ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

HURSIT ÖNSIPER

On glueing curves on surfaces and zero cycles

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.1, p. 5–9.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1994_9_5_1_5_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Matematica. — On glueing curves on surfaces and zero cycles. Nota (*) di HURSIT ÖNSIPER, presentata dal Socio E. Vesentini.

Abstract. — The structure of the group $H^2(X, K_2)$ of a surface X with prescribed singularities is investigated.

KEY WORDS: Albanese variety; Algebraic group; Neron-Severi group; Lefschetz pencil.

RIASSUNTO. — Incollamento di curve su superfici e cicli nulli. Si studia il gruppo $H^2(X, K_2)$ di una superfici X con singolarità assegnate.

This paper concerns the structure of $H^2(X, K_2)$ of surfaces with prescribed singularities. More precisely, for a projective smooth surface X' over C and an effective divisor m on X' we consider a pushout situation

where $m \to S$ is a finite surjective map between reduced curves. Relevant to this situation we have two algebraic groups, one is the generalized albanese variety G_{um} of X' with modulus m [5] and the other is the 1-motive $J^2(X) = H^3(X, C)/F^2H^3(X, C) + H^3(X, Z)$. Motivated by the analogy with the pushout of curves and by the results in [2] we study the relation between G_{um} , $J^2(X)$ and $H^2(X, K_2)$.

The rest of our notation is as follows: $C_m(X')$ is the idéle class group of X' with modulus m[3]; $H_c^{\bullet}(,)$ denotes cohomology with compact support; $\Omega_G^{inv} =$ the space of invariant differentials on the algebraic group G; NS() = Néron-Severi group. We first prove:

PROPOSITION 1. (i) We have a surjective homomorphism $G_{um}(C) \rightarrow J^2(X)$ which is an isomorphism if S is integral.

(ii) If $H^2(X', \mathcal{O}_{X'}) = 0$ then $J^2(X)$ is an extension of $Alb_{X'}$ by a torus of dimension $d = \operatorname{rank} (NS(m)/(NS(S) + NS(X'))).$

(*) Pervenuta all'Accademia il 22 settembre 1993.

PROOF. We let U = X' - m = X - S and consider the diagram

$$\begin{array}{cccc} H^{2}(X, \mathbb{C}) \longrightarrow H^{2}(S, \mathbb{C}) \longrightarrow H^{3}_{c}(U, \mathbb{C}) \longrightarrow H^{3}(X, \mathbb{C}) \longrightarrow 0 \\ (*) & & & & & & & & \\ H^{2}(X', \mathbb{C}) \longrightarrow H^{2}(m, \mathbb{C}) \longrightarrow H^{3}_{c}(U, \mathbb{C}) \longrightarrow H^{3}(X', \mathbb{C}) \longrightarrow 0 \end{array}$$

As the nonzero Hodge numbers b^{pq} of $H^3(X, C)$ satisfy $1 \le p$, $q \le 2$, we get successively $0 = F^2 H^3(X, C) \cap W^0 H^3(X, C) = F^2 H^3(X, C) \cap W^1 H^3(X, C) = F^2 H^3(X, C) \cap W^2 H^3(X, C)$. Therefore, since kernel $(\pi^*) = W^2 H^3(X, C)$ we see that $F^2 H^3(X, C) = F^2 H^3(X', C) = H^1(X', \Omega^2)$. On the other hand the map $H^3_c(U, C) \to H^3(X', C)$ is the dual of $0 \to H^1(X', C) \to H^1(U, C)$ by Poincaré duality. This last sequence gives [1] $H^1(U, C) \approx \Omega^{inv}_{G_{um}} \oplus H^1(X', \Omega^2)$.

Therefore, we get $\Omega_{G_{um}}^{inv^*} \to H^3(X, \mathbb{C})/F^2H^3(X, \mathbb{C}) \to 0$ and taking quotients by $H^3_c(U, Z)$ and $H^3(X, Z)$ respectively using $H^3_c(U, Z) \to H^3(X, Z) \to 0$ and that $H^3_c(U, Z) \approx H_1(U, Z)$ we obtain the first half of statement (i).

For the second part of this statement we observe that when S is integral $H^2(S, \mathbb{C}) \approx \mathbb{C}$ and as X is projective $H^2(X, \mathbb{C}) \rightarrow H^2(S, \mathbb{C})$ is not the zero map. Therefore $H^3_c(U, \mathbb{C}) \approx H^3(X, \mathbb{C})$ and the result follows.

