ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

Aldo Bressan, Marco Favretti

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **3** (1992), n.1, p. 35–42.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1992_9_3_1_35_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1992.

Meccanica. — On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems. Nota di ALDO BRESSAN e MARCO FAVRETTI, presentata (*) dal Corrisp. A. Bressan.

ABSTRACT. — This Note is the continuation of a previous paper with the same title. Here (Part II) we show that for every choice of the sequence $u_a(\cdot)$, Σ_a 's trajectory l_a after the instant $d + \eta_a$ tends in a certain natural sense, as $a \to \infty$, to a certain geodesic l of V_a , with origin at $(\overline{q}, \overline{u})$. Incidentally l is independent of the choice of applied forces in a neighbourhood of $(\overline{q}, \overline{u})$ arbitrarily prefixed.

KEY WORDS: Lagrangian systems; Feedback theory; Bursts.

RIASSUNTO. — Sui moti per sistemi Lagrangiani con controllo scalare, aventi caratteri di scoppio. