Rendiconti Lincei Matematica E Applicazioni

Eduardo H. A. Gonzales, Umberto Massari, Italo Tamanini

Boundaries of prescribed mean curvature

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 4 (1993), n.3, p. 197-206.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1993_9_4_3_197_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1993.

Calcolo delle variazioni. - Boundaries of prescribed mean curvature. Nota di Eduardo H. A. Gonzales, Umberto Massari e Italo Tamanini, presentata (*) dal Corrisp. M. Miranda.

Abstract. - The existence of a singular curve in \boldsymbol{R}^{2} is proven, whose curvature can be extended to an L^{2} function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E . De Giorgi, during a conference held in Trento in July 1992.

Key words: Calculus of variations; Geometric measure theory; Mean curvature; Singular boundaries of finite measure.

Riassunto. - Superfici di curvatura media assegnata. È dimostrata l'esistenza di una curva singolare nello spazio euclideo a due dimensioni, la cui curvatura può essere estesa ad una funzione di quadrato integrabile. La curva è la frontiera di un insieme a due dimensioni, ed è minimizzante un funzionale ottenuto sommando alla lunghezza della curva, l'integrale sull'insieme di cui essa è frontiera della funzione curvatura. L'esistenza di una tale curva era stata congetturata da E. De Giorgi, durante un Convegno a Trento nel luglio del 1992.

0. Introduction

The study of the functional

$$
\begin{equation*}
\mathscr{F}_{H}(X)=|\partial X|(\Omega)+\int_{\Omega} \phi_{X}(x) H(x) d x \tag{0.1}
\end{equation*}
$$

began in 1974 with the work of U. Massari (see [6]). Here Ω is an open subset of $\boldsymbol{R}^{n}(n \geqslant 2), H \in L^{1}(\Omega), \phi_{X}$ is the characteristic function of the measurable set $X \subset \boldsymbol{R}^{n}$ and $|\partial X|(\Omega)$ is the perimeter of X in Ω, i.e.

$$
\begin{equation*}
|\partial X|(\Omega)=\sup \left\{\int \phi_{X}(x) \operatorname{div} G(x) d x: G \in C_{0}^{1}\left(\Omega ; \boldsymbol{R}^{n}\right),\|G\|_{\infty} \leqslant 1\right\} . \tag{0.2}
\end{equation*}
$$

If E is a local minimizer of \mathscr{F}_{H} (i.e. if $\mathscr{F}_{H}(E) \leqslant \mathscr{F}_{H}(X)$ for all X such that $(E-X) \cup$ $\cup(X-E) \subset \subset \Omega)$, then we will say that « E has (generalized) mean curvature H », or simply that $« H$ is a curvature for $E »$. The reason is that in this case, assuming moreover the continuity of function H at the point $x \in \Omega \cap \partial E$ together with the regularity of ∂E itself in a neighbourhood of x, the (classical) mean curvature of ∂E at x is given by $-H(x) /(n-1)$, as one readily verifies.

In $[6,7] \mathrm{U}$. Massari proved that if E minimizes \mathscr{F}_{H} with $H \in L^{p}(\Omega), p>n$, then one can find an open subset Ω_{1} of Ω such that $\Omega_{1} \cap \partial E$ is a hypersurface of class $C^{1, \alpha}, \alpha=$ $=(p-n) / 4 p$ and $H_{S}\left(\left(\Omega-\Omega_{1}\right) \cap \partial E\right)=0 \quad \forall s>n-8$, where H_{S} denotes the s-dimensional Hausdorff measure in \boldsymbol{R}^{n}.

In 1987 E. Barozzi, E. H. A. Gonzales and I. Tamanini [2] proved that any set of fi-

[^0]nite perimeter has generalized mean curvature in $L^{1}(\Omega)$. Indeed, a suitable H (with countable rank), which is the L^{1}-limit of approximating curvatures of finite rank, can be constructed (see also $[1,3,11]$). It is then apparent that if E has curvature $H \in L^{p}(\Omega)$ with $1 \leqslant p<n$, then ∂E can contain many singular points, e.g. cusps, points of density 1 (or 0), and so on (see e.g. [3, 4]).

In this paper we consider the case $p=n$, i.e. sets of curvature $H \in L^{n}(\Omega)$. In the first section we recall some general properties (density, blow-up) that are more or less present in the existing literature. The main result of the paper is contained in the second section where we study a 2-dimensional set with singular boundary. The definition of this set was given by E. De Giorgi during a Conference held in Trento last July 1992. The singular boundary is the union of two spiral curves converging to the same point. De Giorgi conjectured that the curvature of this line could be seen as the restriction of an L^{2} function. Here we present the proof of De Giorgi's conjecture.

