Rendiconti Lincei Matematica e Applicazioni

Hursit Önsiper

 On glueing curves on surfaces and zero cycles

 On glueing curves on surfaces and zero cycles}

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 5 (1994), n.1, p. 5-9.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1994_9_5_1_5_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1994.

Matematica. - On glueing curves on surfaces and zero cycles. Nota (*) di Hursit Önsiper, presentata dal Socio E. Vesentini.

Abstract. - The structure of the group $H^{2}\left(X, K_{2}\right)$ of a surface X with prescribed singularities is investigated.

KEy words: Albanese variety; Algebraic group; Neron-Severi group; Lefschetz pencil.

Riassunto. - Incollamento di curve su superfici e cicli nulli. Si studia il gruppo $H^{2}\left(X, K_{2}\right)$ di una superficie X con singolarità assegnate.

This paper concerns the structure of $H^{2}\left(X, K_{2}\right)$ of surfaces with prescribed singularities. More precisely, for a projective smooth surface X^{\prime} over C and an effective divisor m on X^{\prime} we consider a pushout situation

where $m \rightarrow S$ is a finite surjective map between reduced curves. Relevant to this situation we have two algebraic groups, one is the generalized albanese variety $G_{u m}$ of X^{\prime} with modulus m [5] and the other is the 1-motive $J^{2}(X)=H^{3}(X, C) / F^{2} H^{3}(X, C)+$ $+H^{3}(X, Z)$. Motivated by the analogy with the pushout of curves and by the results in [2] we study the relation between $G_{u m}, J^{2}(X)$ and $H^{2}\left(X, K_{2}\right)$.

The rest of our notation is as follows: $C_{m}\left(X^{\prime}\right)$ is the idéle class group of X^{\prime} with modulus m [3]; H_{c}^{\bullet} (,) denotes cohomology with compact support; $\Omega_{G}^{\text {inv }}=$ the space of invariant differentials on the algebraic group $G ; N S()=$ Néron-Severi group. We first prove:

Proposition 1. (i) We bave a surjective homomorphism $G_{u m}(C) \rightarrow J^{2}(X)$ which is an isomorphism if S is integral.
(ii) If $H^{2}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)=0$ then $J^{2}(X)$ is an extension of $A l b_{X^{\prime}}$ by a torus of dimension $d=\operatorname{rank}\left(N S(m) /\left(N S(S)+N S\left(X^{\prime}\right)\right)\right)$.
(*) Pervenuta all'Accademia il 22 settembre 1993.

Proof. We let $U=X^{\prime}-m=X-S$ and consider the diagram
(*)

As the nonzero Hodge numbers $b^{p q}$ of $H^{3}(X, C)$ satisfy $1 \leqslant p, q \leqslant 2$, we get successively $0=F^{2} H^{3}(X, C) \cap W^{0} H^{3}(X, C)=F^{2} H^{3}(X, C) \cap W^{1} H^{3}(X, C)=$ $=F^{2} H^{3}(X, C) \cap W^{2} H^{3}(X, C)$. Therefore, since kernel $\left(\pi^{*}\right)=W^{2} H^{3}(X, C)$ we see that $F^{2} H^{3}(X, C)=F^{2} H^{3}\left(X^{\prime}, C\right)=H^{1}\left(X^{\prime}, \Omega^{2}\right)$. On the other hand the map $H_{c}^{3}(U, C) \rightarrow H^{3}\left(X^{\prime}, \boldsymbol{C}\right)$ is the dual of $0 \rightarrow H^{1}\left(X^{\prime}, \boldsymbol{C}\right) \rightarrow H^{1}(U, \boldsymbol{C})$ by Poincaré duality. This last sequence gives [1] $H^{1}(U, C) \approx \Omega_{G_{u m}}^{\mathrm{inv}^{\prime}} \oplus H^{1}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)=$ $=\Omega_{G_{u m n}}^{\mathrm{inv}} \oplus H^{1}\left(X^{\prime}, \Omega^{2}\right)$.

Therefore, we get $\Omega_{G_{u m}}^{\text {inven }^{*}} \rightarrow H^{3}(X, C) / F^{2} H^{3}(X, C) \rightarrow 0$ and taking quotients by $H_{c}^{3}(U, Z)$ and $H^{3}(X, Z)$ respectively using $H_{c}^{3}(U, Z) \rightarrow H^{3}(X, Z) \rightarrow 0$ and that $H_{c}^{3}(U, Z) \approx H_{1}(U, Z)$ we obtain the first half of statement (i).

For the second part of this statement we observe that when S is integral $H^{2}(S, C) \approx C$ and as X is projective $H^{2}(X, C) \rightarrow H^{2}(S, C)$ is not the zero map. Therefore $H_{c}^{3}(U, C) \approx H^{3}(X, C)$ and the result follows.

For statement (ii) we consider the exact sequence

$$
0 \rightarrow \frac{H^{2}(m, \boldsymbol{C})}{H^{2}(S, \boldsymbol{C})+H^{2}\left(X^{\prime}, \boldsymbol{C}\right)} \rightarrow \frac{H_{c}^{3}(U, \boldsymbol{C})}{H^{2}(S, \boldsymbol{C})+H^{1}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)} \rightarrow \frac{H^{3}\left(X^{\prime}, \boldsymbol{C}\right)}{F^{2} H^{3}\left(X^{\prime}, \boldsymbol{C}\right)} \rightarrow 0
$$

The first row of ($*$) shows that

$$
\frac{H_{c}^{3}(U, C)}{H^{2}(S, C)+H^{1}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)} \approx \frac{H^{3}(X, C)}{F^{2} H^{3}(X, C)}
$$

and when $H^{2}\left(X^{\prime}, \mathcal{O}_{X^{\prime}}\right)=0$ the exponential sequence yields $\operatorname{dim} H^{2}\left(X^{\prime}, \boldsymbol{C}\right)=$ $=\operatorname{rank}\left(N S\left(X^{\prime}\right)\right)$. As $\operatorname{dim} H^{2}(m, C)\left(\operatorname{resp} . \operatorname{dim} H^{2}(S, C)\right)=\operatorname{rank}(N S(m))$, (resp. $\operatorname{rank}(N S(S)))$, this completes the proof.

As to the relation of $G_{u m}$ and $J^{2}(X)$ to $H^{2}\left(X, K_{2}\right)$ we first recall that $G_{u m}(C) \approx$ $\approx H^{0}\left(X^{\prime}, \Omega_{X^{\prime}}(m)\right) \stackrel{\stackrel{\rightharpoonup}{d}=0}{ } / H_{1}(U, Z)$ and fixing some $x_{0} \in U$ the generalized albanese map $\alpha_{u m}: U \rightarrow G_{u m}(C)$ is given by

$$
\alpha_{u m}(x)=\left(\int_{\gamma} w_{1}, \ldots, \int_{\gamma} w_{n}\right)
$$

modulo periods, for any path γ joining x_{0} to x, where w_{1}, \ldots, w_{n} is a basis for $H^{0}\left(X^{\prime}, \Omega_{X^{\prime}}(m)\right)_{d=0}=$ the differentials of the third kind with residues on m only [5,

Corrigendum]. Extending by linearity we obtain a homomorphism

$$
\alpha: \bigoplus_{x \in U} Z \rightarrow G_{u m}(C)
$$

Now we can prove
Proposition 2. a induces a surjective homomorphism $\tilde{\alpha}: H^{2}\left(X, K_{2}\right)_{0} \rightarrow J^{2}(X)$ where $H^{2}\left(X, K_{2}\right)_{0}$ is the group of zero cycles of degree zero.

