ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

GIOVANNI BELLETTINI, MAURIZIO PAOLINI

Convex approximation of an inhomogeneous anisotropic functional

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.2, p. 177–187.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_2_177_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Analisi numerica. — Convex approximation of an inhomogeneous anisotropic functional. Nota di Giovanni Bellettini e Maurizio Paolini, presentata (*) dal Socio E. Magenes.

ABSTRACT. — The numerical minimization of the functional $\mathcal{F}(u) = \int_{\Omega} \phi(x, v_u) |Du| + \int_{\partial\Omega} \mu u d\mathcal{H}^{u-1} - \int_{\Omega} \kappa u \, dx, \ u \in BV(\Omega; \{-1, 1\})$, is addressed. The function ϕ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \mathcal{F} can be equivalently minimized on the convex set $BV(\Omega; [-1, 1])$ and then regularized with a sequence $\{\mathcal{F}_{\varepsilon}(u)\}_{\varepsilon}$ of strictly convex functionals defined on $BV(\Omega; [-1, 1])$. Then both \mathcal{F} and $\mathcal{F}_{\varepsilon}$ can be discretized by continuous linear finite elements. The convexity property of the functionals on $BV(\Omega; [-1, 1])$ is useful in the numerical minimization of \mathcal{F} . The $\Gamma - L^1(\Omega)$ -convergence of the discrete functionals $\{\mathcal{F}_b\}_b$ and $\{\mathcal{F}_{\varepsilon,b}\}_{\varepsilon,b}$ to \mathcal{F} , as well as the compactness of any sequence of discrete absolute minimizers, are proven.

KEY WORDS: Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations.

RIASSUNTO. — Approssimazione convessa di un funzionale non omogeneo ed anisotropo. Si studia la minimizzazione numerica del funzionale $\mathcal{F}(u) = \int_{\Omega} \phi(x, v_u) |Du| + \int_{\partial\Omega} \mu u d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u dx$. La funzione ϕ è continua, ha crescita lineare ed è convessa e positivamente omogenea di grado uno nella seconda variabile. Si dimostra che \mathcal{F} può essere equivalentemente minimizzato sull'insieme convesso $BV(\Omega; [-1, 1])$ e successivamente regolarizzato con una successione $\{\mathcal{F}_{\epsilon}(u)\}_{\epsilon}$ di funzionali strettamente convessi definiti su $BV(\Omega; [-1, 1])$. $\mathcal{F} \in \mathcal{F}_{\epsilon}$ sono poi discretizzati con elementi finiti lineari continui. La convessità dei funzionali su $BV(\Omega; [-1, 1])$ è utile nella minimizzazione numerica di \mathcal{F} . Si dimostra infine la $\Gamma - L^1(\Omega)$ -convergenza dei funzionali $\{\mathcal{F}_{b}\}_{b}$ e $\{\mathcal{F}_{\epsilon,b}\}_{\epsilon,b}$ a \mathcal{F} e la compattezza di successioni di punti di minimo discreti assoluti.

0. INTRODUCTION

Several problems in the Calculus of Variations that fall in the general framework proposed by De Giorgi [8], arising in phase transitions [4] and crystal growth [5] involve functionals depending in an inhomogeneous and anisotropic way on an interfacial energy. For instance, let Ω be a bounded smooth domain of \mathbb{R}^n , and let $\phi: \Omega \times \mathbb{R}^n \to [0, +\infty]$ be a continuous function with linear growth, convex and positively homogeneous of degree one in the second variable. Given a smooth set $E \subseteq \mathbb{R}^n$, the typical interfacial term is of the form

$$\int_{\Omega \to E} \phi(x, \nu_E(x)) d\mathcal{H}^{n-1}(x),$$

where $v_E(x)$ denotes the outward unit normal vector of ∂E at the point x, and \mathcal{H}^{n-1} denotes the (n-1)-dimensional Hausdorff measure in \mathbb{R}^n .

The study of minimum problems involving such functionals is also related to the ap-

(*) Nella seduta del 13 novembre 1993.

proximation of the motion of an interface, which propagates with a velocity depending on the position, the normal vector, and the mean curvature [1].

In this paper we generalize the numerical minimization via convex approximation presented in [2] to a model functional with an anisotropic and inhomogeneous surface term. This can be viewed as a preliminary step for the study of the geometric motion of fronts by anisotropic curvature.

More precisely, given two functions $\kappa \in L^{\infty}(\Omega)$ and $\mu \in L^{\infty}(\partial\Omega)$, and assuming that $\phi(\cdot, \xi)$ can be extended in a continuous way up to $\partial\Omega$, we consider the minimum problem:

$$\min_{u \in BV(\Omega; \{-1, 1\})} \mathcal{F}(u), \quad \text{where} \quad \mathcal{F}(u) = \int_{\Omega} \phi(x, v_u) |Du| + \int_{\partial\Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx.$$

If the solution to this problem is the characteristic function of a set $A \subseteq \Omega$ (with values 1 in A and -1 in $\Omega \setminus A$) with smooth boundary, one can prove that $\Omega \cap \partial A$ has mean curvature related to κ and ϕ , and that the contact angle at the intersection of ∂A with $\partial \Omega$ is suitably related to μ and ϕ .

Following the ideas in [2], we shall equivalently minimize \mathcal{F} on the larger convex set $BV(\Omega; [-1, 1])$. The (nonstrict) convexity of \mathcal{F} can be exploited for the numerical minimization of \mathcal{F} via linear finite elements discretizations. Since the numerical algorithms perform better for strictly convex functionals, \mathcal{F} is preliminarly regularized by a sequence $\{\mathcal{F}_{\varepsilon}\}_{\varepsilon}$ of convex functionals.

