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Meccanica. — On motions with bursting characters for Lagrangian mechanical sys

tems with a scalar control. II. A geodesic property of motions with bursting characters for 

Lagrangian systems. N o t a d i A L D O BRESSAN e M A R C O F A V R E T T I , p r e sen t a t a (*) da l 

Cor r i sp . A . Bressan. 

ABSTRACT. — This Note is the continuation of a previous paper with the same title. Here (Part II) we 
show that for every choice of the sequence #,(•), 2Vs trajectory la after the instant d+ r\a tends in a certain 
natural sense, as <z—» oo, to a certain geodesic / of Vd, with origin at Çq,~û). Incidentally / is independent of 
the choice of applied forces in a neighbourhood of (q,u) arbitrarily prefixed. 

KEY WORDS: Lagrangian systems; Feedback theory; Bursts. 

RIASSUNTO. — Sui moti per sistemi Lagrangiani con controllo scalare, aventi caratteri di scoppio. IL Una 
proprietà geodetica di certi moti per sistemi Lagrangiani con caratteri di scoppio. In questa Nota, che è la 
Parte II di una precedente Nota dallo stesso titolo si mostra che, per ogni scelta della suddetta successio
ne ua (•), la traiettoria la di Ha dopo d+ r)a tende in un certo senso naturale, per a—> oo, a una certa geodeti
ca / della varietà Vd, uscente dal punto (q,û). Tra l'altro la / è indipendente dalla scelta delle forze attive 
in un intorno di (q,u) comunque prefissato. 

4. I N T R O D U C T O R Y C O N S I D E R A T I O N S . S O M E K I N E M A T I C PRELIMINARIES 

This Part II is the continuation of Part I of the Note of the same title. Please refer 
to Part I for definitions, annotations and references (see Rend. Mat. Ace. Lincei, s. 9, 
vol. 2, 1991, 339-343). 

This second part of the work is restricted to systems whose applied forces have La
grangian components at most linear in u (but u2 occurs in SHESu). For these, a certain 
family of controls uJ)7] (•) is considered as well as the trajectory lJ>Y] described by Eu^

ys 
representative point P in Hertz's space R3v, in connection with Eu's dynamic motion 
that solves the Cauchy problem (1.1). Briefly speaking, certain sequences of controls 
Uj}Y](*) are used along which |/|—»0, rj—»0+ and/2}?-1--» +°o ; Theor. 6.1 asserts that 
along them lJ>7] tends in a certain sense to a geodesic of the manifold that represents in 
R3v the possible positions for P at / = d. 

It is not restrictive to regard E as a system of v mass points Px to Pv having the re
spective masses mx to mv and subject to holonomic and frictionless constraints. Let 
Oci c2 c3 be a (physical) orthonormal frame and let x^y^Zi be P/s coordinates in it 
(/= 1,..., v). We now consider Hertz's space R3v, which is referred to the coordinates 
£i to ?3v : 

(4.1) li = (mi)1/2xt, £v + |. = (mt)
1/2yty Ç2v + l = (m{)

1/2zt, (i= 1,...,v). 

Thus any configuration (xi,yi,Zi,...,xv>yv>zv) of E is represented by P = 
= (<?!,...,f3v). Furthermore, we fix the intervals I and H, with H compact, and in con-

(*) Nella seduta del 14 giugno 1991. 
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nection with the typical function ueC2 (I, H), we consider the system Eu^ obtained 
from 2 by adding the (frictionless) constraint u — u{t). For the sake of simplicity, we 
assume that, for some open set Q and some function P(-, -, •) e C2 (I X Q X H,R3v ) the 
manifold V[V™(,)] «allowed» to H[Eu{.)] by its constraints - or a suitable part of it - is 
represented by the 1st [2 nd] of the equations 

\P = P(/, q] u) for (t,qyu)eIXQX H, 
( 4 . 2 ) J v ' * ' v ? t / ' 

[P = P(tyq), where P(tyq) := P(/,qyu{t)) for (tyq)eIXQ. 

