 
50, 
1988, 455-468. | 
MR 976528 | 
Zbl 0665.46034[48] 
K. WŁODARCZYK, 
Hyperbolic geometry in bounded symmetric homogeneous domains of \( J^{*} \)-algebras. 
Atti Sem. Mat. Fis. Univ. Modena, 
39, 
1991, 201-211. | 
MR 1111769 | 
Zbl 0744.46035[50] 
K. WŁODARCZYK, 
Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. 
Rend. Mat. Acc. Lincei, s. 9, 
5, 
1994, 43-53. | 
fulltext bdim | 
MR 1273892 | 
Zbl 0802.46060