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M e c c a n i c a . — On control problems of minimum time for Lagrangian systems similar to 

a swing. I. Convexity criteria for sets. N o t a di A L D O B R E S S A N e M O N I C A M O T T A , presen

ta ta (*) dal Socio A. Bressan. 

ABSTRACT. — One establishes some convexity criteria for sets in R2. They will be applied in a further 
Note to treat the existence of solutions to minimum time problems for certain Lagrangian systems referred 
to two coordinates, one of which is used as a control. These problems regard the swing or the ski. 

KEY WORDS: Analytical mechanics; Lagrangian systems; Control theory. 

RIASSUNTO. — Su problemi di controllo di tempo minimo per sistemi Lagrangiani simili a un'altalena. I. Cri
teri di convessità per insiemi. Si stabiliscono dei criteri di convessità per insiemi in R2. Essi verranno applicati 
in una prossima Nota per trattare l'esistenza di soluzioni di problemi di tempo minimo per certi insiemi 
meccanici riferiti a due coordinate, una delle quali è usata come controllo. Tali problemi riguardano l'alta
lena o lo sci. 

1. INTRODUCTION 

The main aim of the present work is to study the existence of solutions to minimum 
time problems for the Lagrangian holonomic system U = d U V (with two degrees of 
freedom) introduced in [6], in case 2" s parts Ci and V schematize a (possibly) revoluto-
ry swing or a pair of skis, and whom uses CI respectively, frictions and air resistance be
ing neglected. 

In general, E can be referred to the coordinates s and u where, among other things, 
(/) s is an arclength on a line / belonging to a vertical (oriented) plane Ocx c2, (ti) CI is a 
rigid body whose configurations are determined by s's values, (Hi) /'s (signed) curva
ture function s*-+c(s) is in C1, and (iv) u determines It's configuration relative to (a 
frame joint to) CI. One regards II as a man looking forward to using u as a control (in 
optimization problems). E.g., for £"s instance Hx that schemetizes the above skis-skier 
system, / is the trajectory of II's skis (or feet) - see [6] (l). 

We state a condition, say r, on 27 ̂ s structural data that implies the existence of a 
solution to any problem of minimum time for 27 j . First we show that r implies a well 
known convexity condition, say WCC, sufficient for that purpose (2). In case /'s curva-

(*) Nella seduta del 12 febbraio 1994. 
i1) Briefly, in [3] to [5] Aldo Bressan started a systematic (non linear) application of control theory to 

Lagrangian mechanical systems, by using coordinates as controls. This is based on the purely mathematical 
paper [1] (extended by [2]). A. Bressan's aforementioned work has been further developed by himself and 
other researchers: F. Rampazzo, M. Favretti, and M. Motta - see [6-15,17]. The present paper belongs to 
this research line. 

(2) Since, as Galilei remarked, the period of small oscillations for a pendulum (independent of the am
plitude) is proportional to yl where / is the pendulum length (and the theory of mechanical similitude so
mehow extends this assertion), one might be pushed to conjecture that to minimize the time it is sufficient 
to minimize /. However there are simple counterexamples for very large trips of the revolutory swing. 
In [13], among other things, these counterexamples are extended to arbitrarily small trips. 
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ture c(s) (with a sign relative to OciC2) is constant, rbecomes rather simple and even 
equivalent to the WCC. 

In the optimization problems considered on E only «monotone» motions occur -
see [6,9,10]; therefore E's two scalar dynamic equations reduce to one. This simplifi
cation causes the presence of a phase constraint - see (2.16)2. Furthermore it renders 
the functional to be minimized singular (at the «border» of this constraint). Therefore 
the existence of the solution to our problem under the WCC must be proved in a new 
version. 

In our treatment, for c' (•) = 0 and c = c(s) > 0, Ex in effect becomes the afore
mentioned system schemetizing (a natural) revolutory swing, say E + . Its analogue E ~ 
with 0 > c(s) = const can also be regarded to be such a swing, admittedly unnatural; in 
fact in E ~ [E + ] the floor of the revolutory swing is nearer [farther from] (3Cs revolution 
axis than CTs ceiling; consequently mU~ the man VL is below Cl's floor when his feet are 
in the infimum point of their trajectory (the circle /), while for E + the same occurs 
when ll's feet are in /'s upper point (3). 

