Rendiconti Lincei Matematica e Applicazioni

Giovanni Bellettini, Maurizio Paolini
 Convex approximation of an inhomogeneous anisotropic functional

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.2, p. 177-187.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1994_9_5_2_177_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Analisi numerica. - Convex approximation of an inhomogeneous anisotropic functional. Nota di Giovanni Bellettini e Maurizio Paolini, presentata (*) dal Socio E. Magenes.

Abstract. - The numerical minimization of the functional $\mathscr{F}(u)=\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial \Omega} \mu u d \mathscr{S}^{n-1}-$ $-\int_{\Omega} \kappa u d x, u \in B V(\Omega ;\{-1,1\})$, is addressed. The function ϕ is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \mathscr{F} can be equivalently minimized on the convex set $B V(\Omega ;[-1,1])$ and then regularized with a sequence $\left\{\mathscr{F}_{\varepsilon}(u)\right\}_{\varepsilon}$ of strictly convex functionals defined on $B V(\Omega ;[-1,1])$. Then both \mathscr{F} and $\mathscr{F}_{\varepsilon}$ can be discretized by continuous linear finite elements. The convexity property of the functionals on $B V(\Omega ;[-1,1])$ is useful in the numerical minimization of \mathscr{F}. The $\Gamma-L^{1}(\Omega)$-convergence of the discrete functionals $\left\{\mathscr{F}_{b}\right\}_{b}$ and $\left\{\mathscr{F}_{\varepsilon, b}\right\}_{\varepsilon, b}$ to \mathscr{F}, as well as the compactness of any sequence of discrete absolute minimizers, are proven.

Key words: Calculus of variations; Anisotropic surface energy; Finite elements; Convergence of discrete approximations.

Riassunto. - Approssimazione convessa di un funzionale non omogeneo ed anisotropo. Si studia la minimizzazione numerica del funzionale $\mathscr{F}(u)=\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial \Omega} \mu u d \mathcal{S}^{n-1}-\int_{\Omega} \kappa u d x$. La funzione ϕ è continua, ha crescita lineare ed è convessa e positivamente omogenea di grado uno nella seconda variabile. Si dimostra che \mathscr{F} può essere equivalentemente minimizzato sull'insieme convesso $B V(\Omega ;[-1,1])$ e successivamente regolarizzato con una successione $\left\{\mathscr{F}_{\varepsilon}(u)\right\}_{\varepsilon}$ di funzionali strettamente convessi definiti su $B V(\Omega ;[-1,1]) . \mathscr{F}$ e $\mathscr{F}_{\varepsilon}$ sono poi discretizzati con elementi finiti lineari continui. La convessità dei funzionali su $B V(\Omega ;[-1,1])$ è utile nella minimizzazione numerica di \mathscr{F}. Si dimostra infine la $\Gamma-L^{1}(\Omega)$-convergenza dei funzionali $\left\{\mathscr{F}_{h}\right\}_{b}$ e $\left\{\mathscr{F}_{\varepsilon, b}\right\}_{\varepsilon, h}$ a \mathscr{F} e la compattezza di successioni di punti di minimo discreti assoluti.

0. Introduction

Several problems in the Calculus of Variations that fall in the general framework proposed by De Giorgi [8], arising in phase transitions [4] and crystal growth [5] involve functionals depending in an inhomogeneous and anisotropic way on an interfacial energy. For instance, let Ω be a bounded smooth domain of \boldsymbol{R}^{n}, and let $\phi: \Omega \times \boldsymbol{R}^{n} \rightarrow$ $\rightarrow[0,+\infty[$ be a continuous function with linear growth, convex and positively homogeneous of degree one in the second variable. Given a smooth set $E \subseteq \boldsymbol{R}^{n}$, the typical interfacial term is of the form

$$
\int_{\Omega} \int_{\partial E} \phi\left(x, \nu_{E}(x)\right) d \mathcal{C}^{n-1}(x),
$$

where $\nu_{E}(x)$ denotes the outward unit normal vector of ∂E at the point x, and \mathscr{H}^{n-1} denotes the ($n-1$)-dimensional Hausdorff measure in \boldsymbol{R}^{n}.

The study of minimum problems involving such functionals is also related to the ap-
(*) Nella seduta del 13 novembre 1993.
proximation of the motion of an interface, which propagates with a velocity depending on the position, the normal vector, and the mean curvature [1].

In this paper we generalize the numerical minimization via convex approximation presented in [2] to a model functional with an anisotropic and inhomogeneous surface term. This can be viewed as a preliminary step for the study of the geometric motion of fronts by anisotropic curvature.

More precisely, given two functions $\kappa \in L^{\infty}(\Omega)$ and $\mu \in L^{\infty}(\partial \Omega)$, and assuming that $\phi(\cdot, \xi)$ can be extended in a continuous way up to $\partial \Omega$, we consider the minimum problem:
$\min _{u \in B V(\Omega ;\{-1,1\})} \mathcal{F}(u), \quad$ where $\mathscr{F}(u)=\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial \Omega} \mu u d \mathscr{C}^{n-1}-\int_{\Omega} \kappa u d x$.
If the solution to this problem is the characteristic function of a set $A \subseteq \Omega$ (with values 1 in A and -1 in $\Omega \backslash A$) with smooth boundary, one can prove that $\Omega \cap \partial A$ has mean curvature related to κ and ϕ, and that the contact angle at the intersection of ∂A with $\partial \Omega$ is suitably related to μ and ϕ.

Following the ideas in [2], we shall equivalently minimize \mathscr{F} on the larger convex set $B V(\Omega ;[-1,1])$. The (nonstrict) convexity of \mathscr{F} can be exploited for the numerical minimization of \mathfrak{F} via linear finite elements discretizations. Since the numerical algorithms perform better for strictly convex functionals, \mathscr{F} is preliminarly regularized by a sequence $\left\{\mathscr{F}_{\varepsilon}\right\}_{\varepsilon}$ of convex functionals.

