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Analis i matemat ica . — Existence for implicit differential equations in Banach 

spaces. N o t a di V I O R E L B A R B U e A N G E L O F A V I N I , p resen ta ta (*) dal Socio E . 

Magenes . 

ABSTRACT. — We prove two existence results on abstract differential equations of the type 

d{Bu)/dt + A(u) = f and we give some applications of them to partial differential equations. 

KEY WORDS: Abstract differential equations; Degenerate differential equations; Monotone opera

tors. 

RIASSUNTO. — Esistenza per equazioni differenziali implicite in spazi di Banach. Si dimostrano due ri
sultati di esistenza per equazioni differenziali astratte del tipo d{Bu)/dt + A(u) = f e si danno alcune ap
plicazioni di essi ad equazioni alle derivate parziali. 

INTRODUCTION 

This work is concerned with differential equations of the form 

(0.1) Um+M=f, in (0,7) , 

[ «(0) = u0, 

in a Banach space X, where A and B are unbounded (possibly nonlinear) operators 
in X. 

There is a large variety of results and methods involved in the study of problems of 
this type for which in general the standard theory of linear and nonlinear continuous 
semigroups of operators is not directly applicable (see e.g. [2]). 

Here we will confine ourselves to study eq.(O.l) in the following two situa
tions: 

1) A and B are nonlinear monotone operators; 

2) B is linear and A is a semilinear operator in a Hilbert space. 

In the first case we use the general methods of nonlinear monotone operators theory, 
while in the second one we make use of the methods and regularity results connected with 
degenerate differential linear abstract equations in Banach spaces [3,10,12,13]. 

1. NONLINEAR MONOTONE IMPLICIT EQUATIONS 

We shall study here the nonlinear equation (0.1) essentially under the following 
hypotheses: 

(*) Nella seduta del 14 marzo 1992. 



2 0 4 V. BARBU - A. FAVINI 

(Hj) H is a real Hilbert space and W is a reflexive Banach space dense in H and 
such that WcHcW algebraically and topological^ (W is the dual of W). Moreover, 
the injection of W into H is compact. 

We shall denote by | •• | and || • ||^ the norm of H and W, respectively and we shall 
use the same symbol (•, •) to denote the scalar product of H and the pairing between W 
and W. 

(H2) A\ W-+W is maximal monotone and everywhere defined. Moreover, A is 
bounded on bounded subsets of W and A = d<p, where <p: W —» R = ] — o°, +00] is a 
lower semiçontinuous convex function on W such that 

(1.1) 4(u)>aj\\u\fw+C, VueW, 

for some p E [1, + 0° [, co > 0 and C e R. 

(H3) B: H —>H is maximal monotone in H X H and B = d<p, where <p: H^R, is 
a lower semiçontinuous convex function on H. 

We have denoted, as usual in the literature, by d<p: W—ïW and dp: H^H the 
subdifferentials of <// and 9, rispectively (see [2]). 

Note that hypothesis (H3) allows multivalued and unbounded (not everywhere de
fined) operators B from H into itself. On the other hand, hypothesis (H2) implies that 
the operator AH:H->H defined by AHu = Au D H, Vu e D(AH ), D{AH ) = {ueH; 
Au H H ^ 0}, is maximal monotone in H (see e.g. [2]). 

If Ax denotes the Yosida approximation of AH, i.e., Ax = A - 1 (J — (I + A^4W)-1 ), 
À > 0, it is well known [2] that Ax = 3^A, where 

(1.2) ^ f e ) = ^((I + AAH)-1^) + 2~1A|,4Az/|2, V « E H , A > 0 . 

See [2, p. 57]. 

(H4) There is a real constant C such that 

(1.3) (Axu,v)>C(\v\2 + |(I +A^4 f f)"1«|2 + 1) 

for all u e D(B), v eBu and A > 0. 

We also introduce the following hypothesis which will be used to obtain supple
mentary regularity results. 

(H5) B~l is single-valued and 

(1.4) \B-lx-B-ly\2<x{B-lx-B-ly,x-y), Vx,y<=H, a > 0. 

Now we are ready to formulate the first existence result for problem (0.1). 