Proof. Since $\alpha_{u m}(U)$ generates $G_{u m}, \alpha$ is clearly surjective. Therefore, by the explicit description of $H^{2}\left(X, K_{2}\right)$ given in [4] it suffices to show that if $Y \subset X$ is a curve, no component of which is in S and if $f \in K(Y)$ is unit at each $p \in Y \cap S$, then $\alpha(\operatorname{div}(f)) \in$ $\in \operatorname{Kernel}\left(G_{u m}(C) \rightarrow J^{2}(X)\right)$. To see this we must check that for $\operatorname{div}(f)=\sum n_{x} x$ and for each w_{i} we have

$$
\sum n_{x} \int w_{i} \in \operatorname{Image}\left(H^{2}(S, C) \rightarrow H_{c}^{3}(U, C)\right)
$$

This however is a consequence of the following standard calculation for which we may clearly assume that Y is integral.

Writing

$$
S=\bigcup_{i=1}^{k} S_{i}, \quad m=\bigcup_{i=1} \bigcup_{j=1} D_{i j}
$$

as union of irreducible components where $\pi\left(D_{i j}\right)=S_{i}$ for $i=1, \ldots, k$ we see that $H^{2}(S, C) \rightarrow H_{c}^{3}(U, C)$ is the composite map $H^{2}(S, C) \rightarrow H^{2}(m, \boldsymbol{C}) \rightarrow H_{c}^{3}(U, C)$ where the second arrows is the dual of

$$
\text { res : } \begin{aligned}
H^{0}\left(X^{\prime}, \Omega_{X^{\prime}}(m)\right)_{d=0} & \longrightarrow H^{2}(m, C) \approx \oplus_{i} \oplus_{j} H^{2}\left(D_{i j}, C\right) \\
w & \longrightarrow \quad\left(\ldots, \operatorname{res}_{D_{i j}}(w), \ldots\right)
\end{aligned}
$$

and the first arrow is simply the diagonal map $H^{2}\left(S_{i}, C\right) \rightarrow \oplus_{j} H^{2}\left(D_{i j}, C\right)$ for each $i=1, \ldots, k$. Therefore, Image $\left(H^{2}(S, C) \rightarrow H_{c}^{3}(U, C)\right)$ is spanned by $\theta_{i} \in H^{0}\left(X^{\prime}, \Omega_{X^{\prime}}(m)\right)_{d}^{*}=0$ where

$$
\theta_{i}\left(w_{l}\right)=\sum_{j=1}^{r_{i}} \operatorname{res}_{D_{i j}}\left(w_{l}\right)
$$

On the other hand letting $Y^{\prime} \rightarrow \pi^{-1}(Y)$ be the normalization and $\varphi: Y^{\prime} \rightarrow X$ be the composite map, we see that $\varphi^{*}\left(w_{i}\right)$ has poles only at $p \in \varphi^{-1}(Y \cap S)$ and these are simple poles.

Given $f \in k(Y)$, we consider $\psi: Y^{\prime} \rightarrow P^{1}$ defined by $C(f) \subset k(Y)$. We choose a chain c in P^{1} missing $\psi\left(\varphi^{-1}(Y \cap S)\right)$ with $\partial c=0-\infty$, so that $\partial \psi^{-1}(c)=\psi^{-1}(\partial c)=$ $=\operatorname{div}(f)$. Since $\varphi^{*}\left(w_{i}\right)$ has simple poles and since for each

$$
q \in P^{1}, \quad \operatorname{res}_{q}\left(\operatorname{Tr}\left(\varphi^{*}\left(w_{i}\right)\right)\right)=\sum_{\psi(p)=q} \operatorname{res}_{p}\left(\varphi^{*}\left(w_{i}\right)\right)
$$

the equality

$$
\int_{\psi^{-1}(c)} \varphi^{*}(w)=\int_{c} \operatorname{Tr}\left(\varphi^{*}(w)\right)
$$

completes the proof.
Finally, via the following lemma we show that for any m and X^{\prime} as above we can always realize $G_{u m}(C)$ as a homomorphic image of $H^{2}\left(X, K_{2}\right)_{0}$ for a suitable pushout X.

