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Analisi matematica. — The multiple layer potential for the hiharmonic equation in n 
variables. Nota di ALBERTO CIALDEA, presentata!") dal Socio G. Fichera. 

ABSTRACT. — The definition of multiple layer potential for the biharmonic equation in Rn is given. 
In order to represent the solution of Dirichlet problem by means of such a potential, a singular integral 
system, whose symbol determinant identically vanishes, is considered. The concept of bilateral reduction 
is introduced and employed for investigating such a system. 

KEY WORDS: Singular integral systems; Potential theory; Biharmonic problem. 

RIASSUNTO. — Il potenziale di multiplo strato per l'equazione biarmonica in n variabili. Viene data la de

finizione di potenziale di multiplo strato per l'equazione biarmonica in R". Volendo rappresentare la; so
luzione del problema di Dirichlet per mezzo di tale potenziale, si ottiene un sistema di equazioni integrali 
singolari, il cui determinante simbolico si annulla identicamente. Il concetto di riduzione bilatera viene 
introdotto ed impiegato per studiare tale sistema. 

1. INTRODUCTION 

The multiple layer potential for elliptic equations of higher order in two variables 
was introduced in [1]. As Agmon remarks in his paper, his method cannot be used 
for higher order equations in more then two variables. 

Recently an alternative concept of multiple layer potential, for the same equation 
considered by Agmon, has been given in [4]. In the present paper it is shown how 
this approach may be used in the case of an higher order equation in any number of 
variables. To this end the biharmonic equation in n variables is considered and the 
definition of multiple layer potential, extending the one in [4], is used (see §3). 
When we try to solve Dirichlet problem by means of such a potential, we obtain a 
multidimensional singular integral system, whose symbol determinant, differently 
from the case n = 2 (see [4]), identically vanishes. Therefore, the usual regulariza-
tion theory, which is used for studying singular integral systems, turns out to be insuf
ficient. The concept of bilateral reduction is introduced in § 2 and employed in § 4 for 
investigating the singular integral system we have. Finally Dirichlet problem is solved 
by means of such a potential (§5). 

Although the equation considered in this paper is very particular, it is very likely 
that the theory may be extended to more general cases, as our present research work 
in this field seems to prove. Let us observe that the aim of this paper (as well as of pa
pers [3,4] and of next papers) is not to give a new solution of some classical prob
lem, which is nowadays solved by standard methods, but to investigate how classical 
algorithms of analysis, which seem to be applicable only to very particular cases (for 
instance harmonic problem) can be generalized in such a way to have a general range 
of applicability. 

(*) Nella seduta del 24 aprile 1992. 
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2. SOME RESULTS OF FUNCTIONAL ANALYSIS 

Let us indicate by B and Bf two Banach spaces. We say that a linear and continu
ous operator S: B —» JB ' can he reduced on the left {on the right) if there exists a linear 
and continuous operator S' : B ' —> B such that S ' S = I + 73 {SS ' = 1 + 75 ), where J is 
the identity and 73: B —>B(73: B ' —>B') is a completely continuous operator. The 
properties of such operators are well known. Here we list the main ones: 

/) the dimension of the kernel Dl{S) (the codimension of the range S{B)) is 
finite; 

it) the range S{B) is closed in B'; 

Hi) there exists a solution <p E B of the equation Sq>= <p{<p eBr) if and only if 
(ï> ^) = 0 for any y e B ' * such that 5* 7 = 0 (B '* is the topological dual space of B' 
and 5* : B '* -* B * is the adjoint of S). 

For the proofs of these theorems see [5,7,13]. 

I. If S: B —»B', vS' : B' —>B are linear and continuous operators such that S'S = 
= 1 + 75, 73 being completely continuous, then the following decomposition holds: {l) 

(2.1) B' = S{Bp)®3l{S')®r 

where Bp is a subspace of B having finite codimension and T is a subspace of B ' having fi
nite dimension. 

Let Z\, ..., zp be linearly independent vectors of B such that (2) [z\, ..., zp] = 31(1 + 
+ 73). It is well known that there exist £x, ..., Çp e B * such that (Çh, ^ ) = <%* {h, k = 
= 1, ...,p) (see [7, p. 94]). We shall set Bp = [u eB | fe, u) = 0, A = 1, . . . ,p} . 

Let Ti, ..., rp be linearly independent vectors of B * such that [ri , ..., Tp] = 31(1 + 
+ 75*). Let 7?!, ..., 7k(y < p) be linearly independent vectors of Br* such that 
fyi, ..., fy] = [S'*Tx, . . . , S ' * T P ] . There exist ^ , . . . , ^ e B ' such that (r)h,ek) = Shk 

{h,k= 1, ...,5). We define r = fci, ...,<?,]. 
If ^ is a vector of B ', let us set 

{22) y = 4,- Ì ( % , ^ . 
& = 1 

We have: (r]k,Y) = 0 (A = 1, ...,j) and then (rb, S' F> = (Sf* rhy T) = 0 {h = 
= 1, ..., p). From the theory of Fredholm equations it follows that there exists a solution 
a e B of the equation 

(2.3) a + 75a = S ' F . 

It is easy to prove that there exists one and only one a e Bp solution of the eq. (2.3). 
If/3 = F - 5 a , then S'p = 5 ' ( F - 5a) = S' Y - a - 73a = 0, i>. /3e W ) . From 

i1) (2.1) means that for any ̂ e^tAere^^^^^ 
and 7 being uniquely determined by tp. 

(2) By [zu ...,Zp] we denote the subspace spanned by z1}• ...,zp. 
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(2.2) it follows that 

h = 1 

In order to complete the proof, it will suffice to show that if 

(2.4) £a+/3 + r = 0, aeJ3 p , fieXiS'), yeT, 

then Sa = fi = y = 0. Indeed, from (2.4) it follows that a + 15a + S' y = 0 and then 
(S'*Tb,r) = (Tb,S'r) = 0 (A = l , . . . ,p) , i.e. (r)k,y) = 0 (k = l,...,s). This implies 
7 = 0 and then a + 75a = 0. Since a e Bp it follows a = 0 and (because of (2.4)) /3 = 0. 
Let us remark that we have shown something more, namely that even a E Bp is unique
ly determined by 0. 

LI. Let S: B —» £ ', 5 ' : B ' —» 13 be linear and continuous operators such that S ' S — 
= I + 75, 75 being completely continuous. There exists a constant K such that if <p = Sa + 
+ j8 + |K, a e £ p , pe9l(S'l yeT, then(3) 

(2.5) ||a|| + M < KlIS'^l. 

Assume the contrary. There exists a sequence {<pn} cB ' such that: <p„ = 5a„ + & + 
+ 7„, a , 6 B p , ] 8 „ 6 W ) , 7«e^> Il « J + IIrJ = *> H^ '^ l l -»0- Since dim T is finite, 
there exists a subsequence {7^} and 70 E JT such that 7^ —> 70; since 75 is completely 
continuous we may suppose {a„k} is such that 75a„k is convergent. On the other 
hand Sf <p„k = ank + 75a^ + S' ynk —> 0; this implies that {a„k} is a convergent sequence, 
i.e. there exists a0 e J3p such that <x„k —> a0 ; moreover a0 + 75a0 •+ S ' 70 = 0, i.e. Soc0 + 
+ 70 E 51(5 ' ). Because of Theorem I, we have a0 = 0, 70 = 0, and then a„k —> 0, 7^ —» 0. 
This is a contradiction, because ||a„J| + IMJI = 1. 

We say that a bilateral reduction of a linear and continuous operator S: B —» B ' is 
given, ifB" is a Banach space, Si: B " —> B, S2 : B'—» J3 " are linear and continuous opera
tors and 

(2.6) £ 2 ^ = 1 + 75, 

where 75: B " —> JB " is a completely continuous operator. 
We remark that it is always possible to give trivial bilateral reductions for an oper

ator S&0. For example, if Sux = vx, V\ & 0, we may take B" = R, Sxa = aui, S2 a linear 
and continuous functional: B' -^R such that S2vx = 1. We have S2SSxa = a, Va s R. 
However considering bilateral reductions may be useful in order to prove that the 
range of an operator S is closed. This is showed by the following theorem: 

LU. If S is a linear and continuous operator and the bilateral reduction (2.6) is given, 
then the range S{B) is closed in Bf if and only if S\3l{S2S)\ is closed in Bf. 

First assume 9l(S) = {0}. 
If S{B) is closed, then there exists a constant K such that \\u\\ < K\\Su\\, \fu eB. In 

particular, \\u\\ < K\\Su\\, Vu E 3fl(S2S), i.e S[3l(S2S)] is closed in Bf. Conversely, since 

(3) Obviously ||a|| is the norm in B, \\y\\ is the norm in B', etc. 
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S2S reduces S\ on the left, by using Theorem I we have 

(2.7) B=Sl(B;f)®3l(S2S)®r 

where B" is a subspace of B" and F is a finite dimensional subspace of B. Let {un} be a 
sequence in 5(B) such that un-^u0. We have to show that u0 e S(B). Since z/„ = 50«, 
<p„ e 13, from (2.7) it follows that ^ = Sx an + ft + %, a„ e £p", ft e 3Z(S2S), yn e R Be
cause of (2.5) we have \\a„ - a „ + J + ||y» - TWpll 3? X||525(^ -</>„+p)|| = K| |52(*»-
— u„ +p)||. Since U^-^UQ, {<xn} and {7^} are Cauchy sequences and therefore there exist 
a0 G J3p", 7o G r such that a„ —> a0, yw —» y0. On the other hand S*p„ = SSi an + Sft + 
+ 5yw, i.e. Sfin = un — SS\a„ — Syn. It follows that {Sft } is a convergent sequence in 
S[Dl{S2S)l Since S[3l(S2S)] is closed and 3l(S) = {0}, we have that {ft} is a Cauchy 
sequence and there exists ft e 3Z(S2S) such that ft - ^ f t . So we have showed that </̂  = 
= 5i a„ + ft + yw tends to 0O = ^ a0 + ft + 7o • It follows that un = S<pn —» 5^0 • But since 
u„->u0, we have #0

 = -tyo • 
If N(5 )*{0} we define(4): B=B/3l(S); ~SX'. B"-*By S1a=[S1ai; S:B-»B', 

S[<p] — Sip. It is obvious that 

(2.8) S(B) = ~S(B); 

(2.9) S2SS1oc = 525[51a] = S2SSi<x — a + 75a. 

Moreover u G S[3l(S2S)l <?> u = Sty], S2S[<p} = 0 <̂> u = % 525^ = 0 <*> » G 
G 5 [ ^ ( 5 2 S ) ] , />. 

(2.10) 5 [^ (5 2 5) ]=5[^(5 2 5) ] . 

Since 3Z(S) = {[0]}, (2.9) implies that S(B) is closed if and only if S[9l(S2S)] is 

closed; the result in full generality follows from (2.8), (2.10). 