The main result of this paper is the Γ -convergence of the discrete functionals $\{\mathcal{F}_{\varepsilon,b}\}_{\varepsilon,b}$ to \mathcal{F} when ε and b go to zero independently. Since the compactness of each family $\{u_{\varepsilon,b}\}_{\varepsilon,b}$ of discrete absolute minima is also proved, in view of basic properties of Γ -convergence [9], the family $\{u_{\varepsilon,b}\}_{\varepsilon,b}$ admits a subsequence converging to a minimum point u of \mathcal{F} and $\mathcal{F}_{\varepsilon,b}(u_{\varepsilon,b})$ converges to $\mathcal{F}(u)$.

1. The setting

Let $\Omega \subset \mathbb{R}^n \ (n \ge 2)$ be a bounded open set with Lipschitz continuous boundary and denote by $|\cdot|$ the *n*-dimensional Lebesgue measure and by \mathcal{H}^{n-1} the (n-1)-dimensional Hausdorff measure in \mathbb{R}^n [10]. If $f: \Omega \to \mathbb{R}$ is a function and $t \in \mathbb{R}$, we set $\{f > t\} = \{x \in \Omega: f(x) > t\}, \{f = t\} = \{x \in \Omega: f(x) = t\}.$

If λ is a (possibly vector-valued) Radon measure, its total variation will be denoted by $|\lambda|$. If λ_0 is a scalar Radon measure on Ω such that λ is absolutely continuous with respect to λ_0 , the symbol λ/λ_0 stands for the Radon-Nikodym derivative of λ with respect to λ_0 .

The space $BV(\Omega)$ is defined as the space of the functions $u \in L^1(\Omega)$ whose distributional gradient Du is an \mathbb{R}^n -valued Radon measure with bounded total variation in Ω . Since no confusion is possible, we denote by $u \in L^1(\partial \Omega)$ the trace of $u \in BV(\Omega)$ on $\partial \Omega$ and set $v_u(x) = (Du/|Du|)(x)$ for |Du|-almost every $x \in \Omega$. We also set

$$Du = \nabla u \, dx + D^s u$$
,

where ∇u denotes the density of the absolutely continuous part of Du with respect to

the Lebesgue measure and $D^s u$ stands for the singular part. One can prove that ∇u coincides almost everywhere with the approximate differential of u.

Let $E \subseteq \mathbb{R}^n$ be a measurable set; we denote by χ_E the characteristic function of E, *i.e.*, $\chi_E(x) = 1$ if $x \in E$, $\chi_E(x) = -1$ if $x \notin E$, and we set $1_E(x) = 1$ if $x \in E$, $1_E(x) = 0$ if $x \notin E$. We say that E has finite perimeter in Ω if $\int_{\Omega} |D1_E| < +\infty$, and we denote by $P(E, \Omega)$ its perimeter. We indicate by $\partial^* E$ the reduced boundary of E. We introduce the two closed subsets of $BV(\Omega)$ as $\tilde{K} = BV(\Omega; \{-1, 1\})$ and $K = BV(\Omega; [-1, 1])$. Given $u \in BV(\Omega)$ we set $S(u) = \{(x, s) \in \Omega \times \mathbb{R}: s < u^+(x)\}$; it turns out that S(u) is a set of finite perimeter in $\Omega \times \mathbb{R}$.

For the definitions and the main properties of the functions of bounded variation and of sets of finite perimeter we refer to [10, 12, 14, 16].

For any $\mathcal{L}: BV(\Omega) \to [\inf \mathcal{L}, +\infty]$ with $-\infty < \inf \mathcal{L}$, we denote by $\overline{\mathcal{L}}: BV(\Omega) \to$ $\to [\inf \mathcal{L}, +\infty]$ the lower semicontinuous envelope (or relaxed functional) of \mathcal{L} with respect to the $L^1(\Omega)$ -topology. The functional $\overline{\mathcal{L}}$ is defined as the greatest $L^1(\Omega)$ -lower semicontinuous functional less than or equal to \mathcal{L} and can be characterized as

$$\overline{\mathcal{L}}(u) = \inf \left\{ \liminf_{b \to +\infty} \mathcal{L}(u_b) \colon \{u_b\}_b \subseteq BV(\Omega), \ u_b \stackrel{L^1(\Omega)}{\longrightarrow} u \right\}.$$

For the main properties of the relaxed functionals we refer to [3].

From now on $\phi: \overline{\Omega} \times \mathbb{R}^n \to [0, +\infty[$ will be a continuous function satisfying the properties

(1.1)
$$\phi(x, t\xi) = |t| \phi(x, \xi) \quad \forall x \in \overline{\Omega}, \quad \forall \xi \in \mathbb{R}^n, \quad \forall t \in \mathbb{R},$$

(1.2)
$$\lambda |\xi| \leq \phi(x,\xi) \leq \Lambda |\xi| \quad \forall x \in \overline{\Omega}, \quad \forall \xi \in \mathbb{R}^n$$

for two suitable positive constants $0 < \lambda \leq \Lambda < +\infty$, and such that $\phi(x, \cdot)$ is convex on \mathbb{R}^n for any $x \in \overline{\Omega}$. Further regularity assumptions on ϕ will be required afterwards (see (1.9)).

Let us recall the following coarea-type formula

(1.3)
$$\int_{\Omega} \phi(x, v_u) |Du| = \int_{R \Omega \cap \partial^* \{u > t\}} \phi(x, v_t) d\mathcal{H}^{n-1}(x) dt \quad \forall u \in BV(\Omega),$$

where v_t stands for the outer unit normal vector to the set $\Omega \cap \partial^* \{u > t\}$.

