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Matematica. — Fixed points of multivalued contractions with nonclosed, nonconvex 
values. Nota di SALVATORE A. MARANO, presentata (*) dal Corrisp. R. Conti. 

ABSTRACT. — For a class of multivalued contractions with nonclosed, nonconvex values, the set of all 
fixed points is proved to be nonempty and arcwise connected. Two applications are then developed. In par
ticular, one of them is concerned with some properties of the set of all classical trajectories corresponding 
to continuous controls for a given nonlinear control system. 

KEY WORDS: Multivalued contraction; Fixed point; Arcwise connectedness; Nonlinear control 
system. 

RIASSUNTO. — Punti fissi di contrazioni multivoche con valori non chiusi e non convessi. Si studia una clas

se di contrazioni multivoche con valori non necessariamente chiusi né convessi e si dimostra che l'insieme 
dei punti fissi non è vuoto ed è connesso per archi. Del risultato si fanno due applicazioni una delle quali ri
guarda la struttura dell'insieme delle traiettorie in senso classico corrispondenti a controlli continui di un si
stema di controllo non lineare. 

INTRODUCTION 

Let £ be a complete metric space and let F be a multivalued contraction from E 
into itself, with nonempty values. If r(x) is closed for all x E E, Corollary 3 of [7] en
sures that the set Fix{F) of all fixed points of F is nonempty. Since, contrary to the sin-
glevalued case, Fix{F) may have many elements, it is of interest to perform a qualitative 
study of it, for instance, from a topological point of view. 

In this framework, some years ago, B. Ricceri established the following result 
(see [13, Théorème 1]). 

THEOREM A. Let E be a Banach space, let X be a nonempty, convex, closed subset of E 
and let F be a multivalued contraction from X into itself, with convex, closed values. Then 
the set Fix(r) is a retract of E; consequently, it is arcwise connected. 

Later on, several papers have been devoted to possible extensions and applications 
of Theorem A [4,9,11,12,15]. For instance, ii X = L1 (T) for some measure space T, 
the basic assumption 

(ai ) r(x) is convex and closed for all XEX 

may be replaced by 

(a2) r(x) is bounded, closed and decomposable for all x e X 

and a satisfactory theory, including applications to multivalued differential equations, 

developed (see [4]). 
To the best of our knowledge, there are not other significant theorems concerning 

topological properties of the set Fix{F). 

(*) Nella seduta del 12 marzo 1994. 
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In the present paper we consider a multivalued contraction r of the form 
r(x) = iF($(x)),- X G X , 

where $ and Y are multifunctions satisfying the assumptions of Theorem A. Obviously, 
in this case, condition {ax ) may be not at all verified. Nevertheless, we prove that the 
set Fix(r) is nonempty and arcwise connected (really, more sophisticated results are es
tablished; see Theorems 2.1 and 2.2). 

Next, we present two applications. The first of them (Theorem 3.1) deals with the 
arcwise connectedness of the solution set to a nonlinear equation of the type 
w G G(x) + F(x), where w is a given element of X, F is a multifunction satisfying hy
potheses like those of Theorem A, and G is a convex process. 

The second application (Theorem 3.2) exhibits some properties of the set S(X) of all 
trajectories x e C1 ([a, b\ Rn ) corresponding to controls u eC°([a, b], Rm) for the 
nonlinear control process x' = f(t,x, u{t)), with control constraint u(t) e U(t,x) and 
initial condition x{a) = X. In particular, the arcwise connectedness in C1 ([a, bi, Rn ) of 
the sets S(X) and U S(X) is achieved. 

AeR" 

For measurable controls and Carathéodory's trajectories, results of this kind are al
ready known [5,16]. Moreover, continuous controls have been previously employed to 
study the controllability of various nonlinear control systems by many authors (see, for 
instance, [1,8] and the references given therein). 

