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M e c c a n i c a de i cont inui . — On consistency, stability and convergence of staggered sol

ution procedures. N o t a di E W A TURSKA e B E R N A R D O A. S C H R E F L E R , p resen ta ta (*) dal 

Corr isp . G . Maier . 

ABSTRACT. — The simultaneous and staggered procedures of solving a partitioned form of a coupled 
system of ordinary differential equations are presented. Formulas for errors are compared. Counter-exam
ples for convergence with a constant number of iterations at each time step are given. 

KEY WORDS: Coupled problems; Systems of linear simultaneous equations; Numerical solution 
procedures. 

RIASSUNTO. — Sulla consistenza, stabilità e convergenza di procedure di soluzione con partizione matriciale. 
Vengono discussi due metodi di soluzione di un sistema di equazioni differenziali ordinarie che descrivono 
problemi di interazione nel campo dell'ingegneria. Si presentano formule per la valutazione dell'errore e 
contro esempi concernenti la convergenza ottenuta con un numero costante di iterazioni per passo 
temporale. 

INTRODUCTION 

Many engineering problems involve some time dependent interacting fields. Typical 
examples relating to slow phenomena are thermomechanical coupling and isothermal 
or non-isothermal consolidation. For their quantitative solution numerical procedures 
are often applied which consist of finite element discretization in space and finite dif
ference discretization in time. The effectiveness of them depends to a great extent on 
algorithms used for the solution of the algebraic system of equations resulting from the 
discretization process. Usually the solutions of these equations are obtained by 
iteration. 

One of the iterative methods is the staggered procedure. It allows to solve large 
problems of coupled fields using available numerical codes made for single field prob
lems, and is easily transferable from linear to non-linear equations. From a large num
ber of papers on the topic it can be concluded that the staggered scheme is accurate 
and efficient, but in some cases can cause difficulties. 

The main aim of the paper is to find satisfactory criteria to test the staggered proce
dure and to compare them with ones for the simultaneous procedure and a direct sol
ution process. The properties shall be illustrated by examples in which the generalised 
mid-point (GM-P) method is used as time discretization, thus the presented counter
examples cover a large range of finite difference schemes. 

We present a detailed study of linear problems, without assuming symmetry or po
sitive definiteness of matrices appearing in the semi-discrete problem. This allows to 
extend the conclusions to non-linear problems treating them as linear at each time 
instant. 

(*) Nella seduta del 12 febbraio 1994. 
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CONDITIONS SUFFICIENT FOR GLOBAL CONVERGENCE 

Let us consider the following differential equation. It may represent e.g. a thermo-
mechanical problem or a semi-saturated isothermal or non isothermal consolidation 
problem (see[l]): 

(1) BX + CX = F 

where matrices B = [b^], C = foy], F = [ / ] have been obtained by the FE discretiza
tion, the nodal variables vector X being a point in a vector space with Euclidean norm. 
Symmetry or positive definiteness of matrices B and C is not assumed. 

On use of a one-step finite difference operator endowed with consistency, for the 
time derivative {e.g. the backward or forward Euler, arbitrary Runge-Kutta etc.) we ob
tain the discrete equation: 

(2) &Xn + 1-&Xtt-f = 0 

where 21 = [az>], P = [fyy]. Equation (2) will be called the monolithic equation. Sub
scripts n and n 4- 1 refer to the subsequent time instants. 

In the following we shall focus our attention on three solution algorithms of eq. (1): 
a direct one [in which Xn + x is directly evaluated from the monolithic equation (2)] and 
two iteration schemes - simultaneous and staggered ones - resulting from a partitioning 
of the monolithic equation (2). 

Direct solution scheme 

The error introduced when solving eq. (2) directly is of form: £n + 1 = X{tn + i ) — 
— Xn + j , where X(tn + 1 ) is the exact solution of eq. (1) and Xn + x is the numerical sol
ution of eq. (2). It satisfies the following equation: 

(3) (Z + G)£„ + 1 = H£„ + r„ + 1 . 