1. General results

Let $\Omega \subset \boldsymbol{R}^{n}$ be open, let $E \subset \Omega$ be a set of curvature $H(x) \in L^{n}(\Omega), n \geqslant 2$, and let us assume that $0 \in \Omega \cap \partial E$. Denote by $B_{r}=B_{r}(0)$ the open ball centered at 0 with radius r, by $\bar{B}_{r}=\bar{B}_{r}(0)$ the corresponding closed ball, by $\|H\|_{n, r}$ and, respectively, by $\|H\|_{n, r, E}$ the L^{n}-norm of H in B_{r} (respectively in $B_{r} \cap E$), i.e.

$$
\|H\|_{n, r}=\sqrt[n]{\int_{B_{r}}|H(x)|^{n} d x}, \quad\|H\|_{n, r, E}=\sqrt[n]{\int_{B_{r} \cap E}|H(x)|^{n} d x}
$$

For $X \subset \boldsymbol{R}^{n}$ denote by $|X|$ its n-dimensional Lebesgue measure and set $\omega_{n}=\left|B_{1}\right|$. It is well known (see e.g. [5, Prop. 3.1]) that, by possibly redefining E on a set of measure zero, we can assume that

$$
0 \in \partial E \Leftrightarrow 0<\left|E \cap B_{r}\right|<\omega_{n} r^{n} \quad \forall r>0 .
$$

Throughout the paper, the boundary of any set of (locally) finite perimeter has to be intended in this stronger sense.

Lemma 1.1. If $E \subset \Omega$ has mean curvature $H \in L^{n}(\Omega)$ and $0 \in \Omega \cap \partial E$ then

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{\left|E \cap B_{r}\right|}{\omega_{n} r^{n}} \geqslant \frac{1}{2^{n}} \tag{1.1}
\end{equation*}
$$

Proof (see also [4]). By assumption, E is a local minimizer of \mathscr{F}_{H}, hence by comparing E with $E-B_{r}$ we get

$$
\begin{equation*}
|\partial E|\left(B_{r}\right)+\int_{B_{r} \cap E} H(x) d x \leqslant \int_{\partial B_{r}} \phi_{E} d H_{n-1} \tag{1.2}
\end{equation*}
$$

and Hölder's inequality then gives

$$
\begin{equation*}
|\partial E|\left(B_{r}\right)-\|H\|_{n, r, E}\left|B_{r} \cap E\right|^{1-1 / n} \leqslant \int_{\partial B_{r}} \phi_{E} d H_{n-1} \tag{1.3}
\end{equation*}
$$

The isoperimetric inequality states that

$$
\begin{equation*}
c(n)\left|B_{r} \cap E\right|^{1-1 / n} \leqslant\left|\partial\left(E \cap B_{r}\right)\right|\left(\boldsymbol{R}^{n}\right), \tag{1.4}
\end{equation*}
$$

where $c(n)=n \sqrt[n]{\omega_{n}}$. Since

$$
\left|\partial\left(E \cap B_{r}\right)\right|\left(\boldsymbol{R}^{n}\right)=|\partial E|\left(B_{r}\right)+\int_{\partial B_{r}} \phi_{E} d H_{n-1},
$$

from (1.3) and (1.4) we get

$$
\begin{equation*}
\left[c(n)-\|H\|_{n, r, E}\right]\left|B_{r} \cap E\right|^{1-1 / n} \leqslant 2 \int_{\partial B_{r}} \phi_{E} d H_{n-1} \tag{1.5}
\end{equation*}
$$

Now, for every $\varepsilon \in(0,1)$ we can find $r_{\varepsilon}>0$ such that

$$
\begin{equation*}
\|H\|_{n, r, E} \leqslant \varepsilon c(n) \quad \forall r: 0 \leqslant r \leqslant r_{\varepsilon} \tag{1.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
(1-\varepsilon) c(n)\left|B_{r} \cap E\right|^{1-1 / n} \leqslant 2 \int_{\partial B_{r}} \phi_{E} d H_{n-1} \tag{1.7}
\end{equation*}
$$

Set $g(r)=\left|B_{r} \cap E\right|$; function $g(r)$ is non-descreasing and for almost all r we have

$$
g^{\prime}(r)=\int_{\partial B_{r}} \phi_{E} d H_{n-1}
$$

We can than rewrite (1.7) as follows

$$
\begin{equation*}
(1-\varepsilon) c(n) g(r)^{1-1 / n} \leqslant 2 g^{\prime}(r) \tag{1.8}
\end{equation*}
$$

i.e. $(1-\varepsilon) c(n) / 2 n \leqslant\left[g(r)^{1 / n}\right]^{\prime}$ which holds for almost all $r \in\left(0, r_{\varepsilon}\right)$; by integrating between 0 and ρ we get $\rho(1-\varepsilon) c(n) / 2 n \leqslant g(\rho)^{1 / n}$ i.e. $\rho^{n}(1-\varepsilon)^{n} \omega_{n} / 2^{n} \leqslant g(\rho)=\left|B_{\rho} \cap E\right|$ $\forall \rho \in\left[0, r_{\varepsilon}\right]$ and (1.1) follows at once.