1.1 The continuous functional. Let $\mu \in L^{\infty}(\partial \Omega)$ be such that

(1.4)
$$|\mu(x)| \leq \phi(x, \nu_{\Omega}(x))$$
 for \mathcal{H}^{n-1} – a.e. $x \in \partial \Omega$,

where $\nu_{\Omega}(x)$ denotes a unit normal vector to $\partial\Omega$ at the point x. Let $\kappa \in L^{\infty}(\Omega)$. We define the functional $\mathcal{F}: BV(\Omega) \to [\inf \mathcal{F}, +\infty]$, for any $u \in K$, as

$$\mathcal{F}(u) = \int_{\Omega} \phi(x, v_u) |Du| + \int_{\partial \Omega} \mu u \, d \mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \,,$$

and set $\mathcal{F} = +\infty$ on $BV(\Omega) \setminus K$. As a consequence of the following semicontinuity result and the boundedness from below, \mathcal{F} admits at least one minimum point.

THEOREM 1.1. The functional \mathcal{F} is lower semicontinuous on K with respect to the topology of $L^1(\Omega)$.

PROOF. First we note that any $\mu \in L^{\infty}(\partial \Omega)$ verifying (1.4) can be approximated in $L^{1}(\partial \Omega)$ by a sequence of functions $\{\mu^{\delta}\}_{\delta>0}$ of the form

$$\mu^{\delta}(x) = \phi(x, \nu_{\Omega}(x)) \sum_{i=0}^{N^{\delta}} \mu_i^{\delta} \mathbf{1}_{F_i^{\delta}}(x),$$

where $-1 = \mu_0^{\delta} < \ldots < \mu_N^{\delta} = 1$, and $\{F_0^{\delta}, \ldots, F_N^{\delta}\}$ is a measurable partition of $\partial \Omega$. Here F_0^{δ} and F_N^{δ} might be empty. Denoting by \mathcal{F}^{δ} the functional \mathcal{F} with μ replaced by μ^{δ} , we have, for any $u \in K$,

$$\left|\mathcal{F}^{\delta}(u)-\mathcal{F}(u)\right| \leq \int_{\partial\Omega} |u| |\mu-\mu^{\delta}| d\mathcal{H}^{n-1} \leq \|\mu-\mu^{\delta}\|_{L^{1}(\partial\Omega)} \to 0,$$

as $\delta \to 0$. Namely, $\mathcal{F}^{\delta} \to \mathcal{F}$ uniformly on K as $\delta \to 0$. Since the uniform limit of semicontinuous functions is semicontinuous, the assertion of the theorem is thus reduced to prove that any \mathcal{F}^{δ} is $L^{1}(\Omega)$ -lower semicontinuous on K. Since no confusion is possible, we omit the superscript δ .

Set $\alpha_i = (\mu_i - \mu_{i-1})/2 > 0$ and $G_i = \{\mu \ge \mu_i\} \subseteq \partial \Omega$, for all $1 \le i \le N$. Note that neither $\mu_0 = -1$ nor $\mu_N = 1$ are necessarily assumed, namely, that $G_1 = \partial \Omega$ and $G_N = = \emptyset$ are allowed. Since

$$\sum_{i=1}^{N} \alpha_i = 1 \quad \text{and} \quad \mu(x) = \phi(x, \nu_{\Omega}) \sum_{i=1}^{N} \alpha_i \chi_{G_i}(x) \quad \text{for} \quad \mathcal{H}^{n-1} - \text{a.e. } x \in \partial \Omega ,$$

the functional \mathcal{F} can be represented as a convex combination of functionals \mathcal{F}^i as follows:

$$\mathcal{F}(u) = \sum_{i=1}^{N} \alpha_{i} \left[\int_{\Omega} \phi(x, v_{u}) |Du| + \int_{\partial \Omega} \phi(x, v_{\Omega}) \chi_{G_{i}} u d \mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \right] =: \sum_{i=1}^{N} \alpha_{i} \mathcal{F}^{i}(u).$$

To prove the lower semicontinuity of \mathcal{F} it will be enough to show that each \mathcal{F}^i is lower semicontinuous. For simplicity we omit the index *i*, thus denoting $G_i = G$ a measurable subset of $\partial \Omega$, and assume

(1.5)
$$\mu(x) = \phi(x, \nu_{\Omega}) \chi_{C}(x).$$

Let B be a ball containing $\overline{\Omega}$ and define

$$\Phi(x, \xi) = \begin{cases} \phi(x, \xi) & \text{if } (x, \xi) \in \overline{\Omega} \times \mathbb{R}^n ,\\ A |\xi| & \text{if } (x, \xi) \in (B \setminus \overline{\Omega}) \times \mathbb{R}^n \end{cases}$$

Then Φ is lower semicontinuous on $B \times \mathbb{R}^n$ (recall (1.2)). We can extend $-\chi_G \in L^1(\partial\Omega)$ to a function $w \in W^{1,1}(B \setminus \overline{\Omega}; [-1, 1])$ with trace $-\chi_G$ on $\partial\Omega$, so that there exists C > 0 such that $\|w\|_{W^{1,1}(B \setminus \overline{\Omega})} \leq C \|\chi_G\|_{L^1(\partial\Omega)}$ [11, Theorem 1.II; 12, Theorem 2.16].