The stability condition ||(7 + G) _ 1 H| | < 1 and consistency property, rn + i = 0{At2) 
(see [3]) are sufficient for the direct process to be globally convergent (see [2]). ||-|| 
represents the spectral norm. The matrices G and H are defined in the following and 
rn + 1 is the local truncation error. 

Partitioned solution schemes 

The partitioning of matrix 21 is chosen in such a way that the staggered scheme can 
be used: 

(4) 

(5) S3L = 

Then eq. (2) can be written as: 

(6) &Lx„+l = m„ + $-nRx„+1 

0 

a = 
0 

a 22 

= &L + a R , 

, ®R = 
0 

«21 

«12 

0 
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After some rearrangements we obtain the partitioned form of eq. (2): 

(7) *, + i = -Gxyn + l + HiXn + fly yn + 1 = -G2xn + 1 + H2Xn + f2 

where: 

X„ + i = [xn + i, y„ + i J , 

(8) 
jf = [jfi, Jf2]T > Jfi = an1 Jfi> Jf2 = *£$! > 

= a??1 a 22 «21 > Gi = a[i a12, G2 

^ Hi = af/ [ b n , b12 ] , H2 = a^1 [b21, b22 ] . 

Matrices Gì , G2 depend on the time increment A/. 

Simultaneous iterations 

The simultaneous iteration scheme for eq. (7) is defined by: 

(9) xk
n + l = - Gxy

k
n-+\ + HxXniK + Si, j £ + i = - G2 ** ; î + H2Xn,K + Jf2 

where k is the index of iteration, K is the last performed iteration K = K(«), 

(10) \-xn + 1 > yn + 1 J "~ ^ « + 1 — ^ &' ̂ « - / 
/ = 0 

and /3Z are appropriate weighting coefficients. 
Usually, the last obtained solution is used as the predictor. The error En + 1K = 

= X(t„ + 1 ) - X^+ !, where X^+ ! is the numerical solution of eq. (9), can be written as 
(see [3]): 

(ID En + hK = 

= {-GfEH + lt0 + (I - (-Gf)(I + G^HE^+.il - (-GfKl + G)~1rH + 1 

where: 

(12) 
0 

G2 0 
H 'Hi 

H2 

and r„ +1 is the local truncation error. 
Sufficient conditions for the simultaneous process to be globally convergent are: 

stability \\{1 — ( —G)K){I + G) _ 1 H| | < 1, iteration convergence ||G|| < 1 and consis
tency rn + l = 0(At2). 

Staggered iterations 

The staggered iteration process is defined as follows. First we predict the value of 

xn + ! appearing on the r.h.s. of the second of eq. (7) x^\ \ = xn + 1? 0> and from this 
equation we calculate the value of y„ + it 0 , then substitute it into the first equation of 
(7), which is solved for xn + ljl. Now xn + 11 is used as a predictor in the second of 
eq. (7) and the whole process is repeated until a required tolerance r is attained; we de
note K as the number of performed iterations, K = K(n). The last step is to calculate 
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y„ + ltK, then Xn + 1 = lx„ + ljK,y„ + ltKlT. The predictor #„ + 1>0has the form: 
m 

(13) *» + i,o = 2 PjX„-itK . 
t = 0 

The following two alternative sets of equations represent the staggered scheme: 

(14) Xn + l,k= ~ Giyn + l,k-l + ^ 1 ^ , X + J f l , 

(15) .y» + i,*-i = - G 2 ^ + 1 ^ _ ! + H 2 X^ K + Jf2, 

or: 

(16) *» + i,* = G 1 G 2 ^ + 1 > _ 1 + ( - G 1 H 2 + H 1 )X« > x -G 1 J f 2 + jF1 , 

(17) J W l , K = ~ ^ 2 ^ + l,X + ^ 2 ^ j X + j f 2 , 

where eq. (16) is iterated and eq. (17) is used only once to evaluate^ + i>K. The global 
error en + i}K = X(tn + l) — X„+\}K, where Xn + ljK is the numerical solution of eq. 
(14) and eq. (15) satisfies (see [3]): 

(18) en + hK = G2Ken + 1>0 + (I - G2K)(I + G)-lHeH,K + (/ - G2K)(I + G)~lrn + l . 