It is worth noting that to treat minimum time problems for the unnatural swing E ~ 
is interesting also because this is helpful in connection with the same problem for E1, in 
case the skis' trajectory / contains circle arcs that are concave down - see assertions (Ci) 
and (&) below (6.1). 

In more details, our minimum time problem ( £P) for E x and E± is specified in 
sect. 2. In sect. 3 the WCC is treated in some special cases; and for dealing with the 
other cases a necessary and sufficient condition for the convexity of any suitable regular 
set is stated as a preliminary - see Theor. 3.1. In sect. 4 the afore-mentioned structural 
condition r is worked out for E ± and it is shown to be equivalent to the WCC. In 
sect. 5 one considers the case where c ' ^ 0 and E's moment of inertia w.r.t. its center 
of mass is negligible; and for it, on the basis of Part 1, one establishes a new simple 
structural condition equivalent to the WCC. 

We note here that (T as well as) the WCC fails to hold for (#>) and J? + when Cl's mass 
is negligible, i.e. E + ( = E~) is a pendulum with variable mass - see Example 1 below 
(4.5); furthermore the validity of r for E1 or E± implies that GCs mass is large enough. 

In sect. 6 some cases for E ì or E ± are considered, where the solution to problem 
(&) exists even when the WCC fails. The main existence theorem for the solution to 
{&) in our general case is proved in sect. 7. 

2. THE SKIS-SKIER SYSTEM EX AND THE REVOLUTORY SWINGS E±. 

MINIMUM TIME PROBLEMS 

We consider a righthanded Cartesian frame Oxyz joint to the earth, such that its 
axes have the respective unit vectors c1 to c3 with cr'Cs = Srs(

4) ( r , 5 = 1 , 2 , 3) and the 

(3) Thus inU~ It's head is below [above] It's feet when the centrifugal force increases [decreases] It's 
weight. 

(4) The scalar [vector] product for vectors is denoted by «•» [«X»]. E.g. «T» denotes a vector and 
« |T |» its modulus. 
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gravity acceleration g has in it the expression — gc2. As well as in [6, p. 155], we consider 
a line / in the plane Oxy, represented by 

(2.1) P = P(s) = 0+x(s)ci+y(s)c2 V r e z l = [ ^ i ] (g = -gc2) 

where s is an arclength on it; and we set 

(2.2) T = x ' (s) cx + y ' (s) c2, n = c3 X T, en = dT/ds (hence « X c 3 = T) 

so that |T | = 1 and c = c(s) is /'s curvature at P(y) with the sign relative to c3. 
The line / will be regarded as the trajectory of either a pair CI of skis or the floor of a 

revolutory swing. In the first case we assume that 

(2.3) x'(s)>0 VseA; 

otherwise c=gO = c' (s) and / can be represented by 

(2.4) P = P(s) = 0 + \r\ sinfcj -rcosdc2 V0e [0 o , 0 i ] 

w i t h 0 = 5 / | r | , r=l/c, 0, = ^ / | r | ' ( /= 0, 1). 

In each of the instances 21, 2 + , and 2~ oi2 introduced in sect. 1 we call m the 
mass of the system, G its center of mass, and IG its moment of inertia w.r.t. the axis ZG 
through G, parallel with z. As well as in [6, sect. 2] one considers the control 
constraint 

(2.5) ueU—[ui,u2] w i t h 0 < # 1 < # 2 ; 

and one assumes that 

(2.6) l-cu2>0, hence ? = l - ^ > 0 V(s,u)eAxU, c(-)eC2(A), IG(')eC2(U); 

and that 

(2.7) dlc/du$0 fo rc^O, where Ic =IG(u) + m(r - u)2, r = c"1. 

One defines 

(2.8) 3 ( j , « ) - £ 2 I G ( « ) + w Ç 2 , . hence %=c2Ic for c * 0 and $(•) e C 2 (/I X U). 

Then (2.16) in [6] holds: 

(2.9) 3 = 3 ( J , « ) > 0 , 3f„ gO forcgO VueU. 

As well as in [6, (2.17)], 2* s kinetic energy is assumed to have the form 

(2.10) 2tT=%(s,u)s2 +p{u)ù2 for some ^ ( O e C 1 . 