Lemma 1.2. If $E \subset \Omega$ has mean curvature $H \in L^{n}(\Omega)$ and if $B_{r} \subset \Omega$, then

$$
\begin{equation*}
|\partial E|\left(B_{r}\right) \leqslant c_{1}(n)\left(1+\|H\|_{n, r}\right) r^{n-1} . \tag{1.9}
\end{equation*}
$$

Proof. By comparison of E with $E-B_{r}$ we get

$$
\begin{equation*}
|\partial E|\left(B_{r}\right)+\int_{B_{r} \cap E} H(x) d x \leqslant \int_{\partial B_{r}} \phi_{E} d H_{n-1} \tag{1.10}
\end{equation*}
$$

Similarly, by comparison of E with $E \cup B_{r}$ we get

$$
\begin{equation*}
|\partial E|\left(B_{r}\right)+\int_{B_{r} \cap E} H(x) d x \leqslant \int_{\partial B_{r}}\left(1-\phi_{E}\right) d H_{n-1}+\int_{B_{r}} H(x) d x . \tag{1.11}
\end{equation*}
$$

By addition, (1.10) and (1.11) yield

$$
2\left(|\partial E|\left(B_{r}\right)+\int_{B_{r} \cap E} H(x) d x\right) \leqslant n \omega_{n} r^{n-1}+\int_{B_{r}} H(x) d x
$$

and from that, using Hölder's inequality, we obtain

$$
|\partial E|\left(B_{r}\right) \leqslant \frac{n \omega_{n} r^{n-1}}{2}+\|H\|_{n, r} \frac{\left(\omega_{n} r^{n}\right)^{1-1 / n}}{2}=\left[\frac{n \omega_{n}}{2}+\|H\|_{n, r} \frac{\omega_{n}^{1-1 / n}}{2}\right] r^{n-1} .
$$

For $\lambda>0$ we now consider the sets $\lambda E=\{\lambda x: x \in E\}, \lambda \Omega=\{\lambda x: x \in \Omega\}$. With a change of variable $x=y / \lambda$ we get

$$
\begin{aligned}
\mathscr{F}_{H}(E)=|\partial E|(\Omega)+\int_{\Omega} \phi_{E}(x) H(x) d x & =\lambda^{1-n}|\partial(\lambda E)|(\lambda \Omega)+ \\
& +\lambda^{-n} \int_{\lambda \Omega} \phi_{\lambda E}(y) H(y / \lambda) d y=\lambda^{1-n}\left(|\partial(\lambda E)|(\lambda \Omega)+\lambda^{-1} \int_{\lambda \Omega} \phi_{\lambda E}(y) H(y / \lambda) d y\right)
\end{aligned}
$$

which shows that if E has mean curvature H in Ω, then λE has mean curvature $H_{\lambda}(y)=$ $=\lambda^{-1} H(y / \lambda)$ in $\lambda \Omega$.

Theorem 1.1. If E has mean curvature $H \in L^{n}(\Omega), 0 \in \Omega \cap \partial E$, and $\lambda(k)$ is a sequence of positive numbers with $\lambda(k) \vec{k}+\infty$, then there exist a subsequence $\mu(k)$ of $\lambda(k)$ and a set E_{∞} with zero mean curvature (i.e., a local minimizer of \mathfrak{F}_{H} in \boldsymbol{R}^{n}, with $H \equiv 0)$ such that

$$
\mu(k) E_{\vec{k}} E_{\infty}
$$

in $L_{\text {loc }}^{1}\left(\boldsymbol{R}^{n}\right)$. When $n \leqslant 7$, we have specifically that E_{∞} is a half-space; in this case moreover

$$
\lim _{r \rightarrow 0} \frac{\left|E \cap B_{r}\right|}{\omega_{n} r^{n}}=\frac{1}{2} \quad \text { and } \quad \lim _{r \rightarrow 0} \frac{|\partial E|\left(B_{r}\right)}{\omega_{n-1} r^{r-1}}=1 .
$$

Proof (see also [9]). Lemma 1.2 gives, for all $R>0$ and $\lambda>0$:

$$
|\partial(\lambda E)|\left(B_{R}\right)=\lambda^{n-1}|\partial E|\left(B_{R / \lambda}\right) \leqslant c_{1}(n)\left(1+\|H\|_{n, R / \lambda}\right) R^{n-1}
$$

whence the family $\{\lambda(k) E: k \in N\}$ is relatively compact in $L_{\text {loc }}^{1}\left(\boldsymbol{R}^{n}\right)$. Let then $\mu(k)$ (subsequence of $\lambda(k))$ and $E_{\infty} \subset \boldsymbol{R}^{n}$ be such that

$$
\mu(k) E_{\vec{k}} E_{\infty} \quad \text { in } L_{\text {loc }}^{1}\left(\boldsymbol{R}^{n}\right) .
$$

We have $0 \in \partial E_{\infty}$: indeed, from (1.1) it follows that

$$
\left|E_{\infty} \cap B_{R}\right|=\lim _{k}\left|\mu(k) E \cap B_{R}\right|=\lim _{k} \mu(k)^{n}\left|E \cap B_{R / \mu(k)}\right| \geqslant \frac{\omega_{n} R^{n}}{2^{n}} .
$$

Similarly, $\left|B_{R}-E_{\infty}\right| \geqslant \omega_{n} R^{n} / 2^{n}$ (notice that E has mean curvature H if and only if $\Omega-E$ has mean curvature $-H$).