The main result of this paper is the Γ-convergence of the discrete functionals $\left\{\mathscr{F}_{\varepsilon, b}\right\}_{\varepsilon, b}$ to \mathscr{F} when ε and b go to zero independently. Since the compactness of each family $\left\{u_{\varepsilon, h}\right\}_{\varepsilon, h}$ of discrete absolute minima is also proved, in view of basic properties of Γ-convergence [9], the family $\left\{u_{\varepsilon, b}\right\}_{\varepsilon, b}$ admits a subsequence converging to a minimum point u of \mathscr{F} and $\mathscr{F}_{\varepsilon, b}\left(u_{\varepsilon, b}\right)$ converges to $\mathscr{F}(u)$.

1. The setting

Let $\Omega \subset \boldsymbol{R}^{n}(n \geqslant 2)$ be a bounded open set with Lipschitz continuous boundary and denote by $|\cdot|$ the n-dimensional Lebesgue measure and by \mathcal{C}^{n-1} the $(n-1)$-dimensional Hausdorff measure in $\boldsymbol{R}^{n}[10]$. If $f: \Omega \rightarrow \boldsymbol{R}$ is a function and $t \in \boldsymbol{R}$, we set $\{f>t\}=\{x \in \Omega: f(x)>t\},\{f=t\}=\{x \in \Omega: f(x)=t\}$.

If λ is a (possibly vector-valued) Radon measure, its total variation will be denoted by $|\lambda|$. If λ_{0} is a scalar Radon measure on Ω such that λ is absolutely continuous with respect to λ_{0}, the symbol λ / λ_{0} stands for the Radon-Nikodym derivative of λ with respect to λ_{0}.

The space $B V(\Omega)$ is defined as the space of the functions $u \in L^{1}(\Omega)$ whose distributional gradient $D u$ is an \boldsymbol{R}^{n}-valued Radon measure with bounded total variation in Ω. Since no confusion is possible, we denote by $u \in L^{1}(\partial \Omega)$ the trace of $u \in B V(\Omega)$ on $\partial \Omega$ and set $\nu_{u}(x)=(D u /|D u|)(x)$ for $|D u|$-almost every $x \in \Omega$. We also set

$$
D u=\nabla u d x+D^{s} u
$$

where ∇u denotes the density of the absolutely continuous part of $D u$ with respect to
the Lebesgue measure and $D^{s} u$ stands for the singular part. One can prove that ∇u coincides almost everywhere with the approximate differential of u.

Let $E \subseteq \boldsymbol{R}^{n}$ be a measurable set; we denote by χ_{E} the characteristic function of E, i.e., $\chi_{E}(x)=1$ if $x \in E, \chi_{E}(x)=-1$ if $x \notin E$, and we set $1_{E}(x)=1$ if $x \in E, 1_{E}(x)=0$ if $x \notin E$. We say that E has finite perimeter in Ω if $\int_{\Omega}\left|D 1_{E}\right|<+\infty$, and we denote by $P(E, \Omega)$ its perimeter. We indicate by $\partial^{*} E$ the reduced boundary of E. We introduce the two closed subsets of $B V(\Omega)$ as $\widetilde{K}=B V(\Omega ;\{-1,1\})$ and $K=B V(\Omega ;[-1,1])$. Given $u \in B V(\Omega)$ we set $S(u)=\left\{(x, s) \in \Omega \times \boldsymbol{R}: s<u^{+}(x)\right\}$; it turns out that $S(u)$ is a set of finite perimeter in $\Omega \times \boldsymbol{R}$.

For the definitions and the main properties of the functions of bounded variation and of sets of finite perimeter we refer to $[10,12,14,16]$.

For any $\mathfrak{L}: B V(\Omega) \rightarrow[\inf \mathfrak{L},+\infty]$ with $-\infty<\inf \mathfrak{L}$, we denote by $\overline{\mathfrak{L}}: B V(\Omega) \rightarrow$ $\rightarrow[\inf \mathfrak{L},+\infty]$ the lower semicontinuous envelope (or relaxed functional) of \mathfrak{L} with respect to the $L^{1}(\Omega)$-topology. The functional $\overline{\mathfrak{L}}$ is defined as the greatest $L^{1}(\Omega)$-lower semicontinuous functional less than or equal to \mathfrak{L} and can be characterized as

$$
\overline{\mathscr{L}}(u)=\inf \left\{\liminf _{b \rightarrow+\infty} \mathscr{L}\left(u_{b}\right):\left\{u_{b}\right\}_{b} \subseteq B V(\Omega), u_{b} \xrightarrow{L^{1}(\Omega)} u\right\} .
$$

For the main properties of the relaxed functionals we refer to [3].
From now on $\phi: \bar{\Omega} \times \boldsymbol{R}^{n} \rightarrow[0,+\infty[$ will be a continuous function satisfying the properties

$$
\begin{gather*}
\phi(x, t \xi)=|t| \phi(x, \xi) \quad \forall x \in \bar{\Omega}, \quad \forall \xi \in \boldsymbol{R}^{n}, \quad \forall t \in \boldsymbol{R}, \tag{1.1}\\
\lambda|\xi| \leqslant \phi(x, \xi) \leqslant \Lambda|\xi| \quad \forall x \in \bar{\Omega}, \quad \forall \xi \in \boldsymbol{R}^{n}, \tag{1.2}
\end{gather*}
$$

for two suitable positive constants $0<\lambda \leqslant \Lambda<+\infty$, and such that $\phi(x, \cdot)$ is convex on \boldsymbol{R}^{n} for any $x \in \bar{\Omega}$. Further regularity assumptions on ϕ will be required afterwards (see (1.9)).