For any $u \in K$ we define $U \in BV(B; [-1, 1])$ as follows:

$$U = \begin{cases} u & \text{on } \Omega, \\ w & \text{on } B \setminus \Omega. \end{cases}$$

Obviously *B* and *w* do not depend on *u*, hence $\Lambda \int_{B\setminus\overline{\Omega}} |\nabla w| dx$ is a constant, and we shall denote it by c_1 ; set also $c_2 = \int_{\partial\Omega} \phi(x, \nu_{\Omega}) d\mathcal{H}^{n-1}(x)$. Recalling that $|u| \leq 1$, we find [7] $\int_{B} \Phi(x, \nu_U) |DU| = \int_{\Omega} \phi(x, \nu_u) |Du| + \int_{\partial\Omega} \phi(x, \nu_\Omega) |u + \chi_G| d\mathcal{H}^{n-1} + c_1 =$ $= \int_{\Omega} \phi(x, \nu_u) |Du| + \int_{\partial\Omega} \phi(x, \nu_\Omega) u\chi_G d\mathcal{H}^{n-1} + c_1 + c_2$.

Hence, recalling (1.5) we have

$$\int_{\Omega} \phi(x, v_u) |Du| + \int_{\partial \Omega} \mu u \, d \mathcal{H}^{n-1} = \int_{B} \Phi(x, v_U) |DU| - (c_1 + c_2).$$

Recalling the definition and the convexity of Φ , the functional $\int_{B} \Phi(x, v_U) |DU|$ is L^1 lower semicontinuous. Since the map $u \to \int_{\Omega} \kappa u \, dx$ is continuous with respect to the topology of $L^1(\Omega)$, the assertion follows. \square

If ϕ is not convex in ξ then \mathcal{F} is not, in general, lower semicontinuous, and the lower semicontinuous envelope of the functional $u \to \int_{\Omega} \phi(x, \nabla u) dx$ on $W^{1, 1}(\Omega)$ can be written on $BV(\Omega) \cap L^{\infty}(\Omega)$ as $\int_{\Omega} \phi^{**}(x, \nu_u) |Du|$, where ϕ^{**} denotes the greatest function that is convex in ξ and less than or equal to $\phi(x, \xi)$ for all $(x, \xi) \in \Omega \times \mathbb{R}^n$. In addition, as in [2], if condition (1.4) is not fulfilled, \mathcal{F} is not lower semicontinuous. Observe that \mathcal{F} admits at least a minimum point $u \in K$ ($u \in \widetilde{K}$, respectively), because of condition (1.2) and since \mathcal{F} is lower semicontinuous on K (on \widetilde{K} , respectively).

The following theorem shows that to minimize \mathcal{F} on \widetilde{K} is equivalent to minimize \mathcal{F} on the convex set K, and this reads as a (nonstrictly) convex problem.

THEOREM 1.2. Suppose that $u \in K$ is a minimum point of F on K. Then

$$\mathcal{F}(u) = \mathcal{F}(\chi_{\{u > t\}}) \quad \text{for a.e. } t \in [-1, 1]$$

namely, $\chi_{\{u > t\}} \in \widetilde{K}$ is a minimum point of \mathcal{F} on \widetilde{K} for almost every $t \in [-1, 1]$.

PROOF. For all $v \in K$, from (1.3) and the Cavalieri formula we have

$$\mathcal{F}(v) = \int_{-1}^{1} \int_{\Omega \cap \partial^{*} \{u > t\}} \phi(x, v_{t}) d\mathcal{H}^{n-1} dt + \frac{1}{2} \int_{-1}^{1} \int_{\partial \Omega} \mu \chi_{\{v > t\}} d\mathcal{H}^{n-1} dt - \frac{1}{2} \int_{-1}^{1} \int_{\Omega} \kappa \chi_{\{v > t\}} dx dt = \frac{1}{2} \int_{-1}^{1} \mathcal{F}(\chi_{\{v > t\}}) dt ,$$

that is

$$\int_{-1}^{1} \left(\mathcal{F}(\chi_{\{v > t\}}) - \mathcal{F}(v) \right) dt = 0 \quad \forall v \in K.$$

The minimality of u on K entails $\mathcal{F}(\chi_{\{u > t\}}) - \mathcal{F}(u) \ge 0$; therefore $\mathcal{F}(u) = \mathcal{F}(\chi_{\{u > t\}})$ for almost every $t \in [-1, 1]$. \Box

REMARK 1.1. In view of Theorem 1.2, we have that $\min_{v \in \overline{K}} \mathcal{F}(v) = \min_{v \in K} \mathcal{F}(v)$; moreover \mathcal{F} has a unique minimum point on \widetilde{K} if and only if \mathcal{F} has a unique minimum point on K, and they coincide. Note that \mathcal{F} may exhibit relative minima on \widetilde{K} ; in view of the convexity of K, they are no longer relative minima of \mathcal{F} on K.