To check the minimality of E_{∞}, choose $\rho \in(0, R)$ so that

$$
\begin{equation*}
\lim _{k} \int_{\partial B_{p}}\left|\phi_{\mu(k) E}-\phi_{E_{\infty}}\right| d H_{n-1}=0 . \tag{1.12}
\end{equation*}
$$

For F such that $\left(F-E_{\infty}\right) \cup\left(E_{\infty}-F\right) \subset \subset B_{e}$, set

$$
F_{k}=\left(F \cap B_{\rho}\right) \cup\left(\mu(k) E-B_{\rho}\right) .
$$

Since $\mu(k) E$ has mean curvature $H_{k}(x)=\mu(k)^{-1} H(x / \mu(k))$, we have

$$
\begin{aligned}
& |\partial(\mu(k) E)|\left(B_{R}\right)+\int_{B_{R}} \phi_{\mu(k) E}(x) H_{k}(x) d x \leqslant\left|\partial F_{k}\right|\left(B_{R}\right)+\int_{B_{R}} \phi_{F_{k}}(x) H_{k}(x) d x= \\
& \quad=|\partial F|\left(B_{\rho}\right)+\int_{\partial B_{p}}\left|\phi_{F}-\phi_{\mu(k) E}\right| d H_{n-1}+|\partial(\mu(k) E)|\left(B_{R}-\bar{B}_{\rho}\right)+\int_{B_{R}} \phi_{F_{k}}(x) H_{k}(x) d x
\end{aligned}
$$

hence

$$
\begin{equation*}
|\partial(\mu(k) E)|\left(B_{\rho}\right) \leqslant|\partial F|\left(B_{\rho}\right)+\int_{\partial B_{\rho}} \phi_{E_{\infty}}-\phi_{\mu(k) E}\left|d H_{n-1}+\int_{B_{R}}\right| H_{k} \mid d x . \tag{1.13}
\end{equation*}
$$

Now

$$
\begin{align*}
\int_{B_{R}}\left|H_{k}\right| d x & =\int_{B_{R}} \mu(k)^{-1}|H(x / \mu(k))| d x=\mu(k)^{-1} \int_{B_{R / \mu(k)}}|H(y)| \mu(k)^{n} d y \leqslant \tag{1.14}\\
& \leqslant \mu(k)^{n-1}\|H\|_{n, R / \mu(k)}\left|B_{R / \mu(k)}\right|^{1-1 / n}=\|H\|_{n, R / \mu(k)} \omega_{n}^{1-1 / n} R^{n-1} \underset{k}{ } 0
\end{align*}
$$

From (1.13), thanks to (1.12), (1.14) and the semicontinuity of the perimeter, we get $\left|\partial E_{\infty}\right|\left(B_{R}\right) \leq|\partial F|\left(B_{R}\right)$ which holds for all $R>0$, thus showing that E_{∞} has zero mean curvature in \boldsymbol{R}^{n}. Moreover

$$
\begin{equation*}
\lim _{k}|\partial(\mu(k) E)|\left(B_{R}\right)=\left|\partial E_{\infty}\right|\left(B_{R}\right) . \tag{1.15}
\end{equation*}
$$

It is well known that when $n \leqslant 7$ the set E_{∞} is a half-space with $0 \in \partial E_{\infty}$, so that

$$
\begin{aligned}
&\left|E_{\infty} \cap B_{R}\right|=\frac{\omega_{n} R^{n}}{2}=\lim _{k}\left|\mu(k) E \cap B_{R}\right|=\lim _{k} \mu(k)^{n}\left|E \cap B_{R / \mu(k)}\right|= \\
&=\omega_{n} R^{n} \lim _{k} \frac{\left|E \cap B_{R / \mu(k)}\right|}{\omega_{n}(R / \mu(k))^{n}}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\lim _{k} \frac{\left|E \cap B_{R / \mu(k)}\right|}{\omega_{n}(R / \mu(k))^{n}}=\frac{1}{2} . \tag{1.16}
\end{equation*}
$$

Similarly, by (1.15)

$$
\begin{aligned}
\left|\partial E_{\infty}\right|\left(B_{R}\right)=\omega_{n-1} R^{n-1}=\lim _{k}|\partial(\mu(k) E)|\left(B_{R}\right) & = \\
& =\lim _{k} \mu(k)^{n-1}|\partial E|\left(B_{R / \mu(k)}\right)=\omega_{n-1} R^{n-1} \lim _{k} \frac{|\partial E|\left(B_{R / \mu(k)}\right)}{\omega_{n-1}(R / \mu(k))^{n-1}}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\lim _{k} \frac{|\partial E|\left(B_{R / \mu(k)}\right)}{\omega_{n-1}(R / \mu(k))^{n-1}}=1 . \tag{1.17}
\end{equation*}
$$

The proof is easily concluded.