Let us recall the following coarea-type formula

$$
\begin{equation*}
\int_{\Omega} \phi\left(x, v_{u}\right)|D u|=\int_{R \Omega \cap \partial^{*}\{u>t\}} \phi\left(x, v_{t}\right) d \mathcal{S}^{n-1}(x) d t \quad \forall u \in B V(\Omega) \tag{1.3}
\end{equation*}
$$

where ν_{t} stands for the outer unit normal vector to the set $\Omega \cap \partial^{*}\{u>t\}$.
1.1 The continuous functional. Let $\mu \in L^{\infty}(\partial \Omega)$ be such that

$$
\begin{equation*}
|\mu(x)| \leqslant \phi\left(x, \nu_{\Omega}(x)\right) \quad \text { for } \mathscr{C}^{n-1} \text { - a.e. } x \in \partial \Omega \tag{1.4}
\end{equation*}
$$

where $\nu_{\Omega}(x)$ denotes a unit normal vector to $\partial \Omega$ at the point x. Let $\kappa \in L^{\infty}(\Omega)$. We define the functional $\mathfrak{F}: B V(\Omega) \rightarrow[\inf \mathscr{F},+\infty]$, for any $u \in K$, as

$$
\mathscr{F}(u)=\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial \Omega} \mu u d \mathcal{M}^{n-1}-\int_{\Omega} \kappa u d x,
$$

and set $\mathscr{F}=+\infty$ on $B V(\Omega) \backslash K$. As a consequence of the following semicontinuity result and the boundedness from below, \mathfrak{F} admits at least one minimum point.

Theorem 1.1. The functional \mathfrak{F} is lower semicontinuous on K with respect to the topology of $L^{1}(\Omega)$.

Proof. First we note that any $\mu \in L^{\infty}(\partial \Omega)$ verifying (1.4) can be approximated in $L^{1}(\partial \Omega)$ by a sequence of functions $\left\{\mu^{\circ}\right\}_{\delta>0}$ of the form

$$
\mu^{\delta}(x)=\phi\left(x, \nu_{\Omega}(x)\right) \sum_{i=0}^{N^{\delta}} \mu_{i}^{\delta} 1_{F_{i}^{\delta}}(x),
$$

where $-1=\mu_{0}^{\delta}<\ldots<\mu_{N}^{\delta}=1$, and $\left\{F_{0}^{\delta}, \ldots, F_{N}^{\delta}\right\}$ is a measurable partition of $\partial \Omega$. Here F_{0}^{δ} and F_{N}^{δ} might be empty. Denoting by \mathscr{F}^{δ} the functional \mathscr{F} with μ replaced by μ^{δ}, we have, for any $u \in K$,

$$
\left|\mathscr{F}^{\delta}(u)-\mathscr{F}(u)\right| \leqslant \int_{\partial \Omega}|u|\left|\mu-\mu^{\delta}\right| d \mathscr{C}^{n-1} \leqslant\left\|\mu-\mu^{\delta}\right\|_{L^{1}(\partial \Omega)} \rightarrow 0,
$$

as $\delta \rightarrow 0$. Namely, $\mathscr{F}^{\delta} \rightarrow \mathfrak{F}$ uniformly on K as $\delta \rightarrow 0$. Since the uniform limit of semicontinuous functions is semicontinuous, the assertion of the theorem is thus reduced to prove that any $\mathscr{F}^{\grave{ }}$ is $L^{1}(\Omega)$-lower semicontinuous on K. Since no confusion is possible, we omit the superscript δ.

Set $\alpha_{i}=\left(\mu_{i}-\mu_{i-1}\right) / 2>0$ and $G_{i}=\left\{\mu \geqslant \mu_{i}\right\} \subseteq \partial \Omega$, for all $1 \leqslant i \leqslant N$. Note that neither $\mu_{0}=-1$ nor $\mu_{N}=1$ are necessarily assumed, namely, that $G_{1}=\partial \Omega$ and $G_{N}=$ $=\emptyset$ are allowed. Since

$$
\sum_{i=1}^{N} \alpha_{i}=1 \quad \text { and } \quad \mu(x)=\phi\left(x, \nu_{\Omega}\right) \sum_{i=1}^{N} \alpha_{i} \chi_{G_{i}}(x) \quad \text { for } \quad \mathscr{C}^{n-1}-\text { a.e. } x \in \partial \Omega \text {, }
$$

the functional \mathscr{F} can be represented as a convex combination of functionals \mathscr{F}^{i} as follows:

$$
\mathscr{F}(u)=\sum_{i=1}^{N} \alpha_{i}\left[\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial \Omega} \phi\left(x, v_{\Omega}\right) \chi_{G_{i}} u d \mathscr{H}^{n-1}-\int_{\Omega} \kappa u d x\right]=: \sum_{i=1}^{N} \alpha_{i} \mathscr{F}^{i}(u) .
$$

To prove the lower semicontinuity of \mathfrak{F} it will be enough to show that each \mathscr{F}^{i} is lower semicontinuous. For simplicity we omit the index i, thus denoting $G_{i}=G$ a measurable subset of $\partial \Omega$, and assume

$$
\begin{equation*}
\mu(x)=\phi\left(x, \nu_{\Omega}\right) \chi_{G}(x) . \tag{1.5}
\end{equation*}
$$

Let B be a ball containing $\bar{\Omega}$ and define

$$
\Phi(x, \xi)= \begin{cases}\phi(x, \xi) & \text { if }(x, \xi) \in \bar{\Omega} \times \boldsymbol{R}^{n}, \\ \Lambda|\xi| & \text { if }(x, \xi) \in(B \backslash \bar{\Omega}) \times \boldsymbol{R}^{n} .\end{cases}
$$

Then Φ is lower semicontinuous on $B \times \boldsymbol{R}^{n}$ (recall (1.2)). We can extend $-\chi_{G} \in$ $\in L^{1}(\partial \Omega)$ to a function $w \in W^{1,1}(B \backslash \bar{\Omega} ;[-1,1])$ with trace $-\chi_{G}$ on $\partial \Omega$, so that there exists $C>0$ such that $\|w\|_{W^{1,1}(\beta \backslash \bar{\Omega})} \leqslant C\left\|\chi_{G}\right\|_{L^{1}(a \Omega)}$ [11, Theorem 1.II; 12, Theorem 2.16].