1.2. The regularized functionals. Given $\varepsilon \ge 0$, in analogy with [2], we define a regularization of ϕ as follows

(1.6)
$$\phi_{\varepsilon}(x,\xi) = \sqrt{\varepsilon^2 + (\phi(x,\xi))^2},$$

for all $(x, \xi) \in \overline{\Omega} \times \mathbb{R}^n$. Let us consider the map $G_{\varepsilon} : BV(\Omega) \to [0, +\infty]$ defined by

$$G_{\varepsilon}(u) = \begin{cases} \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) \, dx & \text{if } u \in W^{1, 1}(\Omega), \\ \\ +\infty & \text{elsewhere }. \end{cases}$$

Observe that, by the continuity assumption on ϕ and by (1.1), there exists a continuous function $\omega: \mathbb{R}^+ \to \mathbb{R}^+$, with $\omega(0) = 0$, such that

$$\left|\phi_{\varepsilon}(x,\xi) - \phi_{\varepsilon}(y,\xi)\right| \leq \left|\phi(x,\xi) - \phi(y,\xi)\right| \leq \omega(\left|x-y\right|)(1+\left|\xi\right|)$$

for any $x, y \in \Omega$ and any $\xi \in \mathbb{R}^n$. Then, applying [7, Theorem 3.2] and observing that $\lim_{t \to 0^+} t\phi_{\varepsilon}(x, \xi/t) = \phi(x, \xi)$, we find that

$$\overline{G_{\varepsilon}}(u) = \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) \, dx + \int_{\Omega} \phi\left(x, \frac{D^{s}u}{|D^{s}u|}\right) |D^{s}u| \quad \forall u \in BV(\Omega)$$

We are now ready to define the regularized functionals $\mathcal{F}_{\varepsilon} \colon BV(\Omega) \to [\inf \mathcal{F}_{\varepsilon}, +\infty]$. For any $\varepsilon > 0$ and for any $u \in K$, we set

(1.7)
$$\mathcal{F}_{\varepsilon}(u) = \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) \, dx + \int_{\Omega} \phi\left(x, \frac{D^{s}u}{|D^{s}u|}\right) |D^{s}u| + \int_{\partial\Omega} \mu u \, d\partial \mathcal{C}^{n-1} - \int_{\Omega} \kappa u \, dx \,,$$

and we set $\mathcal{F}_{\varepsilon} = +\infty$ on $BV(\Omega) \setminus K$.

THEOREM 1.3. For any $\varepsilon > 0$ the functional $\mathcal{F}_{\varepsilon}$ is lower semicontinuous on K with respect to the topology of $L^{1}(\Omega)$.

PROOF. Reasoning as in the proof of Theorem 1.1, and using the same notation, we have

$$\mathcal{F}_{\varepsilon}(u) + \int_{\Omega} \kappa u \, dx = \int_{B} \sqrt{\varepsilon^2 + (\Phi(x, \nabla U))^2} \, dx + \int_{B} \Phi\left(x, \frac{D^s U}{|D^s U|}\right) |D^s U| - (c_2 + c_3)$$

where

$$c_3 = \int\limits_{B \setminus \overline{\Omega}} \sqrt{\varepsilon^2 + \Lambda^2 |\nabla w|^2} \, dx \, .$$

As the functional at the right-hand side is L^1 -lower semicontinuous (it is a lower semicontinuous envelope by [7]), the theorem follows. \Box

It is not difficult to show that, if condition (1.4) is not fulfilled, then the functional $\mathcal{F}_{\varepsilon}$ is not lower semicontinuous.

Observe that the restriction of $\mathcal{F}_{\varepsilon}$ to K (\tilde{K} , respectively) admits at least a minimum point $u \in K$ ($u \in \tilde{K}$, respectively), because of condition (1.2) and since $\mathcal{F}_{\varepsilon}$ is lower semicontinuous on K (on \tilde{K} , respectively). Observe also that, if $\mathcal{F}_{\varepsilon}$ has a minimum point $u_{\varepsilon} \in \varepsilon K \cap W^{1, 1}_{loc}(\Omega)$ then, since $\mathcal{F}_{\varepsilon}$ is strictly convex in $(BV(\Omega) \cap W^{1, 1}_{loc}(\Omega))/R$, the minimum is unique up to a possible additive constant.

REMARK 1.2. We have $\mathcal{F}_{\varepsilon} \to \mathcal{F}$ uniformly in K as $\varepsilon \to 0$.

PROOF. For any $u \in K$, using (1.1), we have

$$\left|\mathcal{F}_{\varepsilon}(u) - \mathcal{F}(u)\right| = \varepsilon \left| \int_{\Omega} \sqrt{1 + \left(\phi\left(x, \nabla\left(\frac{u}{\varepsilon}\right)\right)\right)^2} dx - \int_{\Omega} \phi\left(x, \nabla\left(\frac{u}{\varepsilon}\right)\right) dx \right| \le \varepsilon |\Omega| . \quad \Box$$

1.3. The discrete functionals. Let $\{S_b\}_{b>0}$ denote a regular family of partitions of Ω into simplices [6]. Let $h_S \leq b$ denote the diameter of any $S \in S_b$. For any b > 0, let $V_b \subset H^1(\Omega; [-1, 1]) \subset K$ be the piecewise linear finite element space over S_b with values in [-1, 1] and Π_b be the usual Lagrange interpolation operator over the continuous piecewise linear functions. By C we shall mean an absolute positive constant whose value may vary at each occurrence. For the sake of simplicity, we shall assume that the discrete domain $\Omega_b = \bigcup_{S \in S_b} S$ coincides with $\overline{\Omega}$. In order to introduce the discrete functionals \mathcal{F}_b and $\mathcal{F}_{\varepsilon,b}$, we approximate μ and κ as in [2] by a sequence of continuous piecewise linear functions $\mu_b \to \mu$ and $\kappa_b \to \kappa$ in L^1 as $b \to 0$ such that [6]

(1.8)
$$\begin{aligned} \|\mu_b\|_{L^{\infty}(\partial\Omega)} &\leq \|\mu\|_{L^{\infty}(\partial\Omega)}, \quad \|\nabla\mu_b\|_{L^{1}(\partial\Omega)} = o(b^{-1}), \\ \|\kappa_b\|_{L^{\infty}(\Omega)} &\leq \|\kappa\|_{L^{\infty}(\Omega)}, \quad \|\nabla\kappa_b\|_{L^{1}(\Omega)} = o(b^{-1}). \end{aligned}$$