1. BASIC DEFINITIONS AND PRELIMINARY RESULTS 

Let (E,d) be a metric space. For everyz eE and every nonempty set XcE, we de
fine d(ZyX) = inf d(z,x). If X and Z are two nonempty subsets of E, we define 

x E X 

J * (X, Z) = sup d{x, Z) mddH(X, Z) = max {d* (X, Z), J * (Z, X)}. A simple compu-
xeX 

tation shows that the following proposition is true. 

PROPOSITION 1.1. Let {Ex, dx ) and (E2,d2) be two metric spaces and let E = Ex X 
X E2, equipped with the metric 

d((x',y'),(x"yy"))=max{d1(x',x"),d2(y',y")}, ( x ' j ' ) , ( x " j " ) e £ . 

Then, for every pair of nonempty sets X ' X Y', X" X Y" çE, one has 

dH(X' X y ,X" X Y") ^ maz{dlH(X',X"),d2H(Y', Y")}. 

Let Ei and E2 be two nonempty sets. The symbol $:El-^2El means that $ is a mul

tifunction from Ei into E2, namely a function from Ex into the family of all subsets of 

E2. The range of $ is the set ${El ) = U $(x). When &(EX ) = E2, we say that the 
x e £ i 

multifunction $ is surjective. The graph of $, denoted bygr($)y is the set {{x, y) G EX X 
X E2 : y G $(x)}; HE1 = E2, we write Fix($) for {x eE1:x e <P(x)}. A function <p'.Ex-^ 
—> E2

 s u c n that p(x) G §(x) for all x G E ì is said to be a selection of $. For every set 
YcE2, we define $~ (7) = { x e £ j : $(x) fl 7 ^ 0}. If Ex and £2 are two topological 
spaces and, for any open set Yc E2, the set $ ~ (Y) is open in £ r , we say that the multi-
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function $ is lower semicontinuous. When (Ex, dx ) and (E2, d2 ) are two metric spaces 
and there is a real number L ^ 0 so that d2H($(xf), $(*")) ^ L ^ (*',*") for all x', 
x" E Ej , we say that $ satisfies a Lipschitz condition with constant L. If L < 1, the mul
tifunction $ is said to be a multivalued contraction. It is a simple matter to see that any 
multifunction verifying a Lipschitz condition is lower semicontinuous. 

Now, let (Ely IHIi) a n d (E2, IHI2) De two real normed spaces. The multifunction 
<2> is said to be a convex process if, for every x', x" E EX and every a, /3 E [0, + °° [, 
one has a$(x ' ) + /3$(*" ) Ç $(ax ' + /&" ). If $ is a surjective convex process, dx is the 
metric induced by || - ||x and dx is the zero vector of Ely we define L$ = 
= supj^il^! , ^ " ( y D ^ Ë ^ , IMI2 ^ l } . When Ex and E 2

a r e Banach spaces and the set 
gr(<P) is closed in ElxE2, the Corollary p. 131 of [14] guarantees that L$ < + 0°. 

Given a positive integer n, we write (Rn, | • \„ ) for the real Euclidean n-space and 
S„ for the metric induced by | • \„ . If I is a compact real interval, the symbol C°(I, Rn) 
is used to denote the space of all continuous functions u: I—>Rn, equipped with the 
norm ||#||c°(i,in = max |#(/)|„. Moreover, C1(I9R") stands for the space of all 

t e I 

v eC° (I, Rn), which are continuously differentiable in I. The norm in this space is de
fined by IMIcMi,!**) = lkllc°(J,Kw) + lk'llc°(i,m> where v' is the derivative of v. 

Proposition 5 in [2, p. 44] combined with Theorem 3.2" of [10] yields the 
following 

PROPOSITION 1.2. Let I he a compact real interval and let $: I —> 2R be a lower semi-
continuous multifunction, with nonempty, convex, closed values. Suppose ̂ : I —> R" is a 
continuous function and p: I - * [0, +<*>[ is a lower semicontinuous function satisfying 
Sn (<p(t), $(t)) ^ fi(t) for all t E I. Then, for every e > 0 there is a continuous selection <p of 
$ such that \<p(t) - <p(t)\„ ^ p(t) + e for all t E I. 