For any $u \in K$ we define $U \in B V(B ;[-1,1])$ as follows:

$$
U= \begin{cases}u & \text { on } \Omega \\ w & \text { on } B \backslash \Omega .\end{cases}
$$

Obviously B and w do not depend on u, hence $\Lambda \int_{B \backslash \bar{\Omega}}|\nabla w| d x$ is a constant, and we shall denote it by c_{1}; set also $c_{2}=\int_{\partial \Omega} \phi\left(x, v_{\Omega}\right) d \mathcal{C}^{n-1}(x)$. Recalling that $|u| \leqslant 1$, we
find $[7]$

$$
\begin{aligned}
\int_{B} \Phi\left(x, \nu_{U}\right)|D U|=\int_{\Omega} \phi\left(x, \nu_{u}\right)|D u| & +\int_{\partial \Omega} \phi\left(x, \nu_{\Omega}\right)\left|u+\chi_{G}\right| d \mathscr{C}^{n-1}+c_{1}= \\
& =\int_{\Omega} \phi\left(x, \nu_{u}\right)|D u|+\int_{\partial \Omega} \phi\left(x, \nu_{\Omega}\right) u \chi_{G} d \mathscr{C}^{n-1}+c_{1}+c_{2} .
\end{aligned}
$$

Hence, recalling (1.5) we have

$$
\int_{\Omega} \phi\left(x, v_{u}\right)|D u|+\int_{\partial a} \mu u d \mathscr{C}^{n-1}=\int_{B} \Phi\left(x, v_{U}\right)|D U|-\left(c_{1}+c_{2}\right) .
$$

Recalling the definition and the convexity of Φ, the functional $\int_{B} \Phi\left(x, \nu_{U}\right)|D U|$ is L^{1}. lower semicontinuous. Since the map $u \rightarrow \int_{\Omega} \kappa u d x$ is continuous with respect to the topology of $L^{1}(\Omega)$, the assertion follows.

If ϕ is not convex in ξ then \mathfrak{F} is not, in general, lower semicontinuous, and the lower semicontinuous envelope of the functional $u \rightarrow \int_{\Omega} \phi(x, \nabla u) d x$ on $W^{1,1}(\Omega)$ can be written on $B V(\Omega) \cap L^{\infty}(\Omega)$ as $\int_{\Omega} \phi^{* *}\left(x, v_{u}\right)|D u|$, where $\phi^{* *}$ denotes the greatest function that is convex in ξ and less than or equal to $\phi(x, \xi)$ for all $(x, \xi) \in \Omega \times \boldsymbol{R}^{n}$. In addition, as in [2], if condition (1.4) is not fulfilled, \mathscr{F} is not lower semicontinuous. Observe that \mathfrak{F} admits at least a minimum point $u \in K(u \in \widetilde{K}$, respectively), because of condition (1.2) and since \mathscr{F} is lower semicontinuous on K (on \widetilde{K}, respectively).

The following theorem shows that to minimize \mathscr{F} on \tilde{K} is equivalent to minimize \mathfrak{F} on the convex set K, and this reads as a (nonstrictly) convex problem.

Theorem 1.2. Suppose that $u \in K$ is a minimum point of \mathfrak{F} on K. Then

$$
\mathscr{F}(u)=\mathscr{F}\left(\chi_{\{u>t\}}\right) \quad \text { for a.e. } t \in[-1,1],
$$

namely, $\chi_{\{u>t\}} \in \widetilde{K}$ is a minimum point of \mathfrak{F} on \widetilde{K} for almost every $t \in[-1,1]$.
Proof. For all $v \in K$, from (1.3) and the Cavalieri formula we have

$$
\begin{aligned}
\mathscr{F}(v)=\int_{-1}^{1} \int_{\Omega \cap \partial^{*}\{u>t\}} \phi\left(x, \nu_{t}\right) d \mathscr{C}^{n-1} d t & +\frac{1}{2} \int_{-1}^{1} \int_{\partial \Omega} \mu \chi_{\{v>t\}} d \mathscr{C}^{n-1} d t- \\
& -\frac{1}{2} \int_{-1}^{1} \int_{\Omega}^{1} \kappa \chi_{\{v>t\}} d x d t=\frac{1}{2} \int_{-1}^{1} \mathscr{F}\left(\chi_{\{v>t\}}\right) d t,
\end{aligned}
$$

that is

$$
\int_{-1}^{1}\left(\mathscr{F}\left(\chi_{\{v>t\}}\right)-\mathscr{F}(v)\right) d t=0 \quad \forall v \in K
$$

The minimality of u on K entails $\mathscr{F}\left(\chi_{\{u>t\}}\right)-\mathscr{F}(u) \geqslant 0$; therefore $\mathscr{F}(u)=\mathscr{F}\left(\chi_{\{u>t\}}\right)$ for almost every $t \in[-1,1]$.

Remark 1.1. In view of Theorem 1.2, we have that $\min _{v \in \tilde{K}} \mathscr{F}(v)=\min _{v \in K} \mathscr{F}(v)$; moreover \mathscr{F} has a unique minimum point on \widetilde{K} if and only if $\begin{gathered}v \in \tilde{F} \\ \mathscr{F} \\ \text { has a } \\ v \in K \\ v i q u e ~ m i n i m u m ~ p o i n t ~\end{gathered}$ on K, and they coincide. Note that \mathscr{F} may exhibit relative minima on \widetilde{K}; in view of the convexity of K, they are no longer relative minima of \mathfrak{F} on K.
1.2. The regularized functionals. Given $\varepsilon \geqslant 0$, in analogy with [2], we define a regularization of ϕ as follows

$$
\begin{equation*}
\phi_{\varepsilon}(x, \xi)=\sqrt{\varepsilon^{2}+(\phi(x, \xi))^{2}} \tag{1.6}
\end{equation*}
$$

for all $(x, \xi) \in \bar{\Omega} \times \boldsymbol{R}^{n}$. Let us consider the map $G_{\varepsilon}: B V(\Omega) \rightarrow[0,+\infty]$ defined by

$$
G_{\varepsilon}(u)= \begin{cases}\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x & \text { if } u \in W^{1,1}(\Omega) \\ +\infty & \text { elsewhere }\end{cases}
$$