IV. If S is a linear and continuous operator and the bilateral reduction (2.6) is given, 
then the range S(B) is closed in Br if and only if S* [3l(S*S* )] is closed in B*. 

This Theorem follows immediately from the previous one, because S{B) is closed 
in J5' if and only if 5* (B '* ) is dosed in JB*, and if (2.6) holds then S{ S* S2* = I + 75*, 
where 75*: 23"*—>£"* is completely continuous. 

Because of these Theorems, if we want to prove that the range of an operator S is 
closed (and consequently that the alternative theorem holds) it will be sufficient to 
find a space B" and a couple of operators Sx, S2 such that (2.6) holds and such that we 
are able to prove that S[X(S2S)] (or S* [9l(S{S*)]) is closed. We rematk that, while 
the reduction on the left may be applied only if dim 3l(S) is finite and the reduction 
on the right only if codim £(5) is finite, the technique here proposed may be applied 
even if dim Dl(S) = codim S(B) = oo. In the next section, by means of bilateral reduc
tion, we shall obtain an existence theorem for a multidimensional singular integral 
system, having infinite eigensolutions and infinite compatibility conditions and whose 
symbol determinant identically vanishes. 

(4) B/9l(S) is the usual quotient space whose elements are denoted by [<//]. 
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Finally we recall that in the classical theory of reduction, as far as the closure of the 

range is concerned, completely continuous operators are negligible. Unfortunately, 

in Theorems III, IV they are not negligible: if S(B) is closed, it may happen that 

(5 + 75) (B) C6 being completely continuous) is not closed. It is very easy to give 

examples. 

3. T H E MULTIPLE LAYER POTENTIAL 

Let Q be a bounded domain of Rn such that Rn — Q is connected and E — 3D is a 

Lyapunov boundary. It means that S has a uniformly Holder continuous normal field of 

some exponent [x(0 <//. < 1). v = (vx, ..., v„) denotes the outward unit normal to H. 

Let us consider the fundamental solution for biharmonic equation 

\\cn(n - 2)(n - 4 ) ] " 1 \x -y\A~nn = 3, 5, 6, . . . , 

•{2cArl\og\x-y\ * = 4, 

where cn is the hypersurface measure of the unit sphere of Rn. 

The integral 

_d_ 
'dvy dyh 

F(x, y) 

(3.1) «(*) = 9h(y)-^~ -£^F(x,y)d(jy 

will be called a (biharmonic) multiple layer potential. We shall need the following tech

nical lemmas 

V. If <p is an integrable [over U) real function and x is a Lebesgue point for tp, 

then 

lim ( 
x' —*x J 

(3.2) lim ?(y) 

E 

-r—r-z-F(x',y)d<Ty = 
dyhdykdyj 

= % M vk (. [X) Vy (x) <p(x) + <p(y) 
dyhdykdyj 

F(x9 y)day, 

where the limit denotes the internal angular boundary value (see [12, p. 293]) and the last 

integral is understood in the sense of the principal value (see [12, Chapter IV]). 

Let s0(x, y) be the fundamental solution for Laplace equation: s0(x, y) — — [(n — 

- 2)cn]~1 \x — y\2~n
y n = 3, 4, 5, . . . . It is very well known that 

(3.3) lim \ <p(y) — sQ(x',y)d<jy = — vh(x)cp(x) + \ ç(y)-—-sQ(xi y)dd 
x->x) dyh 2 J dyh 

On the other nand we have 

(3.4) 
dvy djkdjj 

F(x, y) = 

Sjk-n 
(yj ~ Xj)(yk ~ xk) 

\y-*\2 

(ys - xs) vs(y) (yj ~ xj) vk(y) + {yk - xk) vy(y) 

\y-x\" + \y-x\" 
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Since 

(3.5) 
(yj - Xj)(yk - xk) 

\y ~x\ 

iys-xs)x>s{y) 

\y-x\H 

/ , v d , v a (y,-^)(y;-s-) 

by using the same techniques employed in [12, Ch. V, §1,2] in the case n = 3, we 

get 

(3.6) lim j ?(?) ^ - « • 
(yj-x/)(yk-Xk) 

\y -x 
t 12 

\?(y) Sjk~n 

(y, 

1 
Oy-

- * / ) v 
3/ — x' 

•^•)(^ 

' ^ i 

- * * ) 

13; - x | 

iys-xs)vs(y) 

\y-*\H 
dav 

Moreover, since 

(yj-xj)vk(y) + (yk-xk)vj(y) 

Ï j 9(y) 
\y — x\ 

= \?(y) ^k(y)-^- + vjiy) — sQ{x, y)da 

it follows from (3.3) 

(yj - XJ ) vk (y) + (y* ~ xi ) vy (3;) 
lim 

Cn J ?(?) <io;, 
13; — x 

hj - Xj) vk (y) + {yk - xk) vy (y) 
= v̂  (x) Vj (x) 9(x) + — <p{y) , . 

^ J \y-x\ 
V 

and because of (3.4), (3.6) 

im 

d<iv 

3 3 2 ( d 
lim j ?{y)— ^ ^ F(x', y)ic7y = v^(x)vy(x)^(x) + ?(y)-^~ 

Finally, observing that 3 / 3 % = v̂  3/3v + vz- [v̂  3/3y^ — v̂  d/dyì\ and 

F(x, j ) ^ . 

lim 9(3;) v̂  ( ? ) — ~ n FU ' , y) d<jy = 
x'->x J r 3vy 9 % % 

V£ (x) v̂  (x) vj (x) ?(x) + j 9{y) vh (y)— - ^ F(x, y) d?y, 
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l i m <p(y) \>{ 

x' —>.x J 
*(y) 

3yh dyt 

= J ?(y) 

dyk dyj 

"Ay) 

F(xf, y)d<jy 

"Ay) -^— ^ ( 3 ; ) — -
dyh dyi dykdyj 

F(x, y)da 

we obtain (3.2). 