Lemma 3. Given any divisor m (not necessarily reduced) on X^{\prime}, we can find a Lefschetz pencil $X^{\prime \prime} \xrightarrow{\alpha} P^{1}$ such that

1) m is flat over P^{1} and $G_{u m}$ for $X^{\prime \prime}=G_{u m}$ for X^{\prime},
2) the pushout

exists,
3) for reduced m, we have a canonical surjective homomorphism

$$
H^{2}\left(X, K_{2}\right)_{0} \rightarrow G_{u m}(C)
$$

Proof. 1) Since $\operatorname{dim}(m)=1$, we have a dense open set V in the Grassmannian $G_{r}\left(n-2, P^{n}\right)$ of the ambient projective space P^{n} such that for $L \in V, L \cap m=\phi$. We identify V with an open subset of $G_{r}\left(1, P^{n^{\prime}}\right)$ where $P^{n^{\prime}}$ is the dual projective space, via the isomorphism

$$
\begin{gathered}
G_{r}\left(1, P^{n^{\prime}}\right) \longrightarrow G_{r}\left(n-2, P^{n}\right), \\
p=\left\{H_{t}\right\}_{t \in P^{1}} \longmapsto \Delta_{p}=H_{0} \cdot H_{\infty} .
\end{gathered}
$$

Then taking $p \in V \cap V_{L}$ (V_{L} is the open subset consisting of Lefschetz pencils) we get a pencil $X^{\prime \prime} \xrightarrow{\alpha} P^{1}, f: X^{\prime \prime} \rightarrow X^{\prime}$ by blowing up $\left(\Delta_{p} \cap X^{\prime}\right) \subset X^{\prime}-m$. Clearly $m \subset X^{\prime \prime}$ is flat over P^{1}

That $G_{u m}$ for $X^{\prime \prime}=G_{u m}$ for X^{\prime} is a immediate consequence of the fact that $C_{m}\left(X^{\prime \prime}\right)=C_{m}\left(X^{\prime}\right)$ [3, Chapter II, Lemma 5].
2) We check that the hypothesis of [2, Proposition 4.3] is satisfied. To see this, for $t \in P^{1}$ we take $t^{\prime}=0$ or $\infty, t^{\prime} \neq t$. As $X^{\prime \prime}$ is a blow-up of X^{\prime} along $\Delta \cap X^{\prime} \subset X^{\prime}-m$, for $H_{t^{\prime}}$ the hyperplane through t^{\prime} we have $f^{-1}\left(X^{\prime}-H_{t^{\prime}}\right) \simeq X^{\prime}-H_{t^{\prime}}$ which is affine and clearly $i^{-1}\left(f^{-1}\left(X^{\prime}-H_{t^{\prime}}\right)\right)=\alpha^{-1}\left(P^{1}-t^{\prime}\right)$.
3) This follows from Proposition $1(i)$ and Proposition 2.

References

[1] G. Faltings - G. Wüstholz, Eienbettungen kommutativer algebraischer Gruppen und einige ibrer Eigenschaften. J. Reine Angew. Math., 354, 1984, 175-205.
[2] H. Glleet, On the K-theory of surfaces with multiple curves and a conjecture of Bloch. Duke Math. J., 51, n. 1, 1984, 195-233.
[3] K. Кato - S. Sarto, Two dimensional class field theory. Adv. Studies in Pure Math., 2, 1983, 103-152.
[4] M. Levine, Bloch's formula for singular surfaces. Topology, 24, 1985, 165-174.
[5] H. Önsiper, On generalized albanese varieties for surfaces. Math. Proc. Cambridge Phil. Soc., 104, 1988, 1-6; Corrigendum, Math. Proc. Camb. Phil. Soc., 107, 1990, 415.

Department of Mathematics
Middle East Technical University 06531 Ankara (Turchia)