Observe that, by the continuity assumption on ϕ and by (1.1), there exists a continuous function $\omega: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$, with $\omega(0)=0$, such that

$$
\left|\phi_{\varepsilon}(x, \xi)-\phi_{\varepsilon}(y, \xi)\right| \leqslant|\phi(x, \xi)-\phi(y, \xi)| \leqslant \omega(|x-y|)(1+|\xi|)
$$

for any $x, y \in \Omega$ and any $\xi \in \boldsymbol{R}^{n}$. Then, applying [7, Theorem 3.2] and observing that $\lim _{t \rightarrow 0^{+}} t \phi_{\varepsilon}(x, \xi / t)=\phi(x, \xi)$, we find that

$$
\bar{G}_{\varepsilon}(u)=\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x+\int_{\Omega} \phi\left(x, \frac{D^{s} u}{\left|D^{s} u\right|}\right)\left|D^{s} u\right| \quad \forall u \in B V(\Omega) .
$$

We are now ready to define the regularized functionals $\mathscr{F}_{\varepsilon}: B V(\Omega) \rightarrow\left[\inf \mathscr{F}_{\varepsilon},+\infty\right]$. For any $\varepsilon>0$ and for any $u \in K$, we set

$$
\begin{equation*}
\mathscr{F}_{\varepsilon}(u)=\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x+\int_{\Omega} \phi\left(x, \frac{D^{s} u}{\left|D^{s} u\right|}\right)\left|D^{s} u\right|+\int_{\partial \Omega} \mu u d \mathcal{C}^{n-1}-\int_{\Omega} \kappa u d x, \tag{1.7}
\end{equation*}
$$

and we set $\mathscr{F}_{\varepsilon}=+\infty$ on $B V(\Omega) \backslash K$.
Theorem 1.3. For any $\varepsilon>0$ the functional $\mathfrak{F}_{\varepsilon}$ is lower semicontinuous on K with respect to the topology of $L^{1}(\Omega)$.

Proof. Reasoning as in the proof of Theorem 1.1, and using the same notation, we have

$$
\mathscr{F}_{\varepsilon}(u)+\int_{\Omega} \kappa u d x=\int_{B} \sqrt{\varepsilon^{2}+(\Phi(x, \nabla U))^{2}} d x+\int_{B} \Phi\left(x, \frac{D^{s} U}{\left|D^{s} U\right|}\right)\left|D^{s} U\right|-\left(c_{2}+c_{3}\right)
$$

where

$$
c_{3}=\int_{B \backslash \bar{\Omega}} \sqrt{\varepsilon^{2}+\Lambda^{2}|\nabla w|^{2}} d x .
$$

As the functional at the right-hand side is L^{1}-lower semicontinuous (it is a lower semicontinuous envelope by [7]), the theorem follows.

It is not difficult to show that, if condition (1.4) is not fulfilled, then the functional $\mathscr{J}_{\mathfrak{\varepsilon}}$ is not lower semicontinuous.

Observe that the restriction of $\mathscr{F}_{\varepsilon}$ to $K(\widetilde{K}$, respectively) admits at least a minimum point $u \in K\left(u \in \widetilde{K}\right.$, respectively), because of condition (1.2) and since $\mathscr{F}_{\varepsilon}$ is lower semicontinuous on K (on \widetilde{K}, respectively). Observe also that, if $\mathscr{F}_{\varepsilon}$ has a minimum point $u_{\varepsilon} \in$ $\in K \cap W_{\text {loc }}^{1,1}(\Omega)$ then, since \mathscr{F}_{c} is strictly convex in $\left(B V(\Omega) \cap W_{\text {loc }}^{1,1}(\Omega)\right) / \boldsymbol{R}$, the minimum is unique up to a possible additive constant.

Remark 1.2. We bave $\mathscr{F}_{\varepsilon} \rightarrow \mathcal{F}$ uniformly in K as $\varepsilon \rightarrow 0$.
Proof. For any $u \in K$, using (1.1), we have

$$
\left|\mathscr{F}_{\varepsilon}(u)-\mathscr{F}(u)\right|=\varepsilon\left|\int_{\Omega} \sqrt{1+\left(\phi\left(x, \nabla\left(\frac{u}{\varepsilon}\right)\right)\right)^{2}} d x-\int_{\Omega} \phi\left(x, \nabla\left(\frac{u}{\varepsilon}\right)\right) d x\right| \leqslant \varepsilon|\Omega| .
$$

1.3. The discrete functionals. Let $\left\{S_{b}\right\}_{b>0}$ denote a regular family of partitions of Ω into simplices [6]. Let $b_{s} \leqslant b$ denote the diameter of any $S \in S_{b}$. For any $b>0$, let $V_{b} \subset H^{1}(\Omega ;[-1,1]) \subset K$ be the piecewise linear finite element space over S_{b} with values in $[-1,1]$ and Π_{b} be the usual Lagrange interpolation operator over the continuous piecewise linear functions. By C we shall mean an absolute positive constant whose value may vary at each occurrence. For the sake of simplicity, we shall assume that the discrete domain $\Omega_{b}=\bigcup_{S \in s_{b}} S$ coincides with $\bar{\Omega}$. In order to introduce the discrete functionals \mathscr{F}_{b} and $\mathscr{E}_{\varepsilon, b}$, we approximate μ and κ as in [2] by a sequence of continuous piecewise linear functions $\mu_{b} \rightarrow \mu$ and $\kappa_{b} \rightarrow \kappa$ in L^{1} as $b \rightarrow 0$ such that [6]

$$
\begin{array}{ll}
\left\|\mu_{b}\right\|_{L^{\infty}(\partial \Omega)} \leqslant\|\mu\|_{L^{\infty}(\partial \Omega)}, & \left\|\nabla \mu_{b}\right\|_{L^{1}(\partial \Omega)}=o\left(b^{-1}\right), \\
\left\|\kappa_{b}\right\|_{L^{\infty}(\Omega)} \leqslant\|\kappa\|_{L^{\infty}(\Omega)}, \quad\left\|\nabla \kappa_{b}\right\|_{L^{1}(\Omega)}=o\left(b^{-1}\right) . \tag{1.8}
\end{array}
$$