For statement (ii) we consider the exact sequence

$$0 \to \frac{H^2(m, \mathbb{C})}{H^2(S, \mathbb{C}) + H^2(X', \mathbb{C})} \to \frac{H^3_c(U, \mathbb{C})}{H^2(S, \mathbb{C}) + H^1(X', \mathcal{O}_{X'})} \to \frac{H^3(X', \mathbb{C})}{F^2 H^3(X', \mathbb{C})} \to 0\,.$$

The first row of (*) shows that

$$\frac{H_c^3(U, C)}{H^2(S, C) + H^1(X', \mathcal{O}_{X'})} \approx \frac{H^3(X, C)}{F^2 H^3(X, C)}$$

and when $H^2(X', \mathcal{O}_{X'}) = 0$ the exponential sequence yields dim $H^2(X', C) =$ = rank (NS(X')). As dim $H^2(m, C)$ (resp. dim $H^2(S, C)$) = rank (NS(m)), (resp. rank (NS(S))), this completes the proof. \Box

As to the relation of G_{um} and $J^2(X)$ to $H^2(X, K_2)$ we first recall that $G_{um}(C) \approx H^0(X', \Omega_{X'}(m))_{d=0}^* / H_1(U, Z)$ and fixing some $x_0 \in U$ the generalized albanese map $\alpha_{um} : U \to G_{um}(C)$ is given by

$$\alpha_{um}(x) = \left(\int_{\gamma} w_1, \ldots, \int_{\gamma} w_n\right)$$

modulo periods, for any path γ joining x_0 to x, where w_1, \ldots, w_n is a basis for $H^0(X', \Omega_{X'}(m))_{d=0} =$ the differentials of the third kind with residues on m only [5,

ON GLUEING CURVES ON SURFACES AND ZERO CYCLES

Corrigendum]. Extending by linearity we obtain a homomorphism

$$\alpha: \bigoplus_{x \in U} Z \to G_{um}(C).$$

Now we can prove

PROPOSITION 2. α induces a surjective homomorphism $\tilde{\alpha}$: $H^2(X, K_2)_0 \rightarrow J^2(X)$ where $H^2(X, K_2)_0$ is the group of zero cycles of degree zero.

PROOF. Since $\alpha_{um}(U)$ generates G_{um} , α is clearly surjective. Therefore, by the explicit description of $H^2(X, K_2)$ given in [4] it suffices to show that if $Y \subset X$ is a curve, no component of which is in S and if $f \in K(Y)$ is unit at each $p \in Y \cap S$, then $\alpha(\operatorname{div}(f)) \in \epsilon$ Kernel $(G_{um}(C) \to J^2(X))$. To see this we must check that for $\operatorname{div}(f) = \sum n_x x$ and for each w_i we have

$$\sum n_x \int w_i \in \text{Image}\left(H^2(\mathcal{S}, \mathcal{C}) \to H^3_c(U, \mathcal{C})\right).$$

This however is a consequence of the following standard calculation for which we may clearly assume that Y is integral.

Writing

$$S = \bigcup_{i=1}^{k} S_i, \qquad m = \bigcup_{i=1}^{k} \bigcup_{j=1}^{k} D_{ij}$$

as union of irreducible components where $\pi(D_{ij}) = S_i$ for i = 1, ..., k we see that $H^2(S, C) \to H^3_c(U, C)$ is the composite map $H^2(S, C) \to H^2(m, C) \to H^2_c(U, C)$ where the second arrows is the dual of

$$\operatorname{res}: H^0(X', \Omega_{X'}(m))_{d=0} \longrightarrow H^2(m, C) \approx \bigoplus_i \bigoplus_j H^2(D_{ij}, C)$$
$$w \longrightarrow (\dots, \operatorname{res}_{D_{ii}}(w), \dots)$$

and the first arrow is simply the diagonal map $H^2(S_i, \mathbb{C}) \to \bigoplus_j H^2(D_{ij}, \mathbb{C})$ for each i = 1, ..., k. Therefore, Image $(H^2(S, \mathbb{C}) \to H^2_c(U, \mathbb{C}))$ is spanned by $\theta_i \in H^0(X', \Omega_{X'}(m))_{d=0}^d$ where

$$\theta_i(w_l) = \sum_{j=1}^{r_i} \operatorname{res}_{D_{ij}}(w_l).$$

On the other hand letting $Y' \to \pi^{-1}(Y)$ be the normalization and $\varphi: Y' \to X$ be the composite map, we see that $\varphi^*(w_i)$ has poles only at $p \in \varphi^{-1}(Y \cap S)$ and these are simple poles.