We set V, := {P(/, #)|(#, u)eQX H} and V?:= {P(/, qy u)\q e Q}. Now in connection 
w i t h i n , we consider an ideal fluid Fu® whose points are represented by Q's elements 
and, for every qeQ, «F*(,),s point q» undergoes the motion (4.2). Hence, along any 
given motion xx = xx (t)y ...yzv = zv (t) for 2U^, P's motion q = q(t) w.r.t. (with respect 
to) Fu{,) is determined, as well as P's motion 

(4.3) P = P(/,^(/))=P(/, ?(/),«(/)) 

w.r.t. Hertz's space R3v. As is well known, P's velocity and acceleration w.r.t. R3v 

(along P's actual motion) have the expressions O 

J A = a® + tfW + *«> := Pm + (P/h f + P/hk q
hqk) + 2Pmh qh . 

When R3v is regarded as the fixed space, one can call v{d) [a{d)] dragging velocity [accel
eration], v^[a^] relative velocity [acceleration], and a^ complementary [or general
ized Coriolis') acceleration of P at the instant /. 

Having fixed the instant /*, we say that M* is (a local) virtual motion of P relative 
to /* in case M* is the motion on the manifold VP**"* represented in some neighbour
hood I of t* by t\- P(/*,#M, u{t* )), see (4.3). Calling v* = v*{t)[a* = a*(t)] P's vel
ocity [acceleration] w.r.t. R3v along the motion M* at any tely by (4.4) we 
have 

(4.5) **(/*) = v{r)(**), a*(t*) = a{r) (/*) - see (4.4) and ftn.l. 

For (tyqyu)elxûx H, let T(ty qy u) be the tangent space of Vf at P = P(/, #, «) />. the 
affine space P 4- span {P/1 (/, q,u),..., P / N (/, #, &)} endowed with the norm determined 
by the metric tensor ahk := ¥/h Xj>/k(h,k=l,...,N). Thus, e.g. v* = \v*\ = 
= (ahkvç v^)m, being ahk = {ahk)~

l. By projecting a* and A* on Vp'*)9s tangent space 
T(P*) at P* = P(/*, #(/*), «(/*)) one obtains 

(4.6) a?:=(a*xP/h)P/h = k
h,w^ r/b 

i1) We set q° = t, qN = u, P/a := 3P/dqa, P/afi := d2P/dqadq\ and briefly we mean definitions (4.4)2_ 

«termwise»; furthermore, Greek indices run from 0 to N, Latin indices run from 1 to N. 
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and 

(4.7) Aa := (A x P/h) Plh = [(aid} + a{c) + <*w J X P/h] P/h = 

h ) t J h \ -k A h \ -jt-ii'jjh 
o oi+V*K+ * / , iV+» 

5. SEQUENCES OF CONTROLS THAT AFFORD A BURST OF 2 

In this section, conditions (a) to (/3) below are assumed: 

(a) ua = uJayYia for some^ > 0 , r}a>0 V^ e AL := {1,2,3,. . .}, 

(/3) zw(-) = (?(*)(•), P("}(-)) is the (maximal) solution of (2.5) for 

r/A-

VaeN*. * • 

In the sequel, we set 

/ N \l/2 

|*| = I S £f for£eR3v, 

/ N \l/2 / N f \l/2 

|pwW| = (2fcW(/)2) , and kwWh^E^W 2 ) • 

THEOREM 5.1. (#) For some sequences ua of controls of the type (2.8) - see (a) 

(5.1) ha)(d+r)a)-q\<l/a, \q\a) (d+ yja)P/h\ >a (aeNJ. 

(b) If (5.1) holds and Ç := (dyqyu) e I X Q X H, //?e/z, £3; #j/«g «u.v.»/or «««// i;ec-
/or of» 

flim w, = u.v. [2~l (Amb(K) + 2QANN(Ô) ^ 1 , 

(5.2) < where 

[wa=u.v. [ql)(Ta)V/h{Ta,q{a){Ta),ua{Ta))'\ with Ta:= d+r)a,ua(Ta) = u+ja. 