We define the discrete functionals as follows: for any $u \in V_{b}$ we set

$$
\mathscr{F}_{\varepsilon, b}(u)=\sum_{S \in S_{b}} \int_{S} \Pi_{b}\left(\phi_{\varepsilon}(x, \nabla u)\right) d x+\int_{\partial \Omega} \Pi_{b}\left(\mu_{b} u\right) d \mathcal{M}^{n-1}-\int_{\Omega} \Pi_{b}\left(\kappa_{b} u\right) d x,
$$

$\mathscr{F}_{\mathfrak{E}, b}=+\infty$ on $B V(\Omega) \backslash V_{b}$. Finally we define $\mathscr{F}_{b}=\mathscr{F}_{0, b}$. The piecewise constant interpolation $\int_{\Omega} \Pi_{b}^{0}\left(\phi_{\varepsilon}(x, \nabla u)\right) d x$ can also be used in the first term without affecting the convergence result and allowing a simpler implementation of the numerical algorithms.

To prove the main theorem (2.1) we need the assumptions (1.9) $\quad \phi(\cdot, \xi) \in W^{1, \infty}(\Omega), \quad\left|\nabla_{x} \phi(x, \xi)\right| \leqslant C|\xi| \quad \forall(x, \xi) \in \Omega \times R^{n}$, and that $\phi(x, \cdot)$ is Lipschitz continuous uniformly with respect to x.

If $u \in V_{b}$, by the properties of the Lagrange interpolation operator, noting that (1.6) gives $\left|\nabla_{x} \phi_{\varepsilon}(x, \nabla u)\right| \leqslant\left|\nabla_{x} \phi(x, \nabla u)\right|$ and using (1.9) we have

$$
\begin{align*}
& \left|\sum_{S \in S_{b}} \int_{S}\left(\Pi_{b}\left(\phi_{\varepsilon}(x, \nabla u)\right)-\phi_{\varepsilon}(x, \nabla u)\right) d x\right| \leqslant \sum_{S \in S_{b}} \| \Pi_{b}\left(\phi_{\varepsilon}(x, \nabla u)\right)- \tag{1.10}\\
& \quad-\phi_{\varepsilon}(x, \nabla u)\left\|_{L^{\infty}(S)}|S| \leqslant C b \sum_{S \in S_{b}}\right\| \nabla_{x} \phi(x, \nabla u) \|_{L^{\infty}(S)}|S| \leqslant C b \int_{\Omega}|\nabla u| d x .
\end{align*}
$$

2. Convergence of the discretized functionals

Remark 2.1. We have $\lim _{\varepsilon \rightarrow 0} \mathscr{F}_{\varepsilon, b}=\mathscr{F}_{b}$ uniformly in V_{b} and with respect to b.

Proof. See Remark 1.2.

The next main theorem generalizes [2, Theorem 3.1].
Theorem 2.1. For any $\varepsilon>0$ we have,

$$
\Gamma-\lim _{b \rightarrow 0} \mathscr{F}_{b}=\mathscr{F} \quad \text { and } \quad \Gamma-\lim _{b \rightarrow 0} \mathscr{F}_{\varepsilon, b}=\mathscr{F}_{\varepsilon} \quad \text { in } L^{1}(\Omega)
$$

Proof. We give a unified proof for both cases $\varepsilon>0$ and $\varepsilon=0$, considering $\mathscr{F}_{h}=\mathscr{F}_{\varepsilon, b}$ and $\mathscr{F}=\mathscr{F}_{\varepsilon}$ if $\varepsilon=0$. Hence, let $\varepsilon \geqslant 0$ be fixed. We split the proof into two steps, namely, we prove that the two following properties hold [9]:
(i) for any $u \in B V(\Omega)$ and any sequence $\left\{u_{b}\right\}_{b}$ in $B V(\Omega)$ converging to u in $L^{1}(\Omega)$ we have $\mathscr{F}_{\varepsilon}(u) \leqslant \liminf _{b \rightarrow 0} \mathscr{F}_{\varepsilon, b}\left(u_{b}\right) ;$
(ii) for any $u \in B V(\Omega)$ there exists a sequence $\left\{u_{b}\right\}_{b}$ in $B V(\Omega)$ converging to u in $L^{1}(\Omega)$ such that $\mathscr{F}_{\varepsilon}(u)=\lim _{b \rightarrow 0} \mathscr{F}_{\varepsilon, b}\left(u_{b}\right)$.

Preliminarly we decompose $\mathscr{F}_{\varepsilon, b}\left(u_{b}\right)$, for all $u_{b} \in V_{b}$, as follows:

$$
\begin{align*}
& \mathscr{F}_{\varepsilon, b}\left(u_{b}\right)=\mathscr{F}_{\varepsilon}\left(u_{b}\right)+\int_{\partial \Omega}\left[\Pi_{b}\left(\mu_{b} u_{b}\right)-\mu u_{b}\right] d \mathscr{S}^{n-1}-\int_{\Omega}\left[\Pi_{b}\left(\kappa_{b} u_{b}\right)-\kappa u_{b}\right] d x+ \tag{2.1}\\
& \quad+\sum_{S \in S_{b}} \int_{S}\left(\Pi_{b}\left(\phi_{\varepsilon}\left(x, \nabla u_{b}\right)\right)-\phi_{\varepsilon}\left(x, \nabla u_{b}\right)\right) d x=: \mathscr{F}_{\varepsilon}\left(u_{b}\right)+I_{b}+I I_{b}+I I I_{\varepsilon, b} .
\end{align*}
$$