THEOREM 1. Under assumptions (HMHJ, letfsL™(0, T; H) D Whq(09 T; W), 
l/p + l/q = I, and u0 eW, £0 e Bu0. 
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Then there exist ueLœ(Q,T;W), y G CW([09 T]; H) H W1' °° (0, T; W) such 

dy 

that 

(1.5) 
-{t)=y'(t)=-w(t)+ft), a.e. /e(0 ,T) , 

> 0 ) = ?0, 

(1.6) 3?(/)eB«(/), w(t)eAu(t), a.e. f e (0, T). 

]/" m addition hypothesis (H5) Âo/ûfr, £Âe» & G V 1 , 2 (0 , T; H). 

Here we have denoted by WhH[0yT\;Wr), 1 < # < O O , the space {v G 

G L* (0, T; IF'); <fc/<fc G L* (0, T; W')} where <&/<& is taken in the sense of distributions; 
Cw{[0, T];H) is the space of weakly continuous functions from [0, T] to H and 
W1'2 ([0, T]; H) = {u G L2 (0, T; H); <&/<& e L2 (0, T; H)} 

Theorem 1 has been established under a slight different form in [3] (see also [4]) 
and it is related to a well-known result of Grange and Mignot [14]. Other results of this 
type have been obtained by Di Benedetto and Showalter [11], Bernis[6], Colli-
Visentin^]. 

EXAMPLES. 1) A model example to which it applies is the boundary value 
problem 

N 

(1.7) 
i « - , f , i H t ) ) = / M ) - taox<o'T>' 

(1.8) 

u{x9 0) = u0{x), in Q, 

u = 0, in dQx (0, T), 

where Û is a bounded domain in ,RN, /3 is a maximal monotone graph in R X R and aï 

are continuous increasing functions such that 

f0 < ai(r) < Cj \r\p ~ x + C2, Vr G R, 

\a^r)r> eo \r\p + C3, Vr G R, / = 1, . . . ,N, w > 0. 

In this case H = L2(Q)y W= W^P(Q\ 

(Auyv)=f, \aJ^)^dx, Vu,vzW, 
/=i J \ 9*// 3xz-

and Bu = {v s L2 (Q); v(x) G p{u(x)), a.e. # G D}. 
Let us remark that Theorem 1 applies also to the problem 

f 3 — &(«) •+ r(« -v)3f(x,t)y inQx (0, T), 

l ^ ^ - ^ - ^ - I t ^ l ) ) ^ ^ -OX(0,T); 3; 

#(#, 0) = #0 W> (̂̂ > 0) — ô M 
« = 0, 

x G Û , 

in 3£ x (0, T), 
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where fa, i = 1, 2, are maximal monotone graphs in R X R, y: R —> R is a monotone 
continuous function such that y(0) = 0 and \y(u)\ < C\u\Np/2{N~p\ Vu G R, while ^ 
satisfies the above assumptions. 

Such a problem has been studied recently by Showalter and Walking-
ton [15]. 

2) Consider the boundary value problem 

4- (9(x)-p=\ - dkF(Vu) = 0 inQx (0, T), 
dt V\u\ 

u(x, 0) = u0(x) in Q, 

F(V^)-v = 0 in 3D x (0, T), 

where F(v) = K((l + a\v\)1/2 - l ) ( ? H r V VveRm. 
Here p, k, a- are L °° (12) functions such that 0 < p_ < p(x) ^ 9 + a.e. in Q, 0 < 

< X_ < K(x) < K+ a.e. in Û, 0 < <J_ < <r(x) < ^+ a.e. in Q. 
This problem models the transient gas flow through a porous medium (Ami-

rat [1]). 
This equation can be written in the form (0.1) where H = L2 (Û), W = W1,3/2 (Û), 

A:W-*W is defined by 

04«, v) = ÏF(Vu)-Vvdx9 VveW 
Q 

and B: D(B) = L2 (Q) —» L2 (Û) is given by (23#)(x) = p(x)#M/VM> a.e. x e u for« G 
G D(J3) = L2 (0). It is readly seen that assumptions (H^-fH^) are satisfied in the present 
case. 

Then by Theorem 1 we may conclude that if u0 G W1,3^2 (Q) fi L2 (Q), then 
the above problem has a solution u G L °° (0, T; W1,3^2 (Q)), with pu/y\u\ e 
G C„([0, T];L2(D)) H Wl>~ (0, T; ^ " ^ ( û ) ) . 