PROOF. Fix the last integer r>0 with DcIxQxH, where D:=B(d,l/r)X 
X JB(^, 1/r) X B(«, 1/r), callp(> 0) and <r( > 0) the maximum and minimum eigenvalues of 
the matrix a^ for (t,q,u)eD, and call * the maximum value of \b(t,q,u)\ for 
(/,#, «) e D. By Theor. 3.1 for any ^ € AL there is a constant Cv and a ^ e (0,1) such 
that for a suitably small rja e [0,1) we have (5.1) and (i) |pw ( J + 7ja)\ > C.jjr}'1. 
Hence, by rendering r\a smaller, we also have (//) C^jj-q'1 >(ap<j~1 +b). Further
more, by (2.4)2, (Hi) \è(a)(d + r)a)\>p'1 (\pia) (d + r)a)\ - b); then by (i) and (it) \qU){d + 
+ Va)P/h\>v\q{a)(d+rìa)\>°p~l(C*j];rì~

l -b)>vp~1a<j~1p = a. Hence (5.1)2 also 
holds. Thus (#) is proved. Note that, for any sequence of controls satisfying condition 
(a) and (5.1), one has (iv) ja—>0, r]a—>0+ and jit]'1 —> oo as #—>oo. 

To prove (è), consider the following transformation (q(a)('),p
{a) (')) •— 

K (iCw(-), P(tf)(0) for any solution zw(-) of the ODE (2.5) with u = ua where a e AL, 
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(5.1) holds, and for r e [0,1]: 

< ) M := 4) W*))> Ph] M := fcW
 WT)) A,, 

(5.3) < being 

h /(T) := d+Y)ar and Aa = >?fl j ~ 2 . 

It is easy to see that thus, since ua —ja r\~l and e.g. Pf '~ dP^/dr, problem (2.4) takes 
the form: 

pM = _ | p W ^ - 1 ^ _ 2QJ2)] p W + ^ p W [ ( a - i ^ + gU)] + 

+ \ \Am,h + 2QANN] + [Bh + QhN] XJa + 
(5.4) 

+ ±{[b-1ab + 2Clh+2Q0h}XaVa, Pt}(0)=hK, 

Ki^j^iPt'-Kh), 4)(0) = ̂ ; 
and (5.2)2 yields the first two among the equalities 

ahk(Pia)(l)-Xabk) 

(5.5) 

< = 

Whr-

Kh
{a)(l) = 

I & m p « [akla
h(P^(l)-Xabs)a

lm(P^-Xabm)]1/2 ' 

***P*(D 
[^P/U^d)] 1/2 ? 

where e.g. ^ = ^ [ A # > ^ M ] - I n addition, first, as a-*<*>, (K>riayJa)~~>^> s e e (^) 
above (5.3). Furthermore, the solution of ODE (5.4) depends on the parameters 
XayY)a, mdja continuously, so that sup {|P^}(T) — P/,(T)| : r e (0,1)}—»0 as a—> °° where 
(Pi(-), . . . ,PN( ' ) ) is the solution of the limit problem 

(5.6) 
P, =xh(r,u,K) := [2"1 (4NN , ( T , 5 , K ) + 2Q A N N (T , «,£))] , P,(0) = 0, 

£ * = 0 , K * ( 0 ) = ^ . 

Then by (5.5)3 Wf,} -> Wb as ^-> 00. Furthermore by (5.6)4.5, K
b(r) = qh, so that (5.6)! 

and the inverse of (5.3)3,4 yield 
1 Ta 

(5.7) P^(l)= \ah{T,uyq) dr= lim — \ och(tyû,q) dt = ah{d,~ù,q) (£=1 , . . . ,N) . 
0 « 

Then, by (5.6)2 and (5.5)3 one has (5.2)!. Q.E.D. 