VI. Let p be an Holder continuous function belonging to C^{H) ((JL is the Holder ex

ponent of the normal field on 2). Then the function 

\ 
<p(y)- F(x, y)day 

belongs to W2,P(Q) for any p such that 

(3.7) l < p < ( l - f x ) - 1 

It will suffice to show that the function 

f d4 

[x) = <p(y) ~ ~ ~ ~ F(x,y)do 
J dXidXjdyhdyk 

belongs to LP(Q). 

At first, let us prove that, if 9 e C^ (2), the function 

:to = \ ?(y) -
d2 

fyh fyk 

belongs to LP(Q). Indeed we may write 

f d d 
(3.8) g(x) = <p(y)vh(y)— —s0(x,y)dcry + 

s0(x, y)do 

3v dyk 

+ <p(y)vs(y) 
dyh dys 3yk 

•s0(x, y)da 

Let <p% (x) be a function belonging to O a (Q) such that <p% (x) = <p(x) vh (x), x e U (for 

the construction of such a function, see [10, p. 383]). 

Since 

( 3 d d f 3 
j dv s% dxk j av 

|T ,..x a ,.., a 1 a v. (?) T — Vh(y)-Z-\-Z-so (x, y) da =0, 
dyh dys dyk 
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we may write 

dvy dyk 
gM = i?t (y) - ?h W] ^ 7 ^ - s0 (*, y)d<iy + 

htfb)-??(*)! + dyh dys 
—-s0(x,y)dcr 
dyk 

If follows 

(3.9) \g(x)\ < C [ I X - J I ^ - V œ , VxeO. 

Because of (3.7), there exists a such that 1 — [A + (n —' l)/p < a < n/p and 
then 

J \g(x)\pdx<Cp jdxl f l ^ - y l ^ - V o - y V ^ 

<Cp\dx\ \x-y\-"pd<Ty( f | x - / | ( ' a + a-^^VA 

where q = p/(p — 1). Since {n — [JL — a)q < n — 1, ap < n, we have 

[ | g ( x ) | ^ S S K J ^ œ J | x - ; y | - a ^ < oo. 
o £ fi 

As far as w(x) is concerned, in a similar way we may write 

f 3 33 

(3.10) w(x) = p(y) Vj(y) — ^ ^ ^ F{x, y)dvy + dvy dyjdyhdyk 

+ <p(y)vs(y) vs(y)^— ^(j;) — 
fydyhfyk 

F(x, y)day. 

The first integral is equal to 

(3.11) [?* (?) _ P* W] ^ 7 ^ , ^ ^ F(x> y)dcry dvy dyjdyhdyk 

d i d d2 

oxj J avy ^'-/4"-

On the other hand, in view of (3.4), (3.5), 

J 3vv ^ A ^ i 
F(x, y)dey = 

% oyt 

y 3yhdyk 

3 \ (yi-*i)(yh ~xh) 

\y — x\ 
dvy + 

+ I oyh dyk 
s0(x,y)dcr ; 
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but the first integral on the right hand side vanishes and the second one belongs to 
Wl,p (Q) in view of the first part of this Lemma. Arguing as before, from (3.10), (3.11) 
it follows that w(x) belongs to LP{Q). 

Obviously the Lemma we have just proved implies that, if <p1} ..., cpn belong to 
C**(£), the multiple layer potential (3.1) belongs to W2'P(Q) for anyp such that (3.7) 
holds. 

4 . A BILATERAL REDUCTION 

Let 1 < p < oo. Let us denote by Lp (2) the vector space of all measurable real 
functions such that \u\p is integrable over 2. Given ^ e P (2) we shall consider the 
system du/dxk = gk, {k = 1, . . . ,«), where u is the multiple layer potential (3.1). This is 
a singular integral system which may be written in the following way in view of 
Lemma V: 

(4.1) - vk{x)vh{x)cph{x) + 

f 3 3 

+ \<Ph(y)vf(y) ^ n n F(x,y)dcr=gk(x) {k = 1, ..., n). 
J dxkdyhdyj 

In order to investigate the symbol determinant of this system, let us observe 
that vj(y) dHFix^y^/dxkdyhdyj^icJ'^VkiyKyh-x^ + Vhiy^yk-Xk)] \y~x\~n + 
+ 0(\x-y\^'n + 1) = (cJ-HvkMiyb-Xb) + VbW(yk+xk)l \y - x\~n + 0(\x-
—y\!J-~n + 1). Then, assuming local coordinates at every point x G 2 where the x^-axis is 
pointed along v(x) and indicating by aiy...,ocn the components of the vector 
(<Pi, ..., <p„) in local coordinates, the left hand side of (4.1) may be written as 

Ln j r 

-an{y) H-
1 f r]b*b(y) + Tîn*n\y) , , T , , j 

Ln j r 

where t]k = yk — X&, r = \y — x\ and Tk are weakly singular integral operators. There
fore the matrix symbol {a^} in the new coordinates is such that a y = 0 if 1 < / , / < n — 
— 1. This implies that the determinant vanishes, because n > 2. Since the range of the 
symbol determinant is invariant under the transformation we did (see [13, pp. 251-
254 and p. 387]), the symbol determinant of (4.1) identically vanishes. 