(1.9) 

PROOF OF THEOREM 1. Consider the approximating equation 

{Xux + Bux ) + ^4A«A 9 /, a.e. t G (0, T), 

«A(0) = u0, £0 e Btf0, 

which clearly has a unique solution #A G W1' °° ([0, T]; H). 
Multiplying (scalarly in H) eq. (1.9) by ux and integrating on [0,/], we get 

f k«l2 
oHBu-A{t)) + yP>XuAs))ds = 

= \ |«o I2 + ?* (5«o ) + J (/, «A )<& + & (0), 
0 

where 9" (p) = sup{(p, v) — <p(v), v e H} is the conjugate of 9. 



EXISTENCE FOR IMPLICIT DIFFERENTIAL EQUATIONS IN BANACH SPACES 207 

Taking into account (1.2) and hypothesis (H2) we deduce the estimate 

T T I T \ 

(1.10) J" ||(J + XAH)-Xux\\pdt + A J \AxUx \2dt < C 1 + j" \f\2dt\. 
0 0 \ 0 / 

Next we multiply eq. (1.9) by dux /dt and integrate on (0, t). Noting that, by the mono-
tonicity of B and the relation between Ax and </̂ , (dBux /dt, dux /dt) > 0; 
(duxI'dt, AxUx) = d<px(ux)/dty a.e. / e (0, T), we infer 

(1.11) A 
dux 
~di ds + k 

T 

Ux{t))<\[f, dux 
ds. 

0 0 

Now the estimate (1.10) ensures that there is {fx} c W1,2([0, 71; H) such that for 
A-+0+, 

(1.12) 

T 

A [l ^,AxuAdt^>0; {fx} bounded in L°°(0, T;H); 

fx -> / strongly in L2 (0, T; H) O W1'* ([0, T]; DT'). 

Then substituting in (1.9) and (1.11) / by fx, we get 

2 ^ 
^T à + &((1 + XAHylUx{t)) + A \AxUx(t)\ 

t 

< (A(/),*,(/)) - (/,(o),«o) - j(^->"*)*-

Using estimates (1.10), hypothesis (H2) and relations (1.12), we obtain after some 
calculation 

(1.13) A 
t 

\ 
dux 

~ds~ 
lds + \\(I + XAHr1ux(t)\\w+ k « l + 

+ A"1 \{I + XAH)-lux{t) - ux{t)\ <C, VA>0 . 
t 

Denote by Qx{t) the function \Axux(s)ds, so that eq. (1.9) is written as 
o / 

(1.14) Xux(t) + Bux(t) 4- dx(t) = Xu0 + Ç0 4- J/A(*)<&, / e (0, T). 
o 

Multiplying it (scalarly in H) by 4̂A^A> using (H.4) and integrating by parts, we 
get 
(1.15) \0x(t)\ < C , VA>0 . 

In virtue of the estimate (1.11), {{I 4- XAH)~1ux} is bounded in L °° (0, T; W) and 
thus, by hypothesis (Hj), {Axux} is bounded in L00 (0, T; TF). 
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Since, by (1.13), {6X} is bounded in L°°(0, T;H) and the injection of H 
into W is compact, we conclude that {dx} is compact in C([0, T]; W). 

Hence, extracting a subsequence if necessary, we may deduce that there are func
tions «,y, w such that u eL°° (0, T; W), y e W1' °° ([0, T]; IT ) H L °° (0, T; H), w e 
e L °° (0, T; WO and for A -> 0 

r(I +Ay4H)_1z/A-»z/ weak-star in L °° (0, T; W), 

ux-^u weak-star in L°° (0, T; H), 

Ax^x —» ^ weak-star in L °° (0, T; W"'), 

(1.16) \dx-*0 strongly in C([0, T]; W ) and weak-star in L °° (0, T; H), 

yx eBux->y weak-star in L °° (0, T; H), and strongly in C([0, T; W), 

AAAz/A -» 0 strongly in I °° (0, T; H) , 

A ux -* 0 strongly in L00 (0, T; H). 