Let E be a topological space and let X be a nonempty subspace of E. We say that X is a 
retract of E if there exists a continuous function r: E—>X such that r(x) =x for all xeX. 
The space X is said to be an absolute extensor for paracompact spaces if, for every para-
compact space A, every closed subset A 0 of A and every continuous function 90:A0-^X, 
there is a continuous function 9 :A^X such that <p(X) = q>0(X) for all AEA 0 . The following 
proposition establishes a close connection between the concepts just defined. 

PROPOSITION 1.3. Let E be a Banach space and let Xbea nonempty subspace ofE. Then X 
is a retract of E if and only if it is an absolute extensor for paracompact spaces and is closed. 

The proof is easily performed by using Example 1.3* and Theorem 3.2" of [10]; so 
we omit it. 

As a simple consequence of the preceding proposition, we obtain that every contin
uous image of a retract of a Banach space is an arcwise connected space. It is also possi
ble to prove [6] that any arcwise connected space is a continuous image of an absolute 
retract, according to [3, p. 85]. 

Finally, we observe that Proposition 1.3, together with Theorem 1 of [13], produces 
Theorem A of Introduction. 
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2. MAIN RESULT 

In this and in the following section, A denotes a paracompact space, (E1, || • ||j ) and 
(E2, || • ||2 ) are two Banach spaces, d{ (i = 1, 2) stands for the metric induced by || • ||/, X 
is a nonempty, convex, closed subset o£ E1 and Y is a nonempty, convex, closed subset 
o f £ 2 . 

We are in a position now to establish the main result of this paper. 

THEOREM 2.1. Suppose $: A X X ^ 2 7 and T: A X X X Y —> 2X are two nonempty, 
convex, closed-valued multifunctions, with the following properties: 

{ai) The multifunction X^§{X,x) is lower semicontinuous for every x e l 

(a 2) There is a continuous function L: A—» [0, 1[ such that d2H($(X,x'), <P(X,x")) ^ 
^L(X)\\x'-x"\\1for all A G A , X ' , x " e l 

(a3) The multifunction X-^Y(X,x,y) is lower semicontinuous for every (x,y) eXx Y. 

{aA) There is a continuous function M: A —> [0, 1[ such that 

dlH(Y(X,x\yf),nX,x\yn)^M(X)mâx{\\xf-xff\\ly\\y
f-y''\\2} 

for all A e A, (x',yf), ( x " j " ) e X x Y 

For every (X,x) e A X X, we define r(X,x) = Y(X,x, $(X,x)). Then 

(ii) The set Fix(r{X, •)) is nonempty and arcwise connected for all A e A. 

(t2) For every X1,..., Xp e A and every X; G Fix(r(X;, •)), / = 1,..., p, there is a continuous 
function y: A -^Xsuch that y(Az) = x^for each i = 1, ...,p, and y(X) G Fix(r(X, •)) 
for all A G A . 

PROOF. Fix A G A and set, for every (x,y)eXx Y, H(X,x,y) = Y(X,x,y) X 
X $(X,x). Owing to Proposition 1.1 and assumptions (a2) and (a4), one has 

dH(Z(X,x',y'),Z(X,x",y"))^ 

^max{d1jnXyx\yf)yY(Xyx\y^)J2J^X,xf),0(Xyx
ff))}^ 

^max{L(X),M(X)}-mâx{\\x' -x"\\i,\\yf -y"\\2} 

for all (x', y '), (x", y") eX X Y, so that the multifunction (x,y) —>U(A,x,y) is a mul
tivalued contraction on X X Y, with nonempty, convex, closed values. Therefore, by 
Theorem A, the set Fix(Z(X, •)) is nonempty and arcwise connected in Ex X E2. If 
pi'.Ei X E2->E1 denotes the projection onto the first coordinate, a simple computa
tion shows that Fix(r(X, •)) = p\ (Fix(U(X, •)))• Thus, assertion (i1 ) follows immediately 
from the continuity of pi. 