REMARK. Note that the hypotesis (2.4) on the coefficients of U's kinetic energy 
renders the «q-part» (2.4)2 of the SHE (2.4) independent of u in a neighbourhood U 
of (d,q,u) unlike what happens for the typical choice of Eu^ (see (11.6) in [3]). By 
Theor 3.1, one can assume (/, ua (/), qa (/)) 6 [d, d4- rja] X [û, u +ja~\ X B(q, I/o) for suf
ficiently large a. Furthermore, since the motion tv- (qia) (/), p

{a) (/)) forI^(.) is related to 
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a continuous control ua (t) - see (2.8) - p{a)(') is continuous (even where u(-) has a dis
continuity) and therefore the R.H.S. of (2.5) is continuous in U. Hence q{a)(-) - unlike 
ua - is continuous everywhere and in particular at d and Ta. 

6 . O N THE TRAJECTORY OF E IMMEDIATELY AFTER A BURST 

In this section we assume 

(6.1) Q A * / ( ' , X ) - 0 , ( M , / = 1 , . . . , N ) . 

For every a e AL, in connection with the motion z(a) (•) for U^ we consider the motion 
t\-V>(t,q,ua(t)) - see (4.2) - of the ideal fluid FuA'], and the dynamic motion P = 
= Pa (t) = P(/, qa {t) y ua (t)) of the representative point P oiEUa ; see (4.3). Furthermore, for 
every aeN*, we denote by la P's trajectory in Hertz's space R3v, along the motion 
Pa (•); and we call v^ P's velocity w.r.t. FUa^. In the sequel we replace the time t ^ Ta 

with the arclength w.r.t. F^ ( ) covered by P along the motion Pa{'): 
t 

(6.2) d = ^ W = / ^ W ^ T . 

Note that <j ^ 0 even if P goes onward and backward on a line / of arclength s, in which 
cases <J= ±'s respectively. However, if à never vanishes, it is not restrictive to assume 
(j = s. We denote by q(-) the maximal solution of the problem 

(6.3) q" + { / J(^q,S)q*q/ = 0; q*(0) = ̂ , q*(0) = W*, (<{:=<#/&), 

where W^ is defined by (5.5)3. The equation P = T?(d>q(s),u) for je[0,AM) with 
AM e (0, + o°) represents a geodesic of the fixed manyfold VJ ; see below (4.2). 

THEOREM 6.1. Le/ (6.1)-(6.3) hold. Then the sequence la of trajectories for P along 
the motions P = Pa (t) (a e N,v) tends, as a-^^, to VJf's geodesic I defined below (6.3), in 
the sense that for any fixed X e [0, AM) - see below (6.3) -for a large enough, (i) a J s re
striction to [0, A] has an inverse t\-ta (a) with s = a and 

(6.4) Jim s u p { | P ( 4 W , ^ 4 W ) , ^ W ) ) - P y , q W , ^ ) | : ^ [ 0 , A ] } = 0, 

where P(-, -, •) e C2 (I x 0 x H, R3v) /j <fe//W in (4.2). 

PROOF. Calling /'[</>'] the applied [reaction] force acting on the mass point Piy in 
Hertz's space R3v, Su^s dynamic equations have the version 

(6.5) A = F + 0 , where F3/_3 + , = W 1 7 2 / / , fc/-3+r = for1/2#, 

( /= l , . . . ,v ; r = 1,2,3) 
and since constraints are frictionless, 0 = 0a( = (<t> X P/h)P/h). Then the projection of 
(6.5)i on Vfw's tangent space at P = P[/, #(/),«(/)] reads Aa = F a . Hence by (4.7) and 
(4.6)2 