Letting A tend to zero in (1.14), we see that 

/ / t 

y(t) + J w{s) ds = Ç0 + jf(s) ds; B(t) = f w(s) ds V/ E (0, T). 
0 0 0 

Hence yeW1*™ ([0, T]; UT') fi L °° (0, T; H) and dy/dt + w = / a . e . / E (0, T). In par
ticular, we deduce that y is weakly continuous from [0, T] into H. 

It remains to prove that 

(1.17) y{t)^Bu{t), a.e. / e ( 0 , T ) , 

(1.18) w{t)eAu(t), a.e. * € (0, T). 

Let us denote by <$: L2(0, T; H) —>L2(0, T; H) the realization of the operator B in 
X = L2(0, T; H), /.<?., S = { fc ,d6 3CX5(; z(f) EBv(t\ a.e. / E [0, T]}. To prove 
(1.17), it suffices to show that [u,y] E Œ. 

Let [v, z] be arbitrary but fixed in cB. By the monotonicity of (B we have 

| (yA (/) - z(t), ux{t) - v{t))dt > 0, VA > 0. 

Equivalently, 

| (yA(f) - z(f), (I + XAH)'lux{t) - v{t))dt + A | (yx (t) - z(t\ Axux{t))dt > 0. 

0 0 

Letting A tend to zero, we obtain by (1.15) and (1.16) that 

T 

| (y(t) - z(t), u{t) - v{t))dt > 0 Vb, zi E Œ. 

Since Œ is maximal monotone, (1.17) follows. 
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To prove (1.18), we observe first that 
T T 

lim sup J (Axux to, ux {t))dt = lim sup JÏ fx to - ^ U*A to + Bux to, ux to) dû = 

't T \ 
= lim sup p* (?0 ) ~ r (yx CO) + f (fx to, ux to) dt . 

A - * ° V oJ / 
In view of (1.16), yx{t) —>y{i) weakly in H, and 9* is weakly lower semicontinuous; 
hence, we infer that 

T 

lim sup f (Axux to, ux (/)) A < 9* (Jo ) - 9* (y(T)) + 

T T T 

+ J (/to, «to) A = J /to - j t Bu(t\ u(t)\dt = J (w(t), u(t))dt. 
0 0 ^ ' 0 

This implies as above that w(t) eAu(t), thereby completing the proof. If in addition 
Hypothesis (H5) holds, multiplying eq. (1.9) by dux/dt and noting that then 
(dBux/dt, dux/dt) > a"1 \dux/dt\2, a.e. t e (0, T), we deduce that [dux/dt] is bound
ed in L2 (0, T; H) and thus J#/<fe e L2 (0, T; H) as claimed. This finishes the proof of 
Theorem 1. 

REMARK 1. The existence result of Grange and Mignot [14] mentioned above as
sumes instead of Hypothesis (H4) that B: W0-^> W0' is maximal monotone, subpoten-
tial and bounded on bounded subsets, WQ being a reflexive Banach space such Wc 
c W0 with compact embedding. 

If one assumes in addition that the restriction of B to H is maximal monotone and 
/ e L °° (0, T; H) H Whq (t0, T]; W\ we may use the approximating process (1.9) to 
obtain existence in problem (0.1) arguing as in the proof of Theorem 1. 

The next Theorem is a variant of Theorem 1 under weaker assumptions on / 
and u0 

THEOREM 2. Under assumptions (H1)-(H4), let us assume further that 0 e int D(B) 
and 

(1.19) supf lMI^ ; w G Au} < CilMP^1 + C2, V« e W. 

Then for/e mo, T; W), u0eD(B) and S0<EBU0> there are ueLp(0, T; W) and y G 

G L °° (0, T; H) H Whq ([0, 71; W) such that (y ' (t) denoting the derivative ofy(t) with re
spect to t), 

fo'to+t*to=/W, a.e. * E (0, T), 
(1.20) Jy(0) = £o, 

[ 3;(/) e Bu(t), w(t) G Au(t), a.e. t e (0, T). 