Moreover system (4.1) has infinite eigensolutions and infinite compatibility condi
tions (see the remark before Theorem XI). 

Let L[ (2) be the vector space of the differential forms of degree 1 defined on 2 
such that their coefficients are integrable functions belonging to Lp (2) in any admissi
ble local system of coordinate. Let us introduce the new unknowns: ^ = <pj, vh, 
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$ = (ph dyh . If we consider the tangential operators Mh'"J"-2u = *s(du A dxJi ...dxjn~2) 
(if A is a {n — l)-form on E, say A = X0dd, A0 being a scalar function, then *SX = A0 ) 
and we observe that 

dxjj 3v (n — 2)1 
fazÌ^M''"*-

(the summation being extended to every ordered set i2, ..., 4 °f integers such that 1 < 
< 4 ^ #), then the multiple layer potential (3.1) may be written as 

M = J < (4.2) «(*) = ^(3;) vy (?) v̂  (3;) F(*, 3;) Jo- + 

< ^ 2 > ! / « " 
A M * - ' - * Vy^)^ '1 ...dyJ"~ 

and the system (4.1) 

f 33 

(4.3) - v̂  (x) ip(x) + ^(3;) vy (3;) v̂  (3;) F(*, 3;) da + 

+^.J§(y)AM^'\^Fix'y) vj{y)dyJl...dyJn-2 = gk(x) (k = 1, . . . ,«) . 

Let us consider now the linear and continuous operator S: Lp (U) X L[ (2) • 
>LP(2) X L[{Z) defined as follows 

I J dvx dyhdyj 

+ (» -2)1 J $ ( j ) A M J 3 3 I?/ \ 
— —- F(x, 3?) 
3vx dyj 

Vj(y)dyJl ...dy]n~2, 

J <p(y)vj(y)vh(y)dx 
dyh dy; 

F(x,y) \dcr + 

+ ïhû J*" AMJ1"^-2 4 — F(x, 3>) Vj{y)dyJl... ŷ-7" 

Keeping in mind that v^(x)dxk = 0, it is possible to show that the system (4.1) 
(or (4.3)) is equivalent to the equation 

(4.4) S(<p,$) = (gkvk,gkdxk 
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VIL We have: (5) 

dvx dyhdyj 

MJ;-J»-2 —- — F(x, y) 
dvx dyj 

F(x,y) = 0(\x-y\*-" + 1); 

vj(y) = A#"-'--*l>o(*, y)l + 0(\x -y\^n + l); 

Vj{y)vh{y)dx 
dyhdyj 

F(x, y) • dx[s0(x, y)] +G(\x-y _ I n - n + 1 \ 

MJ;-J»~2 dx — F(xy y) 
dyj 

vJ(y) = 0(\x-y\*-n + 1) 

for x, y varying on U. 

Taking into account that v^(x)(xk — yk) — 0{\x — y\l + l*)> we have 

3 32 

Vj(y)vh(y)-^r- ~ ~ F(x> y) = vj(y)vh(y)vk(x)(cn)~
l {[§h(xk-yk) + 

dvx dyhdyj 

+ $kh (xj ~ yj) + Sjk bb -yh)l\x-y\~n -n(xk- yk)(xj - yj)(xh - yh) \x - y \ ~n ~ 2} = 

= 0(\x-y\^-n + l); 

vj(y) = M ; I - A - 2 3 3 EY \ 
— — F(x, y) 
dvx dyj 

= M ^ - ^ - t - ^ o U , y ) - (cH)'lbk ~yk)bj~yj)\x -y|~"]v*(*)vy(y) = 

= - M';-'»-2[sQ(x,y)] + 0( |* -y\^n + l) = M^-J»~2[s0(xy y)] +0(\x -y\*-n + 1); 

3 2 

vj(y)vb(y)dx dyh dyj 
F(x, y) vj(y)vh(y)(cnr

l{tyh(xk-yk) + tkh(xj-yj) + 

+ 3* (xh - yh)] \x-y\~n -n(xk- yk)(xj - yj)(xh - yh) \x - y \'n~ 2 }dxk = 

= (cXHxk- yk)\x - y\~n dxk + 0{\x - y\*-n + l) = dxis,{x,y)i + O 

To prove the last formula, we observe that vk (y) dxk = [vk iy) — v^ (x)] dxk = 
= 0(\x -yl^) and MJl"J-2(yj)vj(y) = 0; then 

MJ
y
l"J-2 dx •=- F(x, y) 

dyj 
Vj(y) 

+ {cnr
l{xk-yk)\x-y\-nM^--j-2{yJ)vJ{y)dxk = 0{\x-y\^-n + l ) . 

(5) In the last two formulas 0(\x — y\lA n + l) means a differential form whose coefficients are 
0{\x-y\^-n + l). 
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It will be convenient to consider the following linear operators: 

/: V ÇS) -> Lf (U), J?(x) = \?(y) dx [s0 (x, y)] day , 
s 

/': Lf (27)-> 1/(27), Jfnz)=*z\nx)/\dzisn^2{z,x)-]y 

where s„-2(z>x) is the Hodge form (see [11]): 

X ^ofe x)dzh ...dzjn~2dxh ...dxjn~2. 
jx<... < y „ _ 2 

It is proved in [2] (Theorem I) that / ' reduces /, namely 

(4.5) J'J?(z) = -±?(z) + j9(y)L(z,y)day= -±?+L?y 

s 
where L(x,y) is a kernel having a weak singularity. 