The sufficient conditions for global convergence are: iteration convergence ||G|| < 1, 
stability \\Qn\\ = \\(I - G2K)(I + G) _ 1 H| | < 1, and consistency r„ + 1 = 0(At2). In the 
limit case K —> oo for ||G|| < 1 the equations (11) and (18) have the same forms as the 
expression for the error Sn + 1 of the direct method equation (3). 

In concise form the error for the staggered scheme equation (18) can be written 
as: 

(19) e» + l ,K=P* + l*» + l,0 + Qn + l*n,K + Rn + irn + l • 

Recursively for n we have from eq. (18) that: 
n 

(20) e„ + itK = P„ + 1e„ + lt0+ E g„ + 1 . . .g f f + 1 _/P„_/^_ / > 0 ' + . 
1 = 0 

n 

+ Q» + 1 ••• '01*0,0 + 2 Qn + 1 ••• Qn + 1-lRn-l^n-l + ^ + i ^ + 1 . 
/ = 0 

We can recognise that e0} 0 is the initial round-off error made at the starting step. 
Notice that the local truncation error rn +1 is the same for all the above errors. 

The conditions of convergence and stability for each of the solution schemes are in
dependent and it is generally not possible to replace one by the other. In [3] it has been 
shown that if G has real positive eigenvalues, and the iterations are convergent, since 
Hell < 1, then the condition of stability for the staggered scheme can be replaced by 
the stability condition for the simultaneous iteration scheme with K = 1, i.e. 
\\H\\< 1. 

For the simultaneous scheme, the assumption of real and positive eigenvalues of G 
permits us to check the stability condition for one iteration K = 1, instead of checking 
it for the performed number of iterations, because then \\(l — ( — G)K )(/ + G)~l || < 1 
so also | | ( / - ( - G f ) ( / + G ) - 1 H | | < 1. 

For the staggered scheme, even for G with real and positive eigenvalues and 
11G11 < 1, the stability condition for one iteration i.e. ||(/ — G ) H | | < 1 , does not give 
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stability for arbitrary K. This is caused by the fact that ||(7 - G2K )(/ - G2-)~1:|| may be 
larger than 1, so \\(I - G2K)(I + G ) " 1 ^ ! = ||(/ - G2K)(I ~ G2)~l(I - G)H\\ may 
also be larger than 1. 

Other convergence conditions 

In the case of partitioned solutions some authors (see [4-6]) verify stability in a dif
ferent way than the one presented above. First they assume the form of the predictor, 
then they check the stability of an equation which is obtained from the partitioned 
equation (6) by substituting into it the specific form of the predictor. 

Let us illustrate this on an example, with the predictor taken as the last obtained 
solution X° + 1 = JQ. Examples of this type of predictor can be found in [1,4-7]. 
Equation (7) with the above predictor becomes: 

(21) X„ + 1 = - G X „ + HX« + JF 

and the stability condition is: 

(22) | | - G + H | |< 1. 

It is easily seen, that if G and H have real and positive eigenvalues and satisfy 
eq. (22) and ||G|| < 1, then also the condition for stability is fulfilled for the staggered 
scheme i.e. \\(I - G2K)(I + G ) - 1 ^ < 1. For the simultaneous scheme in addition an 
even number of iterations K is required, because then \\{I — ( — G)K){I + 
+ G)-1/!?!! < 1. Generally, for arbitrary G and H, the above facts are not true. 

To achieve a given accuracy it has often been recommended to cut the time step Â  
instead of performing more iterations K. This is permissible only if the procedure is 
globally convergent for a constant number of performed iterations K. We recall that 
the process is globally convergent when the global error en^K = X(t„ ) — Xn tends to 
zero i.e. 