We now show that any set E with mean curvature $H \in L^{n}(\Omega)$ can be redefined on a set of Lebesgue measure zero, so as to produce a new set E^{*} which has the same curvature H and some kind of «topological regularity». For simplicity in the exposition, we only consider the case when $\Omega=\boldsymbol{R}^{n}$. In the following proof, we denote by $E(\alpha), 0 \leqslant \alpha \leqslant 1$, the set of points where E has density α, i.e.

$$
E(\alpha)=\left\{x \in \boldsymbol{R}^{n}: \lim _{r \rightarrow 0} \frac{\left|E \cap B_{x, r}\right|}{\omega_{n} r^{n}}=\alpha\right\}
$$

Theorem 1.2. Let $E \subset \boldsymbol{R}^{n}$ be a set of mean curvature $H \in L^{n}\left(\boldsymbol{R}^{n}\right)$, and set $E^{*}=E(1) \cup \partial E$. Then E^{*} differs from E by a set of Lebesgue measure zero, H is a curvature for E^{*}, E^{*} coincides with the closure of its interior, and $\left|\partial E^{*}\right|(A)=H_{n-1}\left(A \cap \partial E^{*}\right)$ for all open $A \subset \boldsymbol{R}^{n}$.

Proof. If $x \notin \partial E$, then (recall the convention at the beginning of this section) we can find $r>0$ such that either $\left|E \cap B_{x, r}\right|=0$ or $\left|E \cap B_{x, r}\right|=\omega_{n} r^{n}$. Moreover, if $x \in$ $\in E(0)$, then (by Lemma 1.1) $x \notin \partial E$ so that $\left|E \cap B_{x, r}\right|=0$ for a suitable $r>0$. This shows that $E(0), E(1)$ and ∂E form a partition of \boldsymbol{R}^{n}, and that $E(0)$ is open. Similarly, $E(1)$ is open, and ∂E is closed. Clearly, $\partial E \subset \partial E(1) \cap \partial E(0)$, since $E(1)$ is equivalent to E and $E(0)$ is equivalent to $\boldsymbol{R}^{n}-E$. On the other hand, the closure of $E(0)$ is a subset of $\boldsymbol{R}^{n}-E(1)$, since $E(1)$ is open, so that $\partial E(0) \subset \boldsymbol{R}^{n}-[E(0) \cup E(1)]=\partial E$.

By similar considerations, we get $\partial E(0)=\partial E(1)=\partial E=\boldsymbol{R}^{n}-[E(0) \cup E(1)]$.
Now, it is well known that any set $F \subset \boldsymbol{R}^{n}$ of locally finite perimeter satisfies:

$$
\begin{aligned}
& F(1 / 2) \subset \partial F \\
& |\partial F|(A)=H_{n-1}(F(1 / 2) \cap A)<+\infty \text { for all open } A \subset \subset \boldsymbol{R}^{n}, \\
& H_{n-1}\left(\boldsymbol{R}^{n}-[F(0) \cup F(1) \cup F(1 / 2)]\right)=0
\end{aligned}
$$

so that $H_{n-1}(\partial E-E(1 / 2))=0$, hence $H_{n}(\partial E)=0$. In conclusion $E^{*}=E(1) \cup \partial E=$ $=\boldsymbol{R}^{n}-E(0)$ differs from E by a set of Lebesgue measure zero (hence H is a curvature for E^{*} too), coincides with the closure of its interior $E(1)$, and since $\partial E^{*}=\partial E$ we have in addition $\left|\partial E^{*}\right|(A)=H_{n-1}\left(A \cap \partial E^{*}\right)$ for all open $A \subset \boldsymbol{R}^{n}$, as was to be proven.

Remark 1.1. Define $\Psi(r)=|\partial E|\left(\bar{B}_{r}\right)-\inf \left\{|\partial F|\left(\bar{B}_{r}\right): F-\bar{B}_{r}=E-\bar{B}_{r}\right\}$.
If E has mean curvature $H \in L^{p}(\Omega)$ and $B_{r} \subset \Omega$, then clearly

$$
\Psi(r) \leqslant \int_{B_{r}}|H(x)| d x
$$

and by Hölder's inequality we obtain

$$
\begin{equation*}
\Psi(r) \leqslant \omega_{n}^{1-1 / p}\|H\|_{p, r} r^{n-n / p} \tag{1.18}
\end{equation*}
$$