(6.6) qh = -\r
h \qrqs+Ah

rq
r + Bh

 y with e.g. A^ = A? [t,q(t)yu(t)] 
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where, remembering (2.3) and that Qoh, Qhk, \ J , | L 1, am and (ahk) = 
= {ars)~

l are (^-functions of (t,q,u), I J I J 

(6.7) A?(t,q,u):=ablQlr-2r' \, B»:=a"Q0l-2 Q 

Note that (6.6) is the Lagrangian version of the semi-Hamiltonian ODE (2.4). 
Now fix A e [0, AM) and [x e (A, AM); furthermore call P^ /'s point whose distance in 

Vu
d from /'s origin P0 \=(d,qyu), is (x. Then /'s arc ^ : = f o i ^ lies in some open 

set 

(6.8) A:=B(dyeï)xQxB(û>e2)(^0)y 

whose closure A is compact and belongs to the (n + 2)-dimensional manifold 
VcR 1 + 3v. The dynamic motion P = Pa(t) ofUUa (immediately) after the burst, i.e. for 
t>d+Yja :=Tay solves the ODE (6.6) with u = ua(t) = vy-(t — r)a)9 and satisfies the in
itial conditions at T = Ta 

(6.9) q(Ta) = q{a)(Ta), q(Ta) = q{a) (Ta), (u{a) (Ta) = vja (d) = û+ja) 

where the R.H.S.s of (6.9)i_2 are constructed with the solution t\-z{t) = {q{a)(t),p
ia)(t)) 

in [d,Ta] of problem (2.5) for u = ua(t); see also the Remark below (5.7). 
Hence, remembering (5.1-2) and (4.2)3, for a unique W, > 0 - see (5.2)3 - we have 

that 

\Pa(Ta) = nTa,q{a)(Ta),ù+Ja), 

[PATa) = Wawa=P/h(Tayq{a)(T^Û+l)qHTJ 

and that, as #—»<», (_/], —* 0, 7j3 —» 0 + , Ta —> J and) 

(6.11) P J ( r , ) -*P 0 =PW,? ,5) > W4-»+oo («,,->«,; see (5.2)2). 

Now set, for e.g. M~1 = Wa and T = T, 

(6.12) Ç=(t- T) M~\ q = dq/<% = Mq, q(Ç) := q(T + MÇ), 

so that the point P{Ta+Ma%) covers lai when £ covers [0,fx]. Then the problem 
(6.6) u (6.9), for t^Ta becomes the problem for I^0 formed by the ODE 

(6.13) q=-{/Jq'qJ+AM*q'+M2E*, 

where A* = Ah
r [T + Ml q(£), / + »j(T + Mfl], Bh =Bh[T + M£, q(& / + f(T + M?)], 

M _ 1 = Wa, and T = T,,, coupled with the initial conditions 

(6.14) q*(0) = 4 , ( T J , <t(0)=M&)(Tt)(=u£, where wt = u^P/b); 

we regard the R.H.S. of (6.13)i_2 as constructed by means of the solution q^ (•) of (2.5) 
- see below (6.9). For some el small enough, the ODE (6.13) has the form q = 
=/(f ,q,q,#,M,» w i t h / e C 1 in the compact set K:= [-sly[x]X Qx S X BCû.ei) X 
X [0, sii X [0, e j . Infact for M = 0 problem (6.12) u (6.14)i_3 coincides with problem 
(6.3); and the solution of this in [0,/x] exists in that it represents the geodesic lPo . Inci
dentally, for M = 0, I is the arclength on /. 
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Call q(;q,w,M,j) the general solution in [0,^] of the second order ODE (6.13), 
coupled with the initial conditions qh(0) = qh and q*(0) = wh. By a well known theo
rem (of existence and uniqueness in the large), there is some rj > 0 such that 
for 

(6.15) l * - ^ l ^ > \wh'• Wb\^Y], |M|: \J\ 

the above solution in [0,fx] exists and is (uniformly) continuous and even C1 in K, to
gether with q(-, q, w9M, / ) . Hence, given £ e (0,1) arbitrarily, there is some rj > 0 such 
that, for T ? < ^ , { ( I + Mf,q(?,q,^,M,y),y+z;(r + M?))|Ce[0,^]}cA and 

(6.16) | q ( f ,q ,^ ,M,y) -q (? ,^ ,^ ,0 ,0 ) |<£ , | q(f, q, ̂ ,M, / ) - q(f, #, w, 0,0)| < £. 