Recalling (1.8) and reasoning as in [2], one gets $\lim _{b \rightarrow 0}\left[\left|I_{b}\right|+\left|I I_{b}\right|\right]=0$.
Proof of Step (i). Let $u \in B V(\Omega)$ and $\left\{u_{b}\right\}_{b}$ in $B V(\Omega)$ be any sequence so that $u_{b} \rightarrow u$ in $L^{1}(\Omega)$ as $b \rightarrow 0$. We can assume that $u_{b} \in V_{b}$ for any b and that $\sup _{b} \mathscr{F}_{\varepsilon, b}\left(u_{b}\right)<+\infty$. From (1.2) we get $\sup _{b} \int_{\Omega}\left|\nabla u_{b}\right| d x<+\infty$, so that, in view of (1.10) we have $\lim _{b \rightarrow 0}\left|I I I_{\varepsilon, b}\right|=0$. Then, using (2.1) and the lower semicontinuity of $\mathscr{F}_{\varepsilon}$
(Theorems 1.1 and 1.3), we conclude that

$$
\mathscr{F}_{\varepsilon}(u) \leqslant \liminf _{b \rightarrow 0} \mathscr{F}_{\varepsilon}\left(u_{b}\right)=\liminf _{b \rightarrow 0} \mathscr{F}_{\varepsilon, b}\left(u_{b}\right),
$$

and (i) is proved.
$\mathrm{P}_{\text {roof }}$ of $\mathrm{S}_{\text {tep }}$ (ii). We can assume that $u \in K$. Given a ball B containing $\bar{\Omega}$, let $\tilde{u} \in W^{1,1}(B \backslash \bar{\Omega} ;[-1,1])$ be a function with trace u on $\partial \Omega[11]$ and denote again by $u \in B V(B ;[-1,1])$ the function $u(x)=u(x)$ if $x \in \Omega, u(x)=\widetilde{u}(x)$ if $x \in B \backslash \Omega$. Observe that

$$
\begin{equation*}
\int_{\partial a}|D u|=0 . \tag{2.2}
\end{equation*}
$$

Let $\eta_{b}=o\left(b^{-1 / 2}\right)$ and $\left\{\delta_{b}\right\}_{b}$ be a family of mollifiers defined by $\delta_{b}(x)=\eta_{b}^{n} \delta\left(\eta_{b} x\right)$. Set $\hat{u}_{b}(x)=\left(u * \delta_{b}\right)(x)$ for all $x \in B$, where u is extended to 0 outside B. It is well known [12, Proposition 1.15] that, recalling (2.2),

$$
\begin{equation*}
\lim _{b \rightarrow 0}\left\|\hat{u}_{b}-u\right\|_{L^{1}(\Omega)}=0, \quad \text { and } \quad \lim _{b \rightarrow 0} \int_{\Omega}\left|\nabla \hat{u}_{b}\right| d x=\int_{\Omega}|D u| . \tag{2.3}
\end{equation*}
$$

Set $u_{b}=\Pi_{b} \bar{u}_{b} \in V_{b}$; then [2]

$$
\begin{equation*}
\lim _{b \rightarrow 0}\left\|u_{b}-u\right\|_{L^{1}(\Omega)}=0, \quad \lim _{b \rightarrow 0} \int_{\Omega}\left|\nabla u_{b}\right| d x=\int_{\Omega}|D u|, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{b \rightarrow 0} \int_{\partial Q}\left|u_{b}-u\right| d \mathscr{C}^{n-1}=0 . \tag{2.5}
\end{equation*}
$$

Hence, using Reshetnyak's Theorem [15] (see also [13]), we get

$$
\begin{equation*}
\lim _{b \rightarrow 0} \int_{\Omega} \phi\left(x, \nabla u_{b}\right) d x=\int_{\Omega} \phi\left(x, v_{u}\right)|D u| . \tag{2.6}
\end{equation*}
$$

Using (2.1), (2.4), (2.5), and (2.6), we get (ii) when $\varepsilon=0$.
Let $\varepsilon>0$. One can prove (see [14, Theorems 1.8 and 1.10]) that the sequence $\left\{D 1_{S\left(\tilde{u}_{b}\right)}\right\}_{b}$ converges weakly on $\Omega \times \boldsymbol{R}$ to $D 1_{S(u)}$ and, using (2.2), that

$$
\begin{equation*}
\lim _{b \rightarrow 0}\left|D 1_{S\left(\bar{u}_{b}\right)}\right|(\Omega \times \boldsymbol{R})=\left|D 1_{S(u)}\right|(\Omega \times \boldsymbol{R}) . \tag{2.7}
\end{equation*}
$$

Let $\tilde{\phi}_{\varepsilon}: \Omega \times \boldsymbol{R} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{+} \rightarrow[0,+\infty]$ be defined by

$$
\tilde{\phi}_{\varepsilon}(x, s, \xi, t)= \begin{cases}t \phi_{\varepsilon}\left(x, \frac{\xi}{t}\right) & \text { if } t>0 \\ \phi(x, \xi) & \text { if } t=0\end{cases}
$$

Then $\widetilde{\phi}_{\varepsilon}$ is continuous, and the function $(\xi, t) \rightarrow \widetilde{\phi}_{\varepsilon}(x, s, \xi, t)$ is convex and positively homogeneous of degree one on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{+}$. By [7,Lemma 2.2], for any $u \in K$ we have

$$
\int_{\Omega \times R} \widetilde{\phi}_{\varepsilon}\left(x, s, \frac{D 1_{S(u)}}{\left|D 1_{S(u)}\right|}\right)\left|D 1_{S(u)}\right|=\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x+\int_{\Omega} \phi\left(x, \frac{D^{s} u}{\left|D^{s} u\right|}\right)\left|D^{s} u\right|
$$