When $p>n$ we thus get $\Psi(r) \leqslant$ const $\cdot r^{n-1+\varepsilon}, \varepsilon=1-n / p>0$. As shown by Massari in [7], this is enough to start the procedure leading to the (partial) regularity of ∂E quoted in the introduction. Actually, it was shown in [10] that the following estimate is
sufficient for the regularity result to hold:

$$
\begin{equation*}
\Psi(r) \leqslant \alpha(r) r^{n-1}, \quad \text { with } \quad \int_{0}^{\delta} \frac{\sqrt{\alpha(r)}}{r} d r<+\infty, \quad \delta>0 . \tag{1.19}
\end{equation*}
$$

This condition may fail when $p \leqslant n$. Indeed, examples of singular sets having mean curvature in L^{p}, with $p<n$, are well known (see e.g. [3]). In the next section we settle the question of what happens when $p=n$ - an open problem since 1975 - by the explicit construction of a set $E \subset \boldsymbol{R}^{2}$ which is singular at $0 \in \partial E$ and mean curvature $H \in L^{2}\left(\boldsymbol{R}^{2}\right)$.

A general method yielding a mean curvature of an arbitrary set $E \subset \boldsymbol{R}^{n}$ with $|\partial E|\left(\boldsymbol{R}^{n}\right)<+\infty$ has been presented in [2]. However, when E has a simple geometry, it may be convenient to apply, the following.

Lemma 1.3. Suppose $E \subset \Omega$ is a set with a smooth boundary in Ω, and assume that the exterior normal unit vector $\nu(x)$ at $x \in \Omega \cap \partial E$ can be extended to a vector field $V: \Omega \rightarrow \boldsymbol{R}^{n}$ with $V \in W_{\text {loc }}^{1,1}(\Omega) \cap C(\Omega),\|V\|_{\infty} \leqslant 1$; then

$$
\begin{equation*}
H(x)=-\operatorname{div} V(x) \tag{1.20}
\end{equation*}
$$

is a curvature for E.
The proof is a straightforward application of the divergence theorem, see e.g. $[3,11]$. We remark explicitly that the method works also when isolated singularities are present: e.g., if $0 \in \Omega \cap \partial E$ is the only singular point of E, then we can apply Lemma 1.3 to $\Omega-B_{r}$ and pass to the limit as $r \rightarrow 0$.

2. A singular set in \boldsymbol{R}^{2} with curvature in L^{2}

Let us consider the following «antipodal spirals» in the (x, y)-plane:

$$
\begin{gather*}
\Sigma(t)=x(t)+i y(t)=t[\cos \theta(t)+i \sin \theta(t)] \tag{2.1}\\
\Sigma^{*}(t)=x^{*}(t)+i y^{*}(t)=t[\cos (\theta(t)+\pi)+i \sin (\theta(t)+\pi)] \tag{2.2}
\end{gather*}
$$

where $t \in(0,1)$ and the «angular function» $\theta:(0,1) \rightarrow(0,+\infty)$ is required to be convex, strictly decreasing and of class C^{2} on the interval $(0,1)$, with

$$
\begin{equation*}
\lim _{t \rightarrow 0} \theta(t)=+\infty, \quad \lim _{t \rightarrow 1} \theta(t)=0 \tag{2.3}
\end{equation*}
$$

We have clearly

$$
\begin{gather*}
\Sigma(t)=-\Sigma^{*}(t), \quad\|\Sigma(t)\|=t \quad \forall t \in(0,1) \tag{2.4}\\
\lim _{t \rightarrow 1} \Sigma(t)=(1,0), \quad \lim _{t \rightarrow 0} \Sigma(t)=(0,0) \tag{2.5}
\end{gather*}
$$

Call

$$
\begin{equation*}
E=\{t[\cos (\theta(t)+\alpha)+i \sin (\theta(t)+\alpha)]: 0<t<1, \pi<\alpha<2 \pi\} \tag{2.6}
\end{equation*}
$$

the subset of the unit ball $B_{1} \subset \boldsymbol{R}^{2}$ lying «between» the two spirals Σ, Σ^{*}. Clearly $B_{1} \cap$ $\cap \partial E=\Sigma \cup \Sigma^{*} \cup\{(0,0)\}$, the origin being the only singular point of $B_{1} \cap \partial E$.

Now, for every $\rho \in(0,1)$, the circle $x^{2}+y^{2}=\rho^{2}$ has exactly two points in common with ∂E, namely $\Sigma(\rho)$ and $\Sigma^{*}(\rho)=-\Sigma(\rho)$. Moreover, the exterior unit normals to E at
these two points coincide; we can then extend the exterior normals $\nu: \Sigma \cup \Sigma^{*} \rightarrow S^{1}$ to a vector field $V: B_{1}-\{(0,0)\} \rightarrow S^{1}$ by the obvious requirement

$$
\begin{equation*}
V(x, y)=v(x(\rho), y(\rho)), \quad x^{2}+y^{2}=\rho^{2} . \tag{2.7}
\end{equation*}
$$

On the account of Lemma 1.3 and the remark following it, we try to find conditions on $\theta(t)$ assuring that

$$
\begin{equation*}
\operatorname{div} V \in L^{2}\left(B_{1}\right) \tag{2.8}
\end{equation*}
$$