We define the discrete functionals as follows: for any $u \in V_b$ we set

$$\mathcal{F}_{\varepsilon,b}(u) = \sum_{S \in S_b} \int_{S} \prod_{b} (\phi_{\varepsilon}(x, \nabla u)) dx + \int_{\partial \Omega} \prod_{b} (\mu_{b} u) d\mathcal{H}^{n-1} - \int_{\Omega} \prod_{b} (\kappa_{b} u) dx,$$

 $\mathcal{F}_{\varepsilon,b} = +\infty$ on $BV(\Omega) \setminus V_b$. Finally we define $\mathcal{F}_b = \mathcal{F}_{0,b}$. The piecewise constant interpolation $\int_{\Omega} \Pi_b^0(\phi_{\varepsilon}(x, \nabla u)) dx$ can also be used in the first term without affecting the convergence result and allowing a simpler implementation of the numerical algorithms.

To prove the main theorem (2.1) we need the assumptions

(1.9)
$$\phi(\cdot,\xi) \in W^{1,\infty}(\Omega), \quad |\nabla_x \phi(x,\xi)| \le C |\xi| \quad \forall (x,\xi) \in \Omega \times \mathbb{R}^n,$$

and that $\phi(x, \cdot)$ is Lipschitz continuous uniformly with respect to x.

If $u \in V_b$, by the properties of the Lagrange interpolation operator, noting that (1.6) gives $|\nabla_x \phi_{\varepsilon}(x, \nabla u)| \leq |\nabla_x \phi(x, \nabla u)|$ and using (1.9) we have

(1.10)
$$\left|\sum_{S \in S_{b}} \int_{S} \left(\Pi_{b} \left(\phi_{\varepsilon}(x, \nabla u)\right) - \phi_{\varepsilon}(x, \nabla u)\right) dx\right| \leq \sum_{S \in S_{b}} \left\|\Pi_{b} \left(\phi_{\varepsilon}(x, \nabla u)\right) - \phi_{\varepsilon}(x, \nabla u)\right\|_{L^{\infty}(S)} \left|S\right| \leq Cb \sum_{S \in S_{b}} \left\|\nabla_{x} \phi(x, \nabla u)\right\|_{L^{\infty}(S)} \left|S\right| \leq Cb \int_{\Omega} \left|\nabla u\right| dx.$$

2. Convergence of the discretized functionals

REMARK 2.1. We have $\lim_{\varepsilon \to 0} \mathcal{F}_{\varepsilon, b} = \mathcal{F}_{b}$ uniformly in V_{b} and with respect to b. PROOF. See Remark 1.2. \Box

The next main theorem generalizes [2, Theorem 3.1].

THEOREM 2.1. For any $\varepsilon > 0$ we have,

$$\Gamma - \lim_{b \to 0} \mathcal{F}_b = \mathcal{F} \quad and \quad \Gamma - \lim_{b \to 0} \mathcal{F}_{\varepsilon, b} = \mathcal{F}_{\varepsilon} \quad in \ L^1(\Omega) \,.$$

PROOF. We give a unified proof for both cases $\varepsilon > 0$ and $\varepsilon = 0$, considering $\mathcal{F}_b = \mathcal{F}_{\varepsilon, b}$ and $\mathcal{F} = \mathcal{F}_{\varepsilon}$ if $\varepsilon = 0$. Hence, let $\varepsilon \ge 0$ be fixed. We split the proof into two steps, namely, we prove that the two following properties hold [9]:

(i) for any $u \in BV(\Omega)$ and any sequence $\{u_b\}_b$ in $BV(\Omega)$ converging to u in $L^1(\Omega)$ we have $\mathcal{F}_{\varepsilon}(u) \leq \liminf_{b \to 0} \mathcal{F}_{\varepsilon,b}(u_b)$;

(*ii*) for any $u \in BV(\Omega)$ there exists a sequence $\{u_b\}_b$ in $BV(\Omega)$ converging to u in $L^1(\Omega)$ such that $\mathcal{F}_{\varepsilon}(u) = \lim_{b \to 0} \mathcal{F}_{\varepsilon,b}(u_b)$.

Preliminarly we decompose $\mathcal{F}_{\varepsilon,b}(u_b)$, for all $u_b \in V_b$, as follows:

(2.1)
$$\mathcal{F}_{\varepsilon,b}(u_b) = \mathcal{F}_{\varepsilon}(u_b) + \int_{\partial\Omega} [\Pi_b(\mu_b u_b) - \mu u_b] d\mathcal{H}^{n-1} - \int_{\Omega} [\Pi_b(\kappa_b u_b) - \kappa u_b] dx + \sum_{S \in S_b} \int_{S} (\Pi_b(\phi_{\varepsilon}(x, \nabla u_b)) - \phi_{\varepsilon}(x, \nabla u_b)) dx =: \mathcal{F}_{\varepsilon}(u_b) + I_b + II_b + III_{\varepsilon,b})$$

Recalling (1.8) and reasoning as in [2], one gets $\lim_{h\to 0} [|I_h| + |II_h|] = 0$.