Now, by (6.8)-(6.10), there is an a e AL such that for ^ > a the solution q(tì)(-):= 
= q ( - , ^ ) ( T J , ^ , M û , ^ ) of (6.13)-(6.14) fulfils requirements (6.15). Then (6.16) holds 
for q(â) (•); hence, by the continuity of the function (£, q, w, M, j) I— [a^ (?, q, «) q̂  q^]1/2 

in X, for s(>0) arbitrarily fixed, there is an â > a such that VCe[0,|u] and 
\la>a 

(6.17) [***(£, q w « W 9 ) qt)(0 4t)(«]1/2 " k * ( 4 q ( M q*«) q*(£)]1/2 < e. 

Furthermore, by the definition involving (6.3), q(£) = q(£, #, ie>, 0,0) Vf e [0?Ju], while 
by (6.2) and (6.12)!, for t& Ta(t = (t- Ta)/Ma) 

(6.18) k(/)-Ç| = J [ ^ ^ ) W ^ ) ( T ) ] 1 / 2 J T 

/{[^qt)(0 4t)(011/2 - feq"(0 q^(011/2} * 

;/|[...]1/2-[...]1/2N^£^, V<z>a. 

By i(6.16), for fe [0 ,^ ] we have daë/dÇ= [<%*(?,%)«),«,«)) <&«) qt)(f)]1/2 = 
= | q^ (f, ^ (Ta),wa,Ma>ja)\^l — s>0. Therefore <7fl is a strictly increasing function of 
Ç and hence of /. Then the inverse t = ta (<J) of a = aa (t) exists in [Ta, Ta + /xMJ and J = 
= <J = <!„(/). By (6.18) Gr,We[f-M£,? + /x£]. Hence, f o r ' ^ < ^ - A , {P(r, + 
+ ÇMtf,qw(Ç),^(Ç))|?e [0,/x]} is an arc (of la) containing the arc lUyX of la that has 
P(Ta, q{a) (TJ, û +ja) as an endpoint. Hence the function s = sa(Ç) := crfl [ta(Ç)] is defined 
in [0,^], it is strictly increasing, and with [09X]çsa([09[x]). Furthermore, by 

(6.19) ta^-fl^ef^ Vf€[0,fx], hence I j - f J ^ s p Vye[0,À], Ma>a 
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where Çs is the inverse of Ç\—s = sa(Ç). In order to prove (6.4) we set 

P(£, q, w, M, j) := P[T + M£, q(?, q, w,M, / ) , M, /, / + *(T + M0] 

(6.20) < and 

Note that by the definition of <ja(%) below (6.18) and by (6.12)! one has 

(6.21) P[ta(sU{a)(tMfuAta(s))l = Pa(^ V.e[0,A], Ma>*. 

By the uniform continuity of q(£, q, w,M, j) in the set defined by (6.15) and £ e [0,/x], 
given e' > 0 arbitrarily, for e(>0) small enough, (6,19)3 and (6.16)! u(6.11) yield the 
first and the second of the inequalities below respectively 

(6.22) | P , & ) - P , M | < e ' , \Pa(s)-P(d,q(s),u)\<e' V*e[0,A], V ^ > a . 

Then for s e [0,A](ç [0,^]) and a>a one has 

(6.23) |P,&) - {Va{d,q(s)M ^ \Va^s)-Va{s)\ + |P,(j) - P ( 4 q ( j ) , S ) | < e ' + s ' . 

Therefore, by (6.21), sup {|Ph(j),^)(^W),« t f (/tfW)] - P(4q(*),5)| : s e [0,À]} < 2 e \ 
By the arbitrariness of e'(>0), (6.4) holds. Q.E.D. 
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