Now, on Σ we have

$$
\begin{align*}
\nu(x(t), y(t)) & =\left(-y^{\prime}(t), x^{\prime}(t)\right)\left(x^{\prime 2}(t)+y^{\prime 2}(t)\right)^{-1 / 2}= \tag{2.9}\\
= & \left(-\sin \theta(t)-t \theta^{\prime}(t) \cos \theta(t), \cos \theta(t)-t \theta^{\prime}(t) \sin \theta(t)\right)\left(1+t^{2} \theta^{\prime 2}(t)\right)^{-1 / 2}
\end{align*}
$$

hence by (2.7)

$$
\begin{equation*}
V(x, y)=\left(\varphi_{1}(\rho), \varphi_{2}(\rho)\right) \tag{2.10}
\end{equation*}
$$

where for $p \in(0,1)$

$$
\begin{gather*}
\varphi_{1}(\rho)=-\sin \theta(\rho)-\rho \theta^{\prime}(\rho) \cos \theta(\rho)\left(1+\rho^{2} \theta^{\prime 2}(\rho)\right)^{-1 / 2}, \tag{2.11}\\
\varphi_{2}(\rho)=\cos \theta(\rho)-\rho \theta^{\prime}(\rho) \sin \theta(\rho)\left(1+\rho^{2} \theta^{\prime 2}(\rho)\right)^{-1 / 2} . \tag{2.12}
\end{gather*}
$$

If follows that

$$
\begin{equation*}
\operatorname{div} V=\varphi_{1}^{\prime}(\rho) \cdot \cos \alpha+\varphi_{2}^{\prime}(\rho) \cdot \sin \alpha \tag{2.13}
\end{equation*}
$$

where of course $x=\rho \cos \alpha, y=\rho \sin \alpha$.
We check immediately that

$$
\begin{align*}
& \varphi_{1}^{\prime}(\rho)=\left(2 \theta^{\prime}+\rho^{2} \theta^{\prime 3}+\rho \theta^{\prime \prime}\right)\left(-\cos \theta+\rho \theta^{\prime} \sin \theta\right)\left(1+\rho^{2} \theta^{\prime 2}\right)^{-3 / 2}, \tag{2.14}\\
& \varphi_{2}^{\prime}(\rho)=\left(2 \theta^{\prime}+\rho^{2} \theta^{\prime 3}+\rho \theta^{\prime \prime}\right)\left(-\sin \theta-\rho \theta^{\prime} \cos \theta\right)\left(1+\rho^{2} \theta^{\prime 2}\right)^{-3 / 2} . \tag{2.15}
\end{align*}
$$

Therefore, from (2.13), (2.14) and (2.15) we obtain

$$
\begin{equation*}
\left|\operatorname{div} V(x, y) \leqslant\left|2 \theta^{\prime}+\rho^{2} \theta^{\prime 3}+\rho \theta^{\prime \prime}\right| /\left(1+\rho^{2} \theta^{\prime 2}\right) .\right. \tag{2.16}
\end{equation*}
$$

Thus, condition (2.8) is certainly satisfied if

$$
\begin{equation*}
\int_{0}^{1} \frac{\rho\left(2 \theta^{\prime}+\rho^{2} \theta^{\prime 3}+\rho \theta^{\prime \prime}\right)^{2}}{\left(1+\rho^{2} \theta^{\prime 2}\right)^{2}} d \rho<+\infty . \tag{2.17}
\end{equation*}
$$

By expanding the numerator in the preceding integral we find

$$
4 \theta^{\prime 2}+\rho^{4} \theta^{\prime 6}+\rho^{2} \theta^{\prime \prime 2}+4 \rho^{2} \theta^{\prime 4}+4 \rho \theta^{\prime} \theta^{\prime \prime}+2 \rho^{3} \theta^{\prime 3} \theta^{\prime \prime} \leqslant 4 \theta^{\prime 2}\left(1+\rho^{2} \theta^{\prime 2}\right)+\rho^{4} \theta^{\prime 6}+\rho^{2} \theta^{\prime \prime 2}
$$

since by assumption $\theta^{\prime}<0$ and $\theta^{\prime \prime} \geqslant 0$.
The integrability condition (2.17) then holds, provided both functions

$$
\begin{equation*}
\rho \theta^{\prime 2}(\rho) \text { and } \rho^{3} \theta^{\prime \prime 2}(\rho) \tag{2.18}
\end{equation*}
$$

are integrable in $(0,1)$.
Among the simplest choices of functions $\theta(t)$, satisfying the convexity and monotonicity conditions stated above, (2.3) and (2.18), we have the following one:

$$
\begin{equation*}
\theta(t)=\log (1-\log t), \quad 0<t<1 \tag{2.19}
\end{equation*}
$$

We have thus proved
Theorem 2.1. The set $E \subset \boldsymbol{R}^{2}$ defined by (2.6), with $\theta(t)$ given by (2.19), has mean curvature in $L^{2}\left(B_{1}\right)$. The origin is a singular point of ∂E.