PROOF OF STEP (i). Let $u \in BV(\Omega)$ and $\{u_b\}_b$ in $BV(\Omega)$ be any sequence so that $u_b \to u$ in $L^1(\Omega)$ as $b \to 0$. We can assume that $u_b \in V_b$ for any b and that $\sup_b \mathcal{F}_{\varepsilon,b}(u_b) < +\infty$. From (1.2) we get $\sup_b \int_{\Omega} |\nabla u_b| dx < +\infty$, so that, in view of (1.10) we have $\lim_{b\to 0} |III_{\varepsilon,b}| = 0$. Then, using (2.1) and the lower semicontinuity of $\mathcal{F}_{\varepsilon}$

(Theorems 1.1 and 1.3), we conclude that

$$\mathcal{F}_{\varepsilon}(u) \leq \liminf_{b \to 0} \mathcal{F}_{\varepsilon}(u_b) = \liminf_{b \to 0} \mathcal{F}_{\varepsilon, b}(u_b),$$

and (i) is proved.

PROOF OF STEP (*ii*). We can assume that $u \in K$. Given a ball *B* containing $\overline{\Omega}$, let $\tilde{u} \in W^{1,1}(B \setminus \overline{\Omega}; [-1, 1])$ be a function with trace *u* on $\partial\Omega$ [11] and denote again by $u \in BV(B; [-1, 1])$ the function u(x) = u(x) if $x \in \Omega$, $u(x) = \tilde{u}(x)$ if $x \in B \setminus \Omega$. Observe that

(2.2)
$$\int_{\partial Q} |Du| = 0$$

Let $\eta_b = o(b^{-1/2})$ and $\{\delta_b\}_b$ be a family of mollifiers defined by $\delta_b(x) = \eta_b^n \delta(\eta_b x)$. Set $\hat{u}_b(x) = (u * \delta_b)(x)$ for all $x \in B$, where *u* is extended to 0 outside *B*. It is well known [12, Proposition 1.15] that, recalling (2.2),

(2.3)
$$\lim_{b \to 0} \|\widehat{u}_b - u\|_{L^1(\Omega)} = 0, \quad \text{and} \quad \lim_{b \to 0} \int_{\Omega} |\nabla \widehat{u}_b| \, dx = \int_{\Omega} |Du| \, dx$$

Set $u_b = \prod_b \hat{u}_b \in V_b$; then [2]

(2.4)
$$\lim_{b \to 0} \|u_b - u\|_{L^1(\Omega)} = 0, \quad \lim_{b \to 0} \int_{\Omega} |\nabla u_b| \, dx = \int_{\Omega} |Du| \, dx$$

and

(2.5)
$$\lim_{b \to 0} \int_{\partial \Omega} |u_b - u| d\mathcal{H}^{n-1} = 0.$$

Hence, using Reshetnyak's Theorem [15] (see also [13]), we get

(2.6)
$$\lim_{b \to 0} \int_{\Omega} \phi(x, \nabla u_b) dx = \int_{\Omega} \phi(x, \nu_u) |Du| .$$

Using (2.1), (2.4), (2.5), and (2.6), we get (*ii*) when $\varepsilon = 0$.

Let $\varepsilon > 0$. One can prove (see [14, Theorems 1.8 and 1.10]) that the sequence $\{D1_{S(\tilde{u}_b)}\}_b$ converges weakly on $\Omega \times \mathbf{R}$ to $D1_{S(u)}$ and, using (2.2), that

(2.7)
$$\lim_{b \to 0} |D1_{S(\tilde{u}_b)}| (\Omega \times \mathbf{R}) = |D1_{S(u)}| (\Omega \times \mathbf{R}).$$

Let $\tilde{\phi}_{\varepsilon}: \Omega \times \mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^+ \to [0, +\infty]$ be defined by

$$\widetilde{\phi}_{\varepsilon}(x, s, \xi, t) = \begin{cases} t\phi_{\varepsilon}\left(x, \frac{\xi}{t}\right) & \text{if } t > 0, \\ \phi(x, \xi) & \text{if } t = 0. \end{cases}$$

Then $\tilde{\phi}_{\varepsilon}$ is continuous, and the function $(\xi, t) \to \tilde{\phi}_{\varepsilon}(x, s, \xi, t)$ is convex and positively homogeneous of degree one on $\mathbb{R}^n \times \mathbb{R}^+$. By [7, Lemma 2.2], for any $u \in K$ we have

$$\int_{\Omega \times \mathbf{R}} \widetilde{\phi}_{\varepsilon} \left(x, s, \frac{D \mathbf{1}_{\mathcal{S}(u)}}{|D \mathbf{1}_{\mathcal{S}(u)}|} \right) |D \mathbf{1}_{\mathcal{S}(u)}| = \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) \, dx + \int_{\Omega} \phi \left(x, \frac{D^{s} u}{|D^{s} u|} \right) |D^{s} u| \, .$$

Using again Reshetnyak's Theorem (recall (2.7)) we have

$$(2.8) \qquad \lim_{b \to 0} \int_{\Omega} \phi_{\varepsilon}(x, \nabla \widehat{u}_{b}) dx = \lim_{b \to 0} \int_{\Omega \times \mathbf{R}} \widetilde{\phi}_{\varepsilon} \left(x, s, \frac{D\mathbf{1}_{S(\widehat{u}_{b})}}{|D\mathbf{1}_{S(\widehat{u}_{b})}|}\right) |D\mathbf{1}_{S(\widehat{u}_{b})}| = \\ = \int_{\Omega \times \mathbf{R}} \widetilde{\phi}_{\varepsilon} \left(x, s, \frac{D\mathbf{1}_{S(u)}}{|D\mathbf{1}_{S(u)}|}\right) |D\mathbf{1}_{S(u)}| = \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) dx + \int_{\Omega} \phi \left(x, \frac{D^{s}u}{|D^{s}u|}\right) |D^{s}u| .$$