The following Theorem provides a useful bilateral reduction for S. 

VIII. L^ 5*!, S2 be the following linear and continuous operators 

S1 : V (£) X Lp (27) -> Lp (27) X Lf (27), ^ (& 9) = ty, - 4/9) 

52: L ^ x L f ^ - ^ L ' U O x L ' U ; ) , 5 2 ( ^ F ) = ( - 4 / ' ! r , ^ - 4 / ' F ) . 

TA«f S2SSX =I + % where 7S: Lp (27) X Lp (27) ̂ L p (27) X Lp (27) « completely 
continuous. 

First of all we observe that, since 

dz [sn _ 2 fe, *)] = 2 ^ - J0 fe, x)dzkdzh...dzjn~2dxh...dxjn-2 = 
h<-<Jn-2 VZk 

= 2 * f c U ^s0(z,x)vb(z)d<Txdx>'*...<&•-* = 
jX<...<jn-2 VZk 

= 2 ^Wi'.'.l 2 M^-^ - 2 t 0 f ex ) ]^^ . . . ^ - 2 = 
h<...<jn-2 

(n - 2)1 
M{1 • • -jn -210 (z, *)] Jcrz <&71... dx7' 

we may write 

-3—y f$WAM?^-t 0 (z ,x)]a" . . .^- !=^ f!PWA4l>.-2(z,*)] = / '#• 
2 • 2; 

So, keeping in mind Lemma VII, we have S(<p, $) = (-<p + ^n<p + J'$ + "GÏ2$, 
Ji> + S21^ + "622 m, where %u : V (2) -* L ' (2;), 7512 : Lf (2) -* Lp (2), T521 : L

? (2) -> 
—»Lf (U), ^22: Lf (£) —» Lf (U) are completely continuous". In view of (4.5) we have: 
£Si (<p, cp) = Sty, - 4 / y ) = (-<p + -Gn<p - 4 / 7 ? - 4-512/9, /0 + T5210 - 4"622/9) = 
= (-</- + '£„ <// + ? - 4 L ? - 4 "S^/?», 7^ + ^ 1 ^ - 4 ^ 2 2 / 9 ) ) . Then: 525'51(^ç)) = 
= 5 2 ( - ^ + '611^ + 9 - 4 L 9 - 4 ' 6 1 2 / 9 , /^ + "B2i^- 4"B227?)) = ( - 4 / ' ( / ^ + ^ ^ -
- 4^22/?), -<P + T W + ? ~ 4L9 - 4K12J9 - 4J'(J<p + -G2i<p - 4*622/9)) = (<p -
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- 4L0 - 4 / ' T521^ + 16/ ' *622 Jp, T5n0 + 9 ~ 4L9 - 47S12 / P - 4L0 - 4 / ' T521^ + 
+ l6J"&22J?) = ty,?) + lSty,?). 

LX. S(LP (Z) x L{ (2)) » c W m 1/ (2) x Lf (£). 

Because of Theorems III and VIII, it is sufficient to show that S[Dl(S2S)] is closed in 
Lp (£) X LP{H). If we denote by u the multiple layer potential (4.2), we may 
write: Sty, 9) = {du/dv, du), S2Sty, $) = (~4J'du, du/dv - 4J'du). Since 3l(S2S) = 
= {ty, $) e Lp (S) X L[ (E) J a^/3v =J'du = 0},S[9l(S2S)] is constituted by the vectors 
(0,<fo) (« being given by (4.2)) such that / 'du = 0. Then 5[3K525)] ç {(0, dH) | H e 
E W1'* CS), J fdH = 0}. On the other hand, HeW1'* (E) if and only if there exists h E 
E Lp (E) such that 

H(x) = \h{y)s0{x,y)d<jy, xeE 
E 

(this is a consequence of the results contained in §2 of [2]). Since dH = Jh, we may 
write 

(4.6) S[3l(S2S)] ç {(0,Jh)\heLp(E), J'Jh = 0}. 

But, because of (4.5), the dìm{h e Lp (E) \ J' Jh = 0} is finite. This implies dim 
S[3i(S2S)] < 00 and then S[3l(S2S)] is closed. 

The proof of the Theorem is now complete, but actually we may prove that 

(4.7) S[3l(S2S)i = {(0,0)}. 

Indeed we have (see [2, Theorem I]) 

j [Jh= - — h(z) + h(y) day — s0 (x, y) — sQ (z, x) dnx 

dv 
U,*)f„l u{z) + s0 (z> x)^r~ UM do 

E 

where 

u(z) = h(y)s0(z,y)d<Ty. 

E . 

Therefore / ' Jh = 0 if and only if 

f 3 
(4.8) u(z) + s0(z,x)—-u(x)dcrx = c, zeQ 

(because the left hand side belongs to a class of harmonic functions in which the usual 
uniqueness theorems hold; see [2,9]). If 

u(z) + \sQ(z,x)-r— u(x)dcrx = 0, zsQ, 
J ovx 
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then 

*o fe, x) £M + ~T~ #M l^°* = 0, ZE.Q. 
dvx 

But this implies 

(4.9) A(x) + ^ - «W = \ h(z) + f h(y)^-s0(x, y)dvy = 0 
3vx 2 ) dvx 

almost everywhere on 2, /.£. 

lim —- h(y)s0(x", y)d<jy = 0 
s 

where the limit denotes the external angular boundary value. It follows from (4.9) that 
h e C " (E) and from the last formula (by using usual arguments in potential 
theory) 

J h(y)s0(x, y)d<jy = 0, x eRn -

and then h = 0. Therefore the only solution of / ' Jh = 0 is h(x) = c h0 (x), where h0 (x) is 
the function such that 

\h0(y)s0(x, y)d<jy = 1, x <=Q. 
E 

Hence Jh = du = 0, V£ e 3Z(J'J). Now (4.7) follows from (4.6). 