Using again Reshetnyak's Theorem (recall (2.7)) we have

$$
\begin{align*}
& \lim _{b \rightarrow 0} \int_{\Omega} \phi_{\varepsilon}\left(x, \nabla \widehat{u}_{b}\right) d x=\lim _{b \rightarrow 0} \int_{\Omega \times R} \widetilde{\phi}_{\varepsilon}\left(x, s, \frac{D 1_{S\left(\hat{u}_{b}\right)}}{\left|D 1_{S\left(\tilde{u}_{b}\right)}\right|}\right)\left|D 1_{S\left(\hat{u}_{b}\right)}\right|= \tag{2.8}\\
= & \int_{\Omega \times R} \widetilde{\phi}_{\varepsilon}\left(x, s, \frac{D 1_{S(u)}}{\left|D 1_{S(u)}\right|}\right)\left|D 1_{S(u)}\right|=\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x+\int_{\Omega} \phi\left(x, \frac{D^{s} u}{\left|D^{s} u\right|}\right)\left|D^{s} u\right| .
\end{align*}
$$

Observe that for any b we have

$$
\left|\int_{\Omega} \phi_{\varepsilon}\left(x, \nabla \widehat{u}_{b}\right) d x-\int_{\Omega} \phi_{\varepsilon}\left(x, \nabla u_{b}\right) d x\right| \leqslant \int_{\Omega}\left|\phi\left(x, \nabla \widehat{u}_{b}\right) d x-\phi\left(x, \nabla u_{b}\right)\right| d x \rightarrow 0
$$

as $b \rightarrow 0$, in view of the Lipschitz assumption on $\phi(x, \cdot)$ and the fact that [2]

$$
\lim _{b \rightarrow 0}\left\|\widehat{u}_{b}-u_{b}\right\|_{W^{1,1}(\Omega)}=0 .
$$

Using (2.8) we then find
$\lim _{h \rightarrow 0} \int_{\Omega} \phi_{\varepsilon}\left(x, \nabla u_{b}\right) d x=\lim _{h \rightarrow 0} \int_{\Omega} \phi_{\varepsilon}\left(x, \nabla \widehat{u}_{b}\right) d x=\int_{\Omega} \phi_{\varepsilon}(x, \nabla u) d x+\int_{\Omega} \phi\left(x, \frac{D^{s} u}{\left|D^{s} u\right|}\right)\left|D^{s} u\right|$.
This, together with (2.5) and (2.4), concludes the proof of (ii) when $\varepsilon>0$.
A straightforward consequence is the following Γ-convergence result for $\mathscr{F}_{\varepsilon, b}$, as ε and b go to 0 independently.

Finally, we prove the compactness of any sequence of approximated minima which, in view of basic properties of Γ-convergence gives, up to a subsequence, the convergence to a minimum of the original functional \mathfrak{F}.

Theorem 2.2. Any family of absolute minima of the functionals $\mathfrak{F}_{\varepsilon}, \mathfrak{F}_{b}$, or $\mathfrak{F}_{\varepsilon, b}$, is relatively compact in $L^{1}(\Omega)$.

Proof. Let $u_{\varepsilon, b}$ be a minimum point of $\mathscr{F}_{\varepsilon, b}$. Given any $v \in K$, from Corollary 2.1 there exists a sequence $\left\{v_{\varepsilon, b}\right\}_{\varepsilon, b}$ converging to v in $L^{1}(\Omega)$ as $(\varepsilon, b) \rightarrow(0,0)$, so that

$$
\lim _{(\varepsilon, h) \rightarrow(0,0)} \mathscr{F}_{\varepsilon, h}\left(v_{\varepsilon, h}\right)=\mathscr{F}(v) \in \boldsymbol{R} .
$$

Hence $\sup _{\varepsilon, b} \mathscr{F}_{\varepsilon, b}\left(u_{\varepsilon, h}\right) \leqslant \sup _{\varepsilon, b} \mathscr{F}_{\varepsilon, b}\left(v_{\varepsilon, b}\right)<+\infty$. Then we get

$$
\sup _{\varepsilon, b} \int_{\Omega}\left|D u_{\varepsilon, b}\right|<+\infty
$$

and the assertion for $\mathscr{F}_{\varepsilon, b}$ follows from the compactness theorem in $B V(\Omega)$. The assertion for $\mathscr{F}_{\varepsilon}$ and \mathscr{F}_{b} is similar.

Work partially supported by NSF Grant DMS-9008999, by MURST (Progetto Nazionale «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche» and «Analisi Numerica e Matematica Computazionale») and CNR (IAN Contracts $92.00833 .01,93.00564 .01$), Italy.

References

[1] F. Almgren - J. E. Taylor - L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437.
[2] G. Bellettini - M. Paolini - C. Verdi, Convex approximations of functionals with curvature. Rend. Mat. Acc. Lincei, s. 9, 2, 1991, 297-306.
[3] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific \& Technical, Harlow 1989.
[4] G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cabn-Hilliard models as asymptotic limits. IMA J. Appl. Math., 44, 1990, 77-94.
[5] J. W. Cahn - C. A. Handwerker - J. E. Taylor, Geometric models of crystal growth. Acta Metall., 40, 1992, 1443-1474.
[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam 1978.
[7] G. Dal Maso, Integral representation on $B V(\Omega)$ of Γ-limits of variational integrals. Manuscripta Math., 30, 1980, 387-416.
[8] E. De Giorgi, Free discontinuity problems in calculus of variations. In: R. Dautray (ed.), Frontieres in Pure and Applied Mathematics. North-Holland, Amsterdam 1991, 55-62.
[9] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend. fis., s. 8, 58, 1975, 842-850.
[10] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin 1968.
[11] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova, 27, 1957, 284-305.
[12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston 1984.
[13] S. Luckhaus - L. Modica, The Gibbs-Thomson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal., 107, 1, 1989, 71-83.
[14] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Pisa Cl. Sci., (4), 3, 1964, 515-542.
[15] Yu. G. Reshetnyak, Weak convergence of completely additive functions on a set. Siberian Math. J., 9, 1968, 1039-1045.
[16] A. I. Vol'pert, The space BV and quasilinear equations. Math. USSR Sbornik, 2, 1967, 225267.
G. Bellettini: Dipartimento di Matematica Università degli Studi di Bologna
Piazza di Porta S. Donato, 5-40127 Bologna
M. Paolini: Dipartimento di Matematica

Università degli Studi di Milano
Via C. Saldini, 50-20133 Mllano