Observe that for any b we have

$$\left|\int_{\Omega} \phi_{\varepsilon}(x, \nabla \widehat{u}_{b}) dx - \int_{\Omega} \phi_{\varepsilon}(x, \nabla u_{b}) dx\right| \leq \int_{\Omega} |\phi(x, \nabla \widehat{u}_{b}) dx - \phi(x, \nabla u_{b})| dx \to 0$$

as $b \to 0$, in view of the Lipschitz assumption on $\phi(x, \cdot)$ and the fact that [2] $\lim_{b \to 0} \|\widehat{u}_b - u_b\|_{W^{1,1}(\Omega)} = 0.$

Using (2.8) we then find

$$\lim_{b \to 0} \int_{\Omega} \phi_{\varepsilon}(x, \nabla u_b) \, dx = \lim_{b \to 0} \int_{\Omega} \phi_{\varepsilon}(x, \nabla \widehat{u}_b) \, dx = \int_{\Omega} \phi_{\varepsilon}(x, \nabla u) \, dx + \int_{\Omega} \phi\left(x, \frac{D^s u}{|D^s u|}\right) |D^s u| \, .$$

This, together with (2.5) and (2.4), concludes the proof of (ii) when $\varepsilon > 0$. \Box

A straightforward consequence is the following Γ -convergence result for $\mathcal{F}_{\varepsilon, b}$, as ε and b go to 0 independently.

COROLLARY 2.1. We have $\prod_{(\varepsilon, b) \to (0, 0)} \mathcal{T}_{\varepsilon, b} = \mathcal{F}$ in $L^{1}(\Omega)$.

Finally, we prove the compactness of any sequence of approximated minima which, in view of basic properties of Γ -convergence gives, up to a subsequence, the convergence to a minimum of the original functional \mathcal{F} .

THEOREM 2.2. Any family of absolute minima of the functionals $\mathcal{F}_{\varepsilon}$, \mathcal{F}_{b} , or $\mathcal{F}_{\varepsilon,b}$, is relatively compact in $L^{1}(\Omega)$.

PROOF. Let $u_{\varepsilon,b}$ be a minimum point of $\mathcal{F}_{\varepsilon,b}$. Given any $v \in K$, from Corollary 2.1 there exists a sequence $\{v_{\varepsilon,b}\}_{\varepsilon,b}$ converging to v in $L^1(\Omega)$ as $(\varepsilon, b) \to (0, 0)$, so that

$$\lim_{(\varepsilon,b)\to(0,0)}\mathcal{F}_{\varepsilon,b}(v_{\varepsilon,b})=\mathcal{F}(v)\in \mathbf{R}.$$

Hence $\sup_{\varepsilon, \tilde{b}} \mathcal{F}_{\varepsilon, b}(u_{\varepsilon, b}) \leq \sup_{\varepsilon, \tilde{b}} \mathcal{F}_{\varepsilon, b}(v_{\varepsilon, b}) < + \infty$. Then we get

$$\sup_{\varepsilon, b} \int_{\Omega} |D u_{\varepsilon, b}| < +\infty ,$$

and the assertion for $\mathcal{F}_{\varepsilon, b}$ follows from the compactness theorem in $BV(\Omega)$. The assertion for $\mathcal{F}_{\varepsilon}$ and \mathcal{F}_{b} is similar. \Box

Work partially supported by NSF Grant DMS-9008999, by MURST (Progetto Nazionale «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche» and «Analisi Numerica e Matematica Computazionale») and CNR (IAN Contracts 92.00833.01, 93.00564.01), Italy.

References

- F. ALMGREN J. E. TAYLOR L. WANG, Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437.
- [2] G. BELLETTINI M. PAOLINI C. VERDI, Convex approximations of functionals with curvature. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 297-306.
- [3] G. BUTTAZZO, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, Harlow 1989.
- [4] G. CAGINALP, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math., 44, 1990, 77-94.
- [5] J. W. CAHN C. A. HANDWERKER J. E. TAYLOR, Geometric models of crystal growth. Acta Metall., 40, 1992, 1443-1474.
- [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam 1978.
- [7] G. DAL MASO, Integral representation on $BV(\Omega)$ of Γ -limits of variational integrals. Manuscripta Math., 30, 1980, 387-416.
- [8] E. DE GIORGI, Free discontinuity problems in calculus of variations. In: R. DAUTRAY (ed.), Frontieres in Pure and Applied Mathematics. North-Holland, Amsterdam 1991, 55-62.
- [9] E. DE GIORGI T. FRANZONI, Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, 58, 1975, 842-850.
- [10] H. FEDERER, Geometric Measure Theory. Springer-Verlag, Berlin 1968.
- [11] E. GAGLIARDO, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27, 1957, 284-305.
- [12] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston 1984.
- [13] S. LUCKHAUS L. MODICA, The Gibbs-Thomson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal., 107, 1, 1989, 71-83.
- [14] M. MIRANDA, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Pisa Cl. Sci., (4), 3, 1964, 515-542.
- [15] YU. G. RESHETNYAK, Weak convergence of completely additive functions on a set. Siberian Math. J., 9, 1968, 1039-1045.
- [16] A. I. VOL'PERT, The space BV and quasilinear equations. Math. USSR Sbornik, 2, 1967, 225-267.

G. Bellettini: Dipartimento di Matematica Università degli Studi di Bologna Piazza di Porta S. Donato, 5 - 40127 BOLOGNA

> M. Paolini: Dipartimento di Matematica Università degli Studi di Milano
> Via C. Saldini, 50 - 20133 MILANO