5. THE BIHARMONIC PROBLEM 

Let us consider the boundary conditions 

(5.1) - ^ = & (A = 1 , ...,«) 
OXf, E 

where g% are given in LP(E). The multiple layer potential satisfies (5.1) if and 
only if it is solution of the system (4.1). Let K(<plf ..., <p„) be the operator given 
by the left hand side of (4.1). It is very easy to prove that, because of Theorem 
EX, K([Lp{E)f) is closed in [LP(E)T (see (4.4)). Then there exists a multiple 
layer potential solution of (5.1) if and only if (&, . . . , &) is orthogonal to any 
eigensolution (Çlf ...%n) of the adjoint system K* (^, ..., £n) = 0, i.e. 

(5.2) -vA(y)v*(y)&(y)+ U(s )v , - (y ) n f n F(x,y)dax = 0 (A = 1, . . . ,«) . 

E 

In other words, for any (£1? ..., f„) such that 

lim -|-^f- lïk(x)-^-F(x,y")dvx = 0, (A = 1, ...,«) 
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where the limit denotes the external angular boundary value (this relation may 
be proved by using the same technique employed in Lemma V). 

Hals 

(5.3) 

X. There exist only a finite number of linearly independent simple layer poten-

v(y) = SkM—F(x,y)d<rx J dxk 

such that 

(5.4) lim -%- -JLv(y") = 0, (h = l, ...,«). 
y"-*y dv ayh 

If we set À = 4 v/k > % = Zk^y t n e simple layer potential (5.3) may be written as 

v(y)= [Ux)4-F(x,y)dcrx+ , l
 Nt f E(x) A M i 1 - ' - 2 [F(x, y)idxh ...dxj-2. 

J dvx (« - 2)! J 

On the other hand in [3] it is showed that there exists f e U (2) such that 

[S(x)AMJ
x
1-J"-2[F(x9 y)]dxJl...dxJ'»-2 = 

y 

= ljÇMAMil"-J'-'U!b,y)]dx'l...d>c>'-2, VyeR". 

The conditions (5.4) become 

-vh(y)My)+ lxM^r^-^-F(x,y)d<jx + 
J dvx dvy dyh 

+ ^hsr J '* : A Mi1-7-2 
—- — F(x, y) 
dvy dyh 

dxJl...dxJ»~2 = 0 (A = 1, . . . ,«) . 

These equations are equivalent to the system 

f d d2 

X(y) + X(x) vj (y) vh (y)— ^ ^ F(x, y) dcx + dvx dyhdyj 

X(x)dy -r— —Fix, y) \d( 

J yydvx dvy J 

dyh dyj 
F(x, y) Vh(y)vj(y)dxJl ...dxJn~2 = 0, 

*** + 

+ vh>F 1» » A A £ J — F(x, y) Vj{y)dxh ...dxjn~2 = 0. 

By using the same technique employed in Lemma VII and with the help of (4.5), it 
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is possible to write this system as 

-A + SlnX - j £ + <fti2? = 0 

/A + Sl21X + &22É = 0 

where 3in, 0t12 : 1 / (27) -> L^ (U), Sl2l, <ft22 : Lp (27) -> Lf (27) are completely continu
ous. From the last equation we deduce: -A/4 + LA + / ' Si2lX + / ' 8l22Ç = 0, and 
then the dim {(A, f) e Lp (2) X Lp(2;) | (5.4) holds} must be finite. This implies the 
result. 

We say that (£1? ..., %„) is an eigensolution of the first kind of (5.2) if 

a/ 
/ • 

^ = 0, VfeC"(R") 
dxk 

An eigensolution that is not of the first kind is called of the second kind. 

REMARK. NOW we are in a position to prove that system (4.1) has infinite eigenso-
lutions and infinite compatibility conditions. Indeed it is obvious that there are infi
nite linearly independent eigensolutions of the first kind of (52); then there are infi
nite compatibility conditions of system (4.1). Analogously there exist infinite eigenso
lutions of the equation 

K(ÇÎ9...,Çn) = vb(y)vk(y)!;k(y) + hk(x)vJ(y) f F(x,y)dvx = 0 (h=l, . . . ,«) , 
J dxkdyhdyj 

because K(Çl9 ...,?„) is the following internal angular boundary value 

3 S f d 
lim — — 4 M — F(x, y')dax = 0, (h = 1, . . . ,«) . 

If dim ^(K) were finite, K would admit a left regularization, because its range 
K ([U (27)]*) is closed (see [7, p. 162]). On the other hand: K = - K + (K + K) 
and (X + K) is completely continuous. Thus K should admit a left regularization, 
which is impossible, because dim Dl(K) is infinite. It follows that system (4.1) has infi
nite eigensolutions. 

XI. The number of linearly independent eigensolutions of the second kind of (5.2) is 
finite and it is equal to the number of linearly independent simple layer potentials (5.3) 
such that (5.4) holds. 