PROOF. L e t / G L °° (0, T; H) H IF1'* ([0, T]; W) and itf e W, So e H be such that 

/ ->/s t rongly in L*([0, T\; W')9 UQ->U0 strongly in H, £ J e B#o-» fo strongly in H. 
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We may choose for instance u% — (I + n ~1B ) ~1 u0. 
Now let (y„,u„) be the corresponding solution to (1.5), (1.6), i.e., 

-yt(t)+wH(t)=f„(t), a.e. in (0, T), 
2 \yH (0) = Stt

09 yn (t) G Bun (t), wn (t) sAun (/), a.e. t G (0, T) 

Multiplying the latter by un and integrating on (0, t), we get 

/ t 

(1.22) 9 M ^ J ^ ) + ^ | l l ^ W | ^ ^ ^ r v ( r 0 ) + / ( / , ( ^ ^ W ) ^ + Q V/E ( 0 , 7 1 
o o 

On the other hand, since 0 G intD(B) = intD(9), we have <p* (y„ (t)) > p\y„ (t) | + C, 
V* E [0 ,71 

This yields 

yn(t)\ + j\\un(s)\fwds<C, V/E [0 ,71 

(We have denoted by C several positive constants independent of n). 
Hence on a subsequence we have, in virtue of assumption (1.19), yn—>y weakly 

star in Lœ (0, T; H) and strongly in C([0, 71; W), un^u weakly in 1/(0, T; W), 
^ - > ^ weakly in 1/(0, T; IF) . 

Then arguing as in the previous proof we infer that w(t) eAu(t), y{t) e Bu(t), a.e. 
t G (0, T), as claimed. (We note that çr (fg) -» 9* (?0)). 

Let us return back to problem (1.7), i.e., W= W0
hp(Q), H = L2(Q), Bu = {weH; 

w(x) <= p(u(x)) a.e. xeQ}, A: Wj>p (Û) -» W~l>q{Q) defined by 

N 

(A«,v) = ZJ \ai\^r\-^-dx 
i=i J 1 S*/ / 9x/ 

where /3 is a maximal monotone graph in R X /? and #, satisfy (1.8). 
We shall further assume that D(S) = R. Though Theorem 2 is not directly applicable 

(because int D(B) could be empty), its conclusions remain true in this case. 
Namely one has (related results have been recently obtained in [7]) 

PROPOSITION 1. Let the above assumptions hold where p > N. Then for / G 

G If (0, T; W~l>q{Q)) andu0 G L2 (Û) such that 3^0e L2{Q), f0 M G p(u0 (x)) a.e. xeQ, 
there are (x G Wl>HlO, 71; W'1^ (û)) H L °° (0, T ; ! 1 ^ ) ) *»<* « G P ( 0 , T; W0

hp(Q)) 
satisfying 

^-^(x,t)- S ^-at(^-u{x,t)\=f{x,t), i n u X ( 0 , D , 
d̂  / = 1 dx/ \ a*,- / 

(1.23) J 
[X(X9 0) = f0W, XG^, 

|tx(x, /) G £(«(*, /)), a.e. (x, t) e Q X (0, T). 
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PROOF. We will use the notations and the scheme of proof of Theorem 2, 
Note that in this case assumptions (H1)-(H4) and (1.19) hold and 

?*(y) = \j*(yM)dx, VyeL2(Q), 
Q 

where dj = /3 and j * :R^R is the conjugate oij: R^R. Since D(/3) = R we have 
(see e.g. [2, p. 56]) 

(1.24) lim j*(r)/\r\ = + ™ . 
\r\ -+ oo 

Then by (1.22) it follows in particular that \\y„ WHL1^) ^ C, Vt e (0, T). 
Now if p > N , then L ^ c l F = DP_1''(Û) and so by the Ascoli-Arzelà Theo

rem, y„^>y strongly in C([0, T]; W), because as seen in the proof of Theorem 2 {yn } 
is bounded in W^&TiW). 

Since un-^u weakly in Lp (0,T;W) we infer as above that y{t) eBu(t), a.e. 
t G (0, T), where Ê c W x TF' is an extension of B given by 5 = d<p where 9: W—» K is 
defined by ç>(#) = <p(u) Vu G W'. We know that (see e.g. [8]) 

(1.25) Bu = {ixeW'HLHuhnWepiuM) a.e. * e Û } . 