Let us prove assertion (i2). Pick A1?..., Xp G A and, for each / = 1, ...,/>, choose 
Xi G Fix{r{Xi, •))• Then, there are yx,..., yp G Y satisfying (xt-,yt-) G Fix{H{Xiy •)), i ~ 
= 1,..., p. We already know that, for any A G A , the multifunction (x, y ) —> U( A, x, y ) is a 
multivalued contraction on X x Y, with constant max{L(A), M(A)} and nonempty, 
convex, closed values. Furthermore, because of assumptions [ax) and (a3), for any 
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(x,y) eX X Y, the multifunction À —»Ì7(À, x,y) is lower semicontinuous. By [11, The

orem 3.3], this yields a continuous mapping cr: A —> X X Y such that cr( A, ) = (xiy y{ ) for 

each / = 1, . . . , p , and <r(A) e Fix(2(X, •)) for all A E A. We define y(A) = />! (<j(A)), A e 

e A. Since 7 is a continuous function and one has y(Xi)=xï for every 

i = 1, . . . , p , 7(A) eFix(r(X, •)) for all A E A, the proof is complete. A 

The hypotheses of Theorem 2.1 do not imply that the set Fix(r(X, •)), A E A, is a 

retract of E1, as the following example shows. 

EXAMPLE 2.1. Set ( £ i , | H l i ) = (R2, H 2 ) and (E2 , IMI2) = ( # , | • 11 ). Moreover, 

choose X={xsE1: | | x | | 1 ^ 2 " 1 } , Y= [0, 2TT], $ ( A , X ) ' = 7 for all (A,*) e A XX, 

F ( A , x , y ) = { (2 - 1 cos ) ; , 2_ 1sin3/)} forali (A, x, y) E A X X X Y. It is a simple matter 

to see that the multifunctions <P and Y satisfy all the assumptions of Theorem 2.1. 

Hence, by conclusion (i1 ), the set {x eX: x G Y(X, X, ^(A, X))} is nonempty and arc-

wise connected. Nevertheless, since one has 

{ x e X : x e F ( A , x , $ ( A , * ) ) } = {xeE1: \\x\h = 2~1}, 

it is not a retract of E1 (see, for instance, Proposition 3.9 in [3,p. 12]). 

We conclude this section with Theorem 2.2 below, which is a version of Theorem 

2.1 interesting enough to be stated explicitly. 

THEOREM 2.2. Let $: X —» 2Y and Y: Y^>2X he two nonempty, convex, closed-valued 

multifunctions, satisfying a Lipschitz condition with constants L and M respectively. For 

every x E X , we define r(x) = Y($(x)). If LM < 1, then the set Fix(T) is nonempty and 

arcwise connected. 

PROOF. Obviously, we may suppose M > 0. Choose k E ] L , M~l [ and associate to 

each y E E2 the norm (equivalent to the previous one) \\y ||̂  = k _ 1 \\y ||2 • A simple com

putation ensures that 

dkH{<I>{x'),${x")) ^Lk~l\\x' - x'M and dlH(Y(y ' ) , Y(y")) ^ Mk\\y' - y"\\k 

for all x ', x" E X, y ', y" E Y, where <4 denotes the metric induced by || • ||^. Hence, the 

multifunctions $ and Y are now multivalued contractions with constants Lk ~1 and Mk 

respectively, and nonempty, convex, closed values. So, the same arguments used in the 

proof of Theorem 2.1 yield the desired conclusion. A 

REMARK 2.1. Of course, it is also possible to formulate versions of Theorem 2.1 
where the composition of a finite number q, q > 2, of multifunctions is considered. 
They are not in any way more difficult to prove than the special case q = 2. 

3. SOME APPLICATIONS 

In this section we present two applications of Theorem 2.1. The first of them deals 

with the arcwise connectedness of the solution set to a nonlinear equation. 
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THEOREM 3.1. Let Ex and E2 be over the real number field. Suppose F: A X Ex —» 2El 

is a nonempty, convex, closed-valued multifunction, having the following properties: 

(hi) The multifunction A —>F(A, x) is lower semicontinuous for all x EEX. 

(b2) There is a continuous function L:A—»[0, 1[ so that d2tì{F{X, x ' ) , F(X, x" )) ^ 
^ L(A)||* ' — x"^ for every A e A, xf, x" E EX . 

Moreover, let G: E1-^2El be a nonempty-valued, surjective, convex process, such 
that 

(b3) the set gr(G) is closed in Ex X E2 and LG < 1. 

Then 

(j\) The set S(Xyw) = {x E EX : w e G(x) + F(X, x)} is nonempty and arcwise connected 
for all X EL A, w EE2. 

(j2 ) For every Xi,..., Xp e A, every w e E2 and every x{ e S{Xiyw), i = 1,...,p, /£<?r<? ^ a 
continuous function s: A^>EX such that s(X{) — x^for each i = 1, ...,/>, and s(X) e 
G S(X, w) for all XEA. 

PROOF. Fix w EE2. For every X EA, X E E1, y EE2ì we define 

$(X,x) =w-F{Xyx), r{X,x,y) = G~{y), r{X,x) = Y(X,x, $(X,x)) . 

Since one has S(X,w) = Fix(r(Xy •)), A G A, to accomplish the proof it is sufficient to 
verify that all the hypotheses of Theorem 2.1 are fulfilled. Of course, the multifunction 
$ has nonempty, convex, closed values. Moreover, conditions {a± ) and (a2 ) are a sim
ple consequence of {bx ) and (b2 ) respectively. Due to the assumptions, the multifunc
tion Y has nonempty, convex, closed values and, by Theorem 6 of [14] and (b3 ), it is a 
multivalued contraction from E2 into Ex, with constant LG. Therefore, the conditions 
(a3) and (a4) of Theorem 2.1 are verified too. A 

The hypotheses of the preceding theorem do not guarantee that the set S(X,w), 
XEA, W EE2, is a retract of Ex. This may be concluded from the following 

EXAMPLE 3.1. Suppose (E2, || • ||2 ) is a nonreflexive Banach space and define B2 = 
= {y E E2 : \\y ||2 ^ 1}. If (Ex, || • \x ) = (R, | * 11 ) and <//: E2 —> Ex is a continuous linear 
functional such that ||<//|| = sup |^(^)|i < 1 and |</>(;y)|i < ||</>|| for all y EB2, we set 

yeB2 

F(X,x) = B2 and G{x) = <p - 1 (x) for all A G A, x E E1. A straightforward argument en
sures that the multifunctions F and G satisfy all the conditions of Theorem 3.1. Never
theless, since one has 

{x E E, : d2 E G(x) + F(A, x)} = { X G £ I : G(X) H E2 * 0} = ] - ||^||, ||^||[ 

(02 denotes the zero vector of E2), the set S(X, 02) is not a retract of Ej . 

Using Theorem 2.2 in place of Theorem 2.1, it is possible to establish the following 
result, which can be regarded as a multivalued version of Théorème 4 in [13]. 
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THEOREM 3.2. Let Ex and E2 be over the real number field. Let F: E1 —>2El be a 
nonempty, convex, closed-valued multifunction, satisfying a Lipschitz condition with con
stant L. Let G: Ex —» 2Ez be a nonempty-valued, surjective, convex process, such that the set 
gr(G) is closed in ^ X E2. If L*LG< 1, then, for any w e E2} the set {x eE1:w G 
eG(x) + F(x)} is nonempty and arcwise connected. 

The second application we wish to emphasize, is concerned with some properties of 
the set of all classical trajectories corresponding to continuous controls for a given non
linear control system. 

We denote by m, n two positive integers and by I the compact real interval 
[a,bl 

THEOREM 3.3. Let f: I X Rn X Rm -+Rn be a continuous function and let U: I X 
X Rn —> 2R be a nonempty, convex, closed-valued multifunction. Suppose the following con

ditions hold: 

(cj There are M > 0 and p e [0, 1[ such that \f{t,x'yy
f) ~ f{t,x" yy")\n^ 

Mix1,-x"\n+(j.\yf-y"\mfor all tel, x\ x"eRn
y y\ y"eRm. 

(c2) The multifunction t-^U(t,x) is lower semicontinuous for every x G Rn. 

(c3) There exists L > 0 so that SmH(U(t,xf), U(t,x")) ^ L\x' - x" \nfor all tel, x', 
x"eRn. 

Then 

(ki ) For every X G Rn, the set 

S(X) = {xeCHl, Rn ): x(a)=X and there is ueC° (I, Rm ) such that 

x' {t) =f(t,x(t),u(t)),u(t) G U(tyx(t)) for all tel} 

is nonempty and arcwise connected in C1{I,Rn). 

(k2) For any Ax,..., Xp e Rn and any x^eS(Xj), i — 1, . . . ,p, there exists a continuous 
function s: Rn^>Cl{I,Rn) satisfying s{X{) = Xj for each / = l , . . . , p , and 
s{X) G S(X) for all XeRn. 

(k3) The set S = U 5(A) is arcwise connected in Cl{I,Rn). 
X&Rn 

(k4) If there is a convex compact set KcRn such that {x(b): x e S(X), X e K} ç K, then 
there exist u eC°{I,Rm) and xeCl{IyR

n) verifying x' {t) =f{t,x(t)yu(t))y 

u(t) e U(t, x(t)) for all t <=I, x(a) = x(b). 

PROOF. Choose k > max{L,M(l - f / ) - 1 } . Throughout this proof, we write A 
to denote the space Rn, Ex for the space C°(I, Rn), equipped with the norm 
IHIi = maxe~kt \v(t)\„, and E2 to denote the space C°(I, Rm), with the norm 

tel 

\\u\\2 = max e~kt\u(t)\m. Of course, these norms are equivalent to the usual ones. 
t&i 
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We first define, for every A G A, v G E1, 

<PU,*) = u (=E2: u{t) G [ J / , H V(T)CIT\ for all t G I 

Owing to the assumptions and [11, Proposition 1.2], we see that the multifunction 

t->U\t, A + f(r)<ÌT is lower semicontinuous and nonempty, convex, closed-

valued. Hence, by [10,Theorem 3.2"], there is a continuous function u: I-^>Rm such 

that u{t) e U It, A + J ^(T) J T for all / e I. This implies $(A, v) ^ 0. Moreover, the set 

${X,v) is convex and closed in E2, as a simple computation shows. Let us prove that, 
for any A G A, the multifunction v —> $(X, v) is a multivalued contraction from E1 into 
E2, with constant Lk ~1. Obviously, this is achieved by establishing the inequality 

(1) dt (<2>(A, v), <P(A, w)) ^ Lk ~l \\v - w\\x 

for all v, w G Ex. Pick A G A ^ ^ G ^ and choose u e$(X,v). Since, due to assump
tion (c3 ), for every / G I we have 

aj«(/), UkA + J«;(T)</T U . i J k(T)-^(T)|,jT, 

Proposition 1.2 guarantees that, for any e > 0 there is a function ze$(X,w) 
fulfilling 

|«(f) - z(t)\m ^ L J |^ (T) - W(T) \n du + e for all / e l . 

The preceding formula yields 

-kt u(t)-z(t)\ ^e~kt \\v-w\\x y 7 dr + i ^Lk-1\\v-w\\1+. se'**, tel. 

Hence, d2(u, <2>(A, w)) ^ Lk'1 \\v — w\\i for every u G <P(A, t>). This implies (1). 
A quite similar argument may be used to conclude that, for any v G EX , the multi

function A—><2KA,̂ ) satisfies a Lipschitz condition and so is lower semicontinuous. 
Next, let Y: AX Ex X E2^>El be the mapping defined by 

Y(X,vyu)(t) = / * , * + {v(r)dT,u(t) , f e l , 

for all (A, t;, u) G A X £x X E2. It is a simple matter to see that, for every (v, u) G Ex X 
X E2, the function A -> Y(X, 0, u) is continuous. Moreover, for any A e A, the mapping 
(#,#)—> Y(X, v, u) is a contraction from Ex X E2 into E1, with constant Mk ~1 4- f*. To 
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prove this, pick A G A and (v, u), (w, z) eEx X E2. Because of assumption (c1 ), one 
has 

I T(X, v, u)(t) - F(A, w, z)(t)\„ ^MJ \V{T) - w(r)\ndz + p\u(t) - z(t) \m =S 
a 

t 

^M\\v - w\l IekTdr + [j.\u{t) - z(t) \m ^ ekt (Mk ~l \\v - w\\x + ^||« - z||2 ) ^ 
a 

tZ ekt (Mk-1 + [Ji) max{\\v - w\\ly\\u - z\\2} 

for all tel. Consequently, 

| |FU, v,u)- T(X, wy z)\ ^(Mk-'+tJ.) max{\\v - w\\x, \\u - z\\2 } . 

We have now showed that the multifunction $ and the function Y satisfy all the as
sumptions of Theorem 2.1. 

Let T(A, v) = T(X, v, $(A, v)), (A, v)eAx Eh and let T:E1-^C1 (I, R" ) be the 
operator defined by 

T(v){t) = \v(r)dTy tel, 

for all v e Ex. Since, for any A G A, we have 

(2) S(X)=vx + T(Fix(r(X,-))), 

where t> A denotes the function / —» t>A (/) = A, / e l , assertion ( ^ ) follows immediately 
from the conclusion (/]_ ) of Theorem 2.1 and the continuity of T. 

To verify assertion (k2), pick A1?..., A P G A and choose x^eSiX^), / = l , . . . ,p . 
Owing to (2), for every/ = 1,...,/?,.there is ^ e Fix(T{ A,-, •)) such that Xj = vx. + T(^). 
Thus, the conclusion (/2 ) of Theorem 2.1 yields a continuous function y: A —>£i with 
the properties y(Az-) = ^ for each / = 1, . . . ,p, and y(A) eFix(r(X, •)) for all A G A. 
Clearly, the mapping s: A —» C1 (I, J?" ) defined by s{X) = vx + T(y(A)), A G A, is con
tinuous and one has s(X;) = xt-, i = 1,...,/?, j(A) E5"(A) for every A G A. 

The proof of assertion (k3 ) is easily accomplished bearing in mind the arcwise con
nectedness of A and conclusion (k2). 

Finally, we show that assertion (k4 ) is true. Let K be a convex, compact subset of A 
such that 

(3) {x(b):xeS(X),XeK}cK. 

For any A e K, we set cr(A) = s(X)(b), where s is a function given by conclusion (k2 ). 
Obviously, the mapping a: K^A is continuous and, due to (3), one has <J(K) çK. 
Thus, by the Schauder Fixed Point Theorem, there exists A* G K such that cr(A*) = 
= A *. This produces two functions, u G E2 and x eCl{I,Rn), with the required proper
ties: x'(t) = f(t,x(t),u(t)), u(t) G U(t,x(t)) for all tel; x(a) = x(b). Therefore, the 
proof is complete. A 
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REMARK 3.1. It is of interest to note that the conclusion {kx ) of the preceding theo
rem is no longer true without assuming the multifunction U convex-valued. In fact, 
consider for instance the case when f(t,x,y) = x + 2~ly and U(t,x) = {yi,y2}, 
(t,x,y) el X Rn X Rn, where yx and y2 are two different points of Rn . An easy compu
tation shows that the set S(X) is not arcwise connected for all À G A, although the func
tion/is continuous, the multifunction U has nonempty, closed values and the hypothe
ses (ci)-(c^) of Theorem 3.3 are fulfilled. 
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