Additional properties of E are given in the following remarks.
Remark 2.1. Thanks to the symmetry of the construction, the set E given in Theorem 2.1 satisfies $\left|E \cap B_{r}\right|=\left|B_{r}\right| / 2 \forall r \in(0,1)$ (compare with Theorem 1.1).

Remark 2.2. Let r_{α} be the half-line issuing from 0 with direction $(\cos \alpha$, sen α), let $t_{k}(\alpha)$ be the value of the parameter t corresponding to the k-th intersection of $\Sigma(t)$ with r_{α}. One has $t_{k}(\alpha)=\exp (1-\exp (\alpha+2 k \pi))$.

By choosing $\lambda(k)=\left(t_{k}(\alpha)\right)^{-1}$, we see that $\lambda(k) E$ converges in $L_{\text {loc }}^{1}\left(\boldsymbol{R}^{2}\right)$ to the halfspace through 0 with exterior normal vector ($-\operatorname{sen} \alpha, \cos \alpha$) (compare with Theorem 1.1). Therefore in this case every half-space through 0 is the limit of a suitable sequence of dilations of E.

Remark 2.3. We find easily that

$$
\Psi(r)=|\partial E|\left(B_{r}\right)-2 r=2\left[\int_{0}^{r} \sqrt{1+\frac{1}{(1-\log t)^{2}}} d t-r\right]
$$

so that

$$
\lim _{r \rightarrow 0^{+}} \frac{\Psi^{\prime}(r)(1-\log r)^{2}}{r}=1, \quad \text { i.e. } \quad \Psi(r) \approx \frac{r}{(1-\log r)^{2}} .
$$

Compare with Remark 1.1: this shows in a sense that (1.19) is an «optimal condition» for regularity.

Remark 2.4. One verifies easily that the mapping $f: B_{1} \subset \boldsymbol{R}_{\mu, v}^{2} \rightarrow B_{1} \subset \boldsymbol{R}_{x, y}^{2}$ given (in polar coordinates $u=t \cos \beta, v=t \sin \beta$ and, respectively, $x=\rho \cos \alpha, y=p \sin \alpha$) by $f(t, \beta)=(t, \theta(t)+\beta)$ for $0<t<1,0 \leqslant \beta<2 \pi, f(0,0)=(0,0)$ with $\theta(t)$ as in (2.19), is a bilipschitzian trasformation of B_{1} in itself, which maps the lower hemidisk $B_{1} \cap\{v<0\}$ onto E and the diameter $B_{1} \cap\{v=0\}$ onto $B_{1} \cap \partial E$.

References

[1] E. Barozzi, The curvature of a boundary with finite area. Preprint Dip. di Mat., Università di Trento, 1993.
[2] E. Barozzi - E. H. A. Gonzalez - I. Tamanini, The mean curvature of a set of finite perimeter. Proc. A.M.S., 99, 1987, 313-316.
[3] E. Barozzi - I. Tamanini, Penalty methods for minimal surfaces with obstacles. Ann. Mat. Pura Appl., 152, (IV), 1988, 139-157.
[4] G. Congedo - I. Tamanini, Note sulla regolarità dei minimi di funzionali del tipo dell'area. Rend. Accad. Naz. XL, vol. XII, fasc. 17, 106, 1988, 239-257.
[5] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart 1984.
[6] U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in \boldsymbol{R}^{n}. Arch. Rat. Mech. An., 55, 1974, 357-382.
[7] U. Massari, Frontiere orientate di curvatura media assegnata in L ${ }^{p}$. Rend. Sem. Mat. Univ. Padova, 53, 1975, 37-52.
[8] U. Massari - M. Miranda, Minimal Surface of Codimension One. North Holland, Amsterdam 1984.
[9] U. Massari - L. Pepe, Successioni convergenti di ipersuperfici di curvatura media assegnata. Rend. Sem. Mat. Univ. Padova, 53, 1975, 53-68.
[10] I. Tamanini, Regularity results for almost minimal oriented bypersurfaces in \boldsymbol{R}^{n}. Quaderni del Dipartimento di Matematica, Univ. Lecce, $\mathrm{n}^{\circ} 1,1984$.
[11] I. Tamanini, Interfaces of prescribed mean curvature. In: P. Concus, R. Finn (eds.), Variational Methods for Free Surface Interface. Springer-Verlag, New York-Berlin-Heidelberg 1987, 91-97.
E. H. A. Gonzales: Dipartimento di Metodi e Modelli Matematici Università degli Studi di Padova Via Belzoni, 7-35131 Padova
U. Massari: Dipartimento di Matematica

Università degli Studi di Ferrara
Via Machiavelli, 35-44100 Ferrara
I. Tamanini: Dipartimento di Matematica Università degli Studi di Trento 38050 Povo TN

[^0]: (*) Nella seduta del 13 marzo 1993.