Moreover,we have by eq. (1.21) 
T 

j (^ « , «„ w)dt + 9* (^ (D) - r hn (o)) = 0. 
0 

Note also that by (1.22) and (1.24) it follows via Dunford-Pettis theorem that {y„ (T)} 
is weakly compact in L1(Q).Since 

y-> \j*(y)dx 
Q 

is weakly lower semicontinuous in L1 (Q), we infer therefore that 

lim mtr(y„(T))>r(y(T)). 
# —» oo 

This implies as in the proof of Theorem 1 that w{t)eAy(t) a.e. t G (0, T), as 
claimed. 

2. STRONGLY DEGENERATE IMPLICIT EQUATIONS 

In this Section we confine ourselves to a linear operator B in eq. (0.1), but we per
mit to B to be strongly degenerate and we avoid the angle condition (1.3). 

Let V, H be two complex Hilbert spaces such that V c H c V algebraically and 
topologically. Denote by || • || and || • ||* the norms in V and V, respectively (•, •) de
notes the inner product in H and (•, •) is the pairing between V and V , so that {u,v) — 
= (u,v) for all u, v G V. We assume 

[i] A is a bounded linear operator from V to V such that Re (Au, u) > a0 \\u \\2, Vu e 
eV, a0> 0, and B is a self-adjoint non negative bounded operator from H into H. 

Let us remark that the adjoint operator A* has analogous properties. 
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If (AS + A)u = / , where A is a complex number with real part Re A > 0, u e V, we 
deduce that ReX(Bu, u) 4- Re (Au, u) = Re(/, u) and also a0\\u\\ < ||/||* . 

On the other hand, if y G V satisfies 0 = ((AB H-̂ 4) «,};), for any u eV, then 
0 = («, (ÂB + 4 * )y) = («, ÂBy) +JAU, y) and hence (ÂB + A * );y = 0. 

Arguing as before , ^olMI ^ ||(AJB + V4* )y | | * , and thus y = 0. 

We conclude that AS H-./4 has a bounded inverse from y into V and, since 4̂ is 
bounded, \\A(XB +A)'1y\\ie < C||y||*, Re A > 0, y G y*. 

But one easily recognizes that such an estimate may be extended to all A's in a sec
tor containing Re A > 0. 

We are then in a position to apply the method described in [12], arguing that if 
S = BA~l, then the representation 

(2.1) V'=N{S)@R{S) 

holds, where N(S) denotes the null-space of S and R(S) is the closure in V of the range 
R(S) of S. 

Furthermore, if S is the restriction of S to R(S) = Z, — S"1 generates a bounded 
analytic semigroup in Z. 

Denote by P the projection operator onto N(S) associated to (2.1), and consider 
the linear problem 

(2.2) U(Bu)+Au=f, 0<t<T, 

[(5«)(0) = Ç = Bu0, u0eV; 

where / eL 2 (0 , T; V). We have 

LEMMA 1. Assume Hypothesis [i]. Then for any u0eV and/e L2 (0, T; V j , problem 
(2, 2) has a unique solution u such that Au(-), d{Bu('))/dt e L2(0, T; V) . 

PROOF. Put La = i>. Then the representation (2.1) permits to decouple (2.2) into 
Pv(t) = Pf{t) and 

(2.3) 
f ^ (S(I -P)v) + (I-P)v = (I-P)f, 0<t< T, 

(S(I-P)v)(0)=S{I-P)v0, 

where v0 = Au0. 
We are then reduced to find a solution, in a sense which shall be precised at 

once, to 

\z' +S-lz = (I-P)f, 0<t<T, 
(2.4) 

[z(0) = S-lU-P)vo. 

In view of [9, Theorem 4.19, p. 338], since S'1 (I - P)v0 e D(S), if / e L2 (0, T; V) 
(so that (7 - P ) / e L2 (0, T; Z)), problem (2.4) has a unique strict solution z such that 
z' and S ^ z e L ^ O . T j Z ) . 
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This is exactly the sense to give to the solution of (2.4).If V{t), t > 0, denotes the 

semigroup in Z generated by — S - 1 , then 

t 

v(t) = Pf(t) + V(t)(I - P)v0 + 5"1 J" V(t - s)(I - P)f(s)ds, 
0 

and u(t) = A~lv(t) solves problem (2.2). 