Given $f \in k(Y)$, we consider $\psi: Y' \to P^1$ defined by $C(f) \subset k(Y)$. We choose a chain c in P^1 missing $\psi(\varphi^{-1}(Y \cap S))$ with $\partial c = 0 - \infty$, so that $\partial \psi^{-1}(c) = \psi^{-1}(\partial c) = = \operatorname{div}(f)$. Since $\varphi^*(w_i)$ has simple poles and since for each

$$q \in P^1$$
, $\operatorname{res}_q (Tr(\varphi^*(w_i))) = \sum_{\psi(p) = q} \operatorname{res}_p (\varphi^*(w_i))$,

the equality

$$\int_{\psi^{-1}(c)} \varphi^*(w) = \int_c Tr(\varphi^*(w))$$

completes the proof. \Box

Finally, via the following lemma we show that for any *m* and X' as above we can always realize $G_{um}(C)$ as a homomorphic image of $H^2(X, K_2)_0$ for a suitable pushout X.

LEMMA 3. Given any divisor m (not necessarily reduced) on X', we can find a Lefschetz pencil $X'' \xrightarrow{\alpha} P^1$ such that

1) *m* is flat over P^1 and G_{um} for $X'' = G_{um}$ for X',

2) the pushout

exists,

3) for reduced m, we have a canonical surjective homomorphism

 $H^2(X, K_2)_0 \rightarrow G_{um}(C)$.

PROOF. 1) Since dim (m) = 1, we have a dense open set V in the Grassmannian $G_r(n-2, P^n)$ of the ambient projective space P^n such that for $L \in V, L \cap m = \phi$. We identify V with an open subset of $G_r(1, P^n')$ where $P^{n'}$ is the dual projective space, via the isomorphism

$$G_r(1, P^{n'}) \longrightarrow G_r(n-2, P^n),$$
$$p = \{H_t\}_{t \in P^1} \longmapsto \Delta_p = H_0 \cdot H_\infty.$$

Then taking $p \in V \cap V_L$ (V_L is the open subset consisting of Lefschetz pencils) we get a pencil $X'' \xrightarrow{\alpha} P^1$, $f: X'' \to X'$ by blowing up $(\Delta_p \cap X') \subset X' - m$. Clearly $m \subset X''$ is flat over P^1

That G_{um} for $X'' = G_{um}$ for X' is a immediate consequence of the fact that $C_m(X'') = C_m(X')$ [3, Chapter II, Lemma 5].

2) We check that the hypothesis of [2, Proposition 4.3] is satisfied. To see this, for $t \in P^1$ we take t' = 0 or ∞ , $t' \neq t$. As X'' is a blow-up of X' along $\Delta \cap X' \subset X' - m$, for $H_{t'}$ the hyperplane through t' we have $f^{-1}(X' - H_{t'}) \simeq X' - H_{t'}$ which is affine and clearly $i^{-1}(f^{-1}(X' - H_{t'})) = \alpha^{-1}(P^1 - t')$.

3) This follows from Proposition 1 (i) and Proposition 2. \Box

8

ON GLUEING CURVES ON SURFACES AND ZERO CYCLES

References

- G. FALTINGS G. WÜSTHOLZ, Eienbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften. J. Reine Angew. Math., 354, 1984, 175-205.
- [2] H. GILLET, On the K-theory of surfaces with multiple curves and a conjecture of Bloch. Duke Math. J., 51, n. 1, 1984, 195-233.
- [3] K. KATO S. SATTO, Two dimensional class field theory. Adv. Studies in Pure Math., 2, 1983, 103-152.
- [4] M. LEVINE, Bloch's formula for singular surfaces. Topology, 24, 1985, 165-174.
- [5] H. ÖNSIPER, On generalized albanese varieties for surfaces. Math. Proc. Cambridge Phil. Soc., 104, 1988, 1-6; Corrigendum, Math. Proc. Camb. Phil. Soc., 107, 1990, 415.

Department of Mathematics Middle East Technical University 06531 ANKARA (Turchia)