Let s be the number of linearly independent simple layer potentials (5.3) such that 
(5.4) holds. Let us suppose that there exist s + 1 linearly independent eigensolutions 
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of the second kind of (5.2): (ff, ..., <*/) (/ = 1, ...ys + 1). The functions 

(5.5) vHy) = ^i(x)-^F(xyy)d<jx 

s 
are s + 1 simple layer potential satisfying (5.4) and then they must be linearly depen
dent, i.e. there exist constants ciy ...ycs + i which are not simultaneously vanishing and 
such that CjVJ{y) = 0. This means (cy£/, ..., CjÇ£) is an eigensolution of the first kind. 
This is a contradiction. 

On the other hand, let vl (y)y ..., vs(y) be s linearly independent simple layer po
tentials {5.5) solutions of (5.4). If (£{, ..., Vn) U = 1, ...,*) were linearly independent, 
there would exist constants ciy ...ycs which are not simultaneously vanishing and such 
that (cy?i, ..., CjZÌ) = (0, ..., 0). Hence cyv

J (y) = 0, which is impossible. 

From now on we shall suppose that the Holder exponent [à of the normal field on 2 is 
such that 1/2 < (JL < 1. Let us consider the following BVP 

(ueH2(Q)nc4(Q) 
A2A2u = 0 in Q (5.6) 

du 
dxk E 

= gk {k = ly ...yn); 

the functions gk(k = 1, ...,») are given in C*{2) and they satisfy the natural compati
bility conditions: 

(5.7) jgkdxkA# = 0 

for any smooth (n - 2)-form S such that d$ = 0. This is equivalent to say that gkdxk is 
homologous to zero (see [6, pp. 218-219]). 

XII. Given g^ e C M (2) such that gkdx is homologous to zero, there exists a solution of 
BVP (5.6) and it is determined up to an additive constant. It belongs to Cl,il{Q) and it 
may be represented in the following way: 

( 3 d 
u{x) = <pb (y)-r- -r— F(x, y)d<jy + aj F(xy yJ) 

J 3v dyh 
s 

where cy aiy ...,as are constants and y1, ..., ys are in Rn — Q. If there are no eigensolu
tions of the second kind of (5.2), then the term dj F(x, yJ) may be suppressed. 

It is possible to show that (5.7) holds if and only if gkÇkdo- = 0, for any (fi, ..., f„) 
s 

eigensolution of the first kind of (5.2). If there are no eigensolutions of the second 
kind, there exists a multiple layer potential u(x) solution of (5.6). If we write it as 

(4.2), (<£, $) is solution of (4.4). From (2.7) it follows that 

(5.8) (ip,§)=S1*+p + y, 

where <xeLp(2) X Lp(2), fi e 3Z(S2S), y ^F - [ely ...yes]y Sly S2 are the operators in-

f)+c 



2 5 8 A. CIALDEA 

troduced in Theorem VIII. It is an easy matter to verify that we may choose ex, ..., es 

belonging to Clx{H) X Ci(U). Moreover, if (^, $) is solution of (4.4), we have: a + 
+ 75a + S2Sy — S2S{gfz vk, gkdxk). This implies a e C'a (H) X C,a (2), because of known 
theorems (see [12]). Then a solution of (4.4) is given by (5.8), where oceC^iU) X 
X C (£), y e C'* (£) X Cf (2), and fi G 31(^5). But, because of (4.7), W ) = 31(^5); 
this means that if (5.8) is solution of (4.7), then i^a + y is still solution of the same 
equation. Consequently there exists a solution of (4.4) belonging to C!X{E) X C'( (U). 
Because of Theorem VI, the multiple layer potential u(x) belongs to H2 (Q). It is then 
solution of (5.6). Moreover, in view of known theorems (see [12]), it belongs to 
Cl^{Q). If u' is another solution of (5.6), we have u - ur eH2(Q) D C4(0), 
A2A2 (u — u ' ) — 0 in Q, d(u — u ' )/dxk \z = 0, (k = 1, ..., n). This implies u — u — c 
(see [8]). 

Let us suppose now (f/, ..., <̂ ) (j = 1, ..., s) are eigensolutions of the second kind. 
From the proof of X, it follows that we may choose (f/, ..., &) in [C'a (H)Y. There exist 
y\ ...,yseRn - Û such that 

(5.9) de t{^(^OK, = i , . . . , ^0 

(z;7 given by (5.5)). Assume the contrary. Let t < s be the rank of {vJ(y*)}. Let 
/ + 1 

Ci, ..., ct+i be an eigensolution of the homogeneous system 2 CjVJ (y1) = 0 (/= 
/ + 1 _ J' = ! 

= 1, ..., 5). The function «;(#) = 2 9 ^ M vanishes in Rn - Q and thus it is solution of 
_ J = 1 

the problem: w e C2 + !X(Q) H C4(û), 4 4 M ; = 0 in û , dw/dxk U = 0, (£ = 1, ..., «). 

('/ + 1 / + 1 \ 

2 9?/ , •••> 2 9f«) is an eigensolution of the 
/ = 1 y = 1 / 

first kind. This is a contradiction. Let us set 

W = gk w ^ ^ * 
y = 1 

E ayd[F(x9 yJ)]/dxk, 
/ = 1 

where j 1 , . . . , 3 ^ satisfy (5.9) and (^, ...,as) is solution of the system 
s f 

2 ay'ty) = ¥kgkd<J (j= 1, . . . , J ) . 
/ = 1 J 

1; 

It follows that (£1, ...,£„) e [C/a(U)P is orthogonal to any eigensolution of system 
(5.2) and then there exists a multiple layer potential u(x) solution of (5.6) where gk is 
replaced by gk • Arguing as before we obtain the result. 
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