Let u0 G V be fixed and consider the map K: L2 (0, T; V ) '-* L 2 (0, T; V), X/ = «, 

« the solution to problem (2.2); such a map has the Lipschitz property, since, if 

id = Kf{, £ e L2(0,T;V'),i= 1,2, 

I J V / 2 / t V / 2 

J ||L«, if) - Lu2 (t)t dt\ < J \\P(f it) - f2 «)||J at + 

\l/2 / J \ l /2 

+ < ' 
^0 / \ 0 

We introduce a, possibly nonlinear, operator F from V to V ', such that 

[ii] There exists co > 0 for which \\F(ui ) — F(u2 )||* ^ w ||^i — &2 IL
 ui, ui G V-

We then prove 

THEOREM 3. Assume Hypothesis [i-ii], 1/ //?<? constant OJ in [ii] £r sufficiently small, 

then for any u0 e V and fs L2 (0, T; V ) the problem 

\ y - (Bu) +Au+ F(u) = / , 0 < / < T, 
(2.3) •=! dt 

[(Bu)(0)=Bu0, 

has a strict solution u such that Au(f), d(Bu(*))/dt G L 2 (0, T; V ) . 

PROOF. We seek a solution to problem (2.5) under the form u = K(h), 

heL2(0,T;V). 

This u satisfies (2.5) iff h is a fixed point for — FoK+f. 

Now, F oX satisfies a Lipschitz condition as an operator from L 2 (0, T; V) into itself 

with a Lipschitz constant < Cx OJ and hence the result follows immediately. 

REMARK 2. Obviously, one needs no assumption on the smallness of co in [ii] if F re

placed by eF, e G R, provided that \e\ is in its turn suitably small. 

REMARK 3. In a case strongly degenerate as the one under consideration, the small

ness of co is essential. 

For example, if V = H = V = R2, B(u, v) = (0, v), A(u, v) = [u, v), F(u, v) = 

= ( —u - v, I), fit) = (0,0) , 0 < t < T, then problem (2.5) has no solution for any in

itial condition even if in this case the angle condition (Au, Bu) > 0 for all u G V holds, 

(see Assumption (1.3)). 

EXAMPLE. Let m(') be a continuous non negative function on [0, 1]. Define 
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the operators A, B by means of Au = u", (weak derivative), u e HQ (0, 1), Bu = mu, 
ueL2(0,l). 

It has been proved in [12] that (XB + A)'1 exists for all A, Re A > 0, and 
||̂ 4(AJ3 +A)~1z/||H-i(oj i) ^ C||&||H-I(O, i): in fact, Hypothesis [i] is verified. 

This result can be extended to more general operators A defined in variational way 
by the sesquilinear form 

2 \apq(x)(^-)\(^-)Pvdxy u,veHS>(Q), m>l, 
\p\,U\=rn J \dX I \dX ) 

Q a bounded domain in Rn with a smooth boundary, under the usual coerciveness as
sumptions on the coefficients aPyq{x). Let us introduce 

F(u,<j>) = 2 ( - D H f4.(*>«(*), . . . ,D r«0c))D a#W, 

u, <p e Q00 (Û), where the real-valued functions Aa{x,u,u i y ...,ur) are continuous from 
Û X R X Rn X ... X Rn into 1? and lAefau,^, ...,ur) -Aa(x,v9v1, ...,vr)\ < 
< r](\u — v\ + ||«i — z>i |.| + ... H- ||«r — z>r ||), I a I ^ r. 

Here || • || denotes the usual norm in RN for suitable N and 77 > 0. 
Suppose 0 < r < m — n/2. Then in view of Sobolev embedding Theorem we de

duce that there are two positive constants Q, / = 1,2, such that for all $,u,ve 
e Co00 (Û), 

r 

\F{u, <p) -F(v, <f>)\ < drj E \PJu -DJ'VWCMUWH^Q) ^ C2r)\\u - v\\H^Q)U\\w{Q). 
7 = 0 

This implies that the operator F defined by duality [5, p. 83] by means of F(u, <p) sat
isfies [ii] and we may apply either Theorem 3 or Remark 2. 

Partially supported by the G.N.A.F.A. of C.N.R. The first author was visiting professor at the Uni

versity of Bologna in preparing this work. 
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