(23) \en x|| ——^ 0 with nAt = const, K = const 
At-*0 
n —» oo 

and for all solutions Xn satisfying the starting conditions, X0 ) 0
 = X(t0). In (2y3) \\en}K\\ 

is a norm of the global error vector. 
In paper [3] it has been shown that the global error is bounded but does not tend to 

zero. This fact suggested that the partitioned procedure is convergent for a fixed num
ber of iterations, but to a solution of another equation. In the following we find the 
equation in the case of the last solution predictor. Following the same procedure such 
equations can be found for other predictors of type eqs. (10), (13). 

For the time discretization we have chosen the generalised mid-point (GM-P) 
method because it is a member of many classes of one-step algorithms, i.e. implicit sin
gle step methods [2], SSPJ methods (SSPJ-single step p-order polynomial, j = 1, the 
order of the equation) [8], Runge-Kutta methods (see [9]) or a degenerate case of 
collocation schemes [10]. It also has good stability properties, it is unconditionally 
stable (^-stable) for 6 ̂  1/2 and is nonlinearly B-stable, contrary to the trapezoidal 
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method which is not E-stable (see [11]). The GM-P method is constructed with the 
use of: 

(24) Xn + e=(XH + 1-XH)/At, 

(25) Xn + d=(l-d)Xn + 0X„ + 1 

where 6 is a parameter, usually 0 < 6 < 1. Substituting eq. (24), (25) into eq. (1) at 
time instant tn + e we obtain: 

(26) [B + 6AtClXH + 1 = [B - (1 - d)AtC\Xn + AtFH + e 

thus: 

(27) & = B + 6AtC, & = B-(l-0)AtC, $ = AtFn + e. 

Let us find the equation which is consistent with the equation representing the si
multaneous scheme for one performed iteration K = 1 i.e. with eq. (6). For this pur
pose we expand X(t„ +1 ) and X(t„ ) in Taylor series about t„ + d: 

(28) X(tH + 1)= X(tn + e) + (1 - 6)AtX(tH + e) + 0(At2), 

(29) X{tn) = X(tn + e)- dAtX(tn + e) + 0(At2) 

and substitute eqs. (28), (29) into: 

(30) saLx(/w + 1) = ?Bx(/j + jf, + e-aRx(/w + 1) + iaLr„ + 1. 
The obtained equation with condition rn + 1 = 0{At2 ), yields that eq. (6) is consist

ent with the following equation: 

(31) BLX + CX = F 

where BL = 
[0 b22 

This means that if we perform only one iteration and diminish At then we calculate 
the solution of eq. (31), not eq. (1). 

Similarly, supposing that only two iterations of eq. (9) are performed and then the 
time step A/ is diminished, we obtain a convergent process (one with a decreasing resid
ual), but to the following equation: 

(32) BLX + B(BL)1CX = F 

Applying the same method we can construct an equation the solution of which is the 
limit of the staggered scheme eqs. (14), (15) with one performed iteration. This equa
tion reads: 

(33) (B-B*)X + CX = F 

i „ * B12B22 B2\ 0 
where B = 

[ ° °. 
As we see eq. (33) differs from eq. (1) by term J5" 
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C O N C L U S I O N S 

When matrix G has real and positive eigenvalues and the iterations are convergent, 
then the stability condition for the simultaneous scheme with K = 1 is equivalent to the 
staggered stability condition for arbitrary K or the simultaneous stability condition for 
arbitrary K. 

For the staggered scheme when G has real and positive eigenvalues the stability 
condition for K = 1 does not give the stability condition for arbitrary K. For arbitrary B 
and C {e.g. in the non-linear case) both of the conditions: convergence and stability, 
must be verified for the K used in the calculations. 

The stability condition obtained from the equation with the last solution predictor, 
for G with real and positive eigenvalues, gives convergence and stability for the simulta
neous and staggered schemes with predictor of general form eqs. (10), (13). 

For a fixed number of iterations the staggered and simultaneous schemes give a sol
ution to another differential equation than the one originally considered. 
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