Now we denote by 2%.) the generally time-dependent holonomic system obtained 
from 2 by using the function u = «(•), defined on some time-interval [t0) t\ ], as a con
trol physically implemented by means of some reaction forces internal to 11 - and 
hence by the addition of a frictionless constraint, see [6, sect. 3]. Thus for 2^.) (2.5)i 
acts as a control constraint and 2^s {semi-hamiltonian) dynamic equations read — 

see [6, (3.7)] 

(2.11) s=p/S(s,u)> P = {%s(s,u)/2%2(s,u))p2 - mgHy' (s) (« = «(*)) 

for a.e. te. [t0, tx ] . 

For U/s increasing motions in A these equations can be put in the form [6, (10.1)] - see 
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also [9, P a r t i ] - i.e. 

(2.12) — =G{s,P,u)± -2%(syu)mgÇy'(s)+ ' 3>, f = — p - , 

where #>(*) = p 2 | > U ) ] and « = «(j) = u[t(s)]. 
We consider the following problem: 

(a) given UQ EU and i0~ ^ 0, to determine a behaviour 

(2.13) U=U(')EU = £HA,U) 

of 11 which minimizes the time necessary for U1 to reach Si along a monotone motion under 

the initial condition (s(t^ ), s(t^ ), u{t$ ), «(/0~ )) = {SQ,SQ~ , UQ , 0). 

Setting 

(2.14) po = 3S(Jo> «o" ) *o~ > so that &(s0 ) = tf>0 ~Po , 

problem (a) becomes the following optimization problem. 

(tP) To minimize the above time, which is given by 

(2.15) T[u(-)] = T[3>(-), «(• ) ]= J 3[s,u(s)](P(sr1/2ds, 

SO 

under the differential and the initial constraints (2.12)1? (2.14)2, and the control 

constraint 

(2.16) «(•) G l i * = {«(•) e i l : T[«(-)] < + °° } ( ^ W 2* 0 V* G Zi), 

which implies the phase constraint (2.16)2. 

For any f ' e U and s' G A we denote by #>(•, f', *.', «) the solution in A to (2.12)1 

corresponding to the control function u e 11 and such that ff(s') = Ç' ; and we 

set 

(2.17) U$t5'±{u(-) G 11: r[0>(-, £ ' , * ' , « ) , « ( • ) ] < + ° ° } . 

Furthermore, £?* (•, £' , s ' ) is the solution (at least in A) to the Cauchy problem 

(2.18) dP/ds = g± (s, n 0>(* ' ) = r ; S1" U, &) - ^ G(J, 0>, U). 
We remember that there exists u ± (•) G i i such that ^ (',<?', * ' ) = #>(•, %' ,s' ,u± ) 

where the process {&(-,£',s',u±),u± {-)) solves the optimization problem - see 

[6,Theor. 8.2, pp. 169-70] or[9,Theor. 7.1, p. 25] 

(2.i9) 0>u!,«)-*r. 
We set «L?± (•) — ^>± (', # 0 ^ 0 ) a n c l t o t r e a t some special cases, also 

(2.20) &As)±\ t + x w (ere 4 ) . 
[ «<?~ (J , #>+ (a), a) V ì E [ d , ^ ] 

Consider now the instances U + mdl ~ of the system Ci U i i where d schemetizes a 

revolutory swing with c > 0 = c ' (s) and c < 0 = c ' (s), respectively. In these cases the 

line / is represented by (2.4). Then, using 6 = s/ \r\ instead of s and noting that by 
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(2.8)! 3Cr, u) = %{u)V{s,u) eAxU, in connection with U+ or Z~ problem (a) 
reads 

(&) to render 

(2.21) TK(-)] = T[ #>(•), £(•)] = J 3K(0)] die)-1/2 <to - > inf 
Go 

&/zJer 2$e differential constraint 

(2.22) d&/dd = rG(\r\0, #>,«) = - 2 w g \r\ 3K«)Çsin0, 

as well as the initial and control constraints 

(2.23) fKe0) = g>0, u =u{-)^Uk ={ueU: T[u(-)i < +00}, 

where U = £l ([0O>0J> U). 
For any Ç' G JR and 0' e [0O, 0 J we call 5>(-, Ç', 0', «) the solution 5>(-) to the differen
tial equation (2.22) such that ÎP{d') = £', while the analogue l i ? ^ ' of the set H?,^ de
fined by (2.17) in terms of 11, denotes the set of the corresponding admissible controls. 
Sometimes we shall briefly write tf>(-, f', u)[&(; 5)] for tf>(-, ?', 00, £)[&{•, 3>0, 0O, «)] 
while ^ ( e , ^ , © ' ) ^ ^ ^ , ^ , ^ ' ) ^ ^ , ? ' ) ^ ^ ^ , ? ' , ^ ) ] V0e [0 o , 0 i ] . 

3. O N THE CONVEXITY OF THE SET F(J , £P) IN VERY SPECIAL CASES. 

PRELIMINARIES FOR THE OTHER CASES 

First we study the convexity of the closed set 

(3.1) F(s, &) = {(77, 0 e R2 : rj = G{s, &9 u\ K ^ $U, « ) / V ^ for some « e U } 

for s G zi and P̂ > 0. As it is well known, up to some regularity conditions (lacking in our 
case) this convexity property implies the existence of a solution to the (reduced) prob
lem (&) in sect. 2. 

Let us preliminarily remember that 

(CI) if ?(•), rj(') G C2 (U) and rju («) ^ 0 for some u~ G U, ròe» ^ r e #re roflw #£zg£-
horhoods 3KcU and SZcRofu and rj(û~) respectively such that rji'Ys restriction to 3H has a 
C2-inverse u = u{rj) VTJ G 9L Furthermore, we can construct the C2-function z = 
= z(rj)-z[u(r])] V19 G % and we have(5) 

(3-2) um = - rjuu/rjl , Zm = (zuurju - Zurjuu)/rj3
u . 

We now fix any (s, £P) G A X (0, + 00 ) and consider the functions (6) 

(3.3) p= - 2 f c , 7 = S J / 3 = 2 ( r f G ( « ) - w & ) c 7 3 = 2 c ' c - 1 ( l - w ç 3 - 1 ) 

(5) Indeed, briefly, f]uuT = 1; hence TJ^Z/2 + ^«^^ = 0> which yields (3.2)!. Furthermore z, =zuu1}, 

hence zw = zuuu
2 + ZUUTITI = zuur)~2 -zur]uur]~3 by (3.2)!. Then (3.2)2 holds. 

(6) By (2.8)i we have (3.3)3 and also C2UGM ~ m&\ = $ - w£2 - wfc« = S - «Ç, which yields 
(3.3)4 " 
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of u, as well as the functions z = z(u) and t] = rj(u) defined by 

(3.4) z = 3 U , « ) / V ^ , Y] = G(s,8>,u) = *f8> + 2mgy'{s)p - see (2.6)2. 

Note that, by (3.3)2.4 

(5>) //><? above expression of G(s, £P, u) (with (P > 0) reduces to its last term, i.e. 7 = 

= 0 [or equivalently %s = 0) \/u eU, iff c' (s) = 0. 

Case c = 0. In it S = w by (2.8) i ; hence, by (3.3)i and (3.4)3, 

(6) (/or c = 0) F(J , *P) «• /&? a# {2m2gy'(s)} X {£"£ ^ m/yj&}, convex and 
closed. 

Case <: *() = <:'=?'(*). By (3.3)2.3 and (3.4)3, 

{•Q) in this case F(s, 8>) is the set {0} X {Ç: V^C ^ min3(j ,U)}, comxw and 
closed. 

Remark that, in case c = c(s) ** 0 (with .y e A, & > 0), for U1 we have zu(u) t* 0\/u e. 
G U" - see (3.4)i and (2.9)2; therefore it will be useful to set 

(3.5) u=\U\ un=\Ul for F„ ( 0 ^ 0 , hence z'=*?(«') < z " =z(«") , 
\u2 \ u \ 

and to prove the following preliminary theorem. 

THEOREM 3.1. Assume that (a) at least one of the functions rj('), z(m) G C2(U) has a 
non-vanishing first derivative on U—[ui,u2]. Then the closed set 

(3.6) ^— {(r), C): 37 — rç(«), C ^ ?(«) ./or wwe u eU} 

is convex iff one of the four cases (3.7)± and (b)± ^/<9^ holds (7). 

(3.7) • ̂ „ (« )^0 , i^«(«) >?"«(«) I < y]uuMzu(u) VueU. 

(b)± First, (3.5)f holds;, second, there exists 

(3.8) ^ - m S iu G U: ^ ( ^ ) = 0} (hence, e.g., z-z(u) and rj-rj(û) exist); 

third, 

(3.9) ^ ) e [ ^ , V ] V« e [«,«"] ( V = ^ ' ) , V ' = ^ " ) ) ; 

#«â? fourth, 

(3.10) ^uMiZuurju-rj^^M^O V« e [«. ' ,«] . 

This theorem is useful because, first, as noted above (3.5), for c ^ 0,5" G Zi, £P > 0, 
and &= F(s, &) its unique assumption {a) holds for HY in that (3.4)i and (2.9)2 imply 
Zu(u) ï* OVu e U; hence its alternative (h)± can always be used for it; and, second, we 
shall also use the alternative (3.7)± for the special systems U + and U ~ because its use is 
simpler. 

(7) E.g. (3.5)+ is the upper part of (3.5). 
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Before proving the theorem we write an easy corollary of it and the meaning, 
(£) below, of condition (3.9). 

COROLLARY 3.1. If &is convex, condition (3.5)f holds, there exists û satisfying (3.8)*, 
and it coincides with u', then 

(3.11) ^ = { i j ' } x { Ç : Ç £ z ' } . 

By (3.1) it is easy to check directly the foUowing assertion. 

(£) in case u exists and (3.9) holds, then rj(*Ys restriction rj(') to \u\u\ has a continu
ous inverse u = U(Y]), which isC2 on Y=rj([uf, «)) ; the function 77 •—>z = z(rj)-z[u(rj)] e 
G C°(Y) is C2 on Y; and 3 is z('Ys epigraph. 

PROOF OF THEOR. 3.1. Assume (/) r\u(u) ^ 0 V&• e U. Then rç(') has a C2-inverse 
u = u(rj) and we can construct the C2-functionz = z(rj) =Z[U(Y])] on rj(U); furthermore 
(//') <^is z(*Ys epigraph. Hence (///) <!̂ is convex iff (iv) zy]r](r]) ^ 0 Vr)erj(U). 

On the other hand (/) implies either of the cases (3.7)f. Furthermore, by (3.2)2 and 
(3.7)f condition {iv) is equivalent to (3.7)|=. We conclude that 

(3f) condition (i) implies that $ is convex iff either of the cases (3.7)± holds. 

Now we assume (z')'s failure, i.e. that (#)* # defined by (3.8)± exists. Then, by as
sumption (a), one of the cases (3.5) f holds. First, besides (3.5)f we suppose (///) ( ^ s 
convexity and), as an hypothesis for reduction ad absurdum, the failure of (3.9). Then, 
for some u * e («, «" ), we have (vi) rj* £ [77 ', 77], >7(')'s GW's] value at u * being denot
ed by Y]*[z*]. Hence, either (f/z) rjf e (rj,rj*) and the (oriented) segment 
[A, 5 ] — [(77 ', z ' ), (rj* , z* )] has some point P, near A> outside &- see (3.6) -, or (viii) 
rj e (rj * , 77 ' ) and the segment [C, D] — [(77, z), (rj*, z * )] has some point Q, near C, out
side &. Thus both cases (vii) and (#///) contrast with (Hi) (&'s convexity). Hence (3.9) 
must hold. 

By (3.9) and (v) - see (3.8) - assertion (£) below (3.11) implies that (ix) < îs the 
epigraph of z(') - see (/) to (///) in (Ci). Hence (x)&'s convexity is equivalent to 
0 ^ (Zrjrjirj) = )z7)7}(r}) VTJ e Y; and by (3.2)2 and the regularity assumptions this is in 
turn equivalent to (3.10), Thus (v)± and (Hi) imply (b)±. 

Now we conversely assume (b)±. Then (v)± and (3.9) hold, so that (£) again im
plies (ix) and the equivalence of < '̂s convexity to (3.10). Since (3.10) is included in 
both (b)+ and (b)~, ^ is convex. We conclude that 

(g) either (v)+ or (v)~, i.e. (iYs failure, implies that &•is convex iff either (b)+ or 
(b)~ holds. 

Together with ($0, (g) implies the thesis of Theor. 3.1. • 

The present work has been performed in the activity sphere of the Consiglio Nazionale delle Ricerche, 
group n. 3, in the academic years 1992-93 and 1993-94. 



2 5 4 A. BRESSAN - M. MOTTA 

REFERENCES 

[1] ALBERTO BRESSAN, On differential systems with impulsive controls. Rend. Sem. Mat. Univ. Padova, 78, 

1987, 227-236. 

[2] ALBERTO BRESSAN - F. RAMPAZZO, Impulsive control systems with commutative vector fields. Journal of 

optimization theory and applications, 71, 1991, 67-83. 

[3] A L D O BRESSAN, On the application of control theory to certain problems for Lagrangian systems, and hyper-

impulsive motion for these. I. Some general mathematical considerations on controllizable parameters. Atti 

Ace. Lincei Rend, fis., s. 8, v. 82, 1988, 91-105. 

[4] A L D O BRESSAN, On control theory and its applications to certain problems for Lagrangian systems. On hy

per-impulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. 

Applications to Lagrangian systems. Atti Ace. Lincei Rend, fis., s. 8, v. 82, 1988, 107-118. 

[5] A L D O BRESSAN, Hyper-impulsive motions and controllizable coordinates for Lagrangian systems. Atti Ace. 

Lincei Mem. fis., s. 8, v. 19, sez. I, fase. 7 (1989), 1990, 195-246. 

[6] A L D O BRESSAN, On some control problems concerning the ski or the swing. Mem. Mat. Ace. Lincei, s. 9, v. 

1, 1991, 147-196. 

[7] A L D O BRESSAN - M. FAVRETTI, On motions with bursting characters for Lagrangian mechanical systems 

with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting 

characters. Rend. Mat. Ace. Lincei, s. 9, v. 2, 1991, 339-343. 

[8] A L D O BRESSAN - M. FAVRETTI, On motions with bursting characters for Lagrangian mechanical systems 

with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems. 

Rend. Mat. Ace. Lincei, s. 9, v. 3, 1992, 35-42. 

[9] A L D O BRESSAN - M. MOTTA, A class of mechanical systems with some coordinates as controls. A reduction 

of certain optimization problems for them. Solutions methods. Mem. Mat. Ace. Lincei, s. 9, v. 2, 1993, 

5-30. 

[10] A L D O BRESSAN - M. MOTTA, Some optimization problems with a monotone impulsive character. Approxi

mation by means of structural discontinuities. Mem. Mat. Ace. Lincei, s. 9, v. 2, 1994, 31-52. 

[11] A L D O BRESSAN - M. MOTTA, Some optimization problems for the ski simple because of structural disconti

nuities. Preprint. 

[12] A L D O BRESSAN - M. MOTTA, Structural discontinuities to approximate some optimization problems with a 

nonmonotone impulsive character. Preprint. 

[13] A L D O BRESSAN - M. MOTTA, On minimum time problems for a pendulum with variable length and a con

jecture based on a law of Galilei. Atti Istituto Veneto di Scienze Lettere ed Arti. To appear. 

[14] M. FAVRETTI, Essential character of the assumptions of a theorem of Aldo Bressan on the coordinates of a 

Lagrangian system that are fit for jumps. Atti Istituto Veneto di Scienze Lettere ed Arti, 149, 1991, 

1-14. 

[15] M. FAVRETTI, Some bounds for the solutions of certain families of Cauchy problems connected with bursting 

phenomena. Atti Istituto Veneto di Scienze Lettere ed Arti, 149, 1991, 61-75. 

[16] E. B. L E E - L. MARKUS, Foundations of Optimal Control Theory. SIAM series in Applied Mathematics, 

John Wiley & Sons, Inc., New York-London-Sidney 1977. 

[17] F. RAMPAZZO, On Lagrangian systems with some coordinates as controls. Atti Ace. Lincei Rend, fis., s. 8, 

v. 82, 1988, 685-695. 

Dipartimento di Matematica Pura e Applicata 

Università degli Studi di Padova 

Via Belzoni, 7 - 35131 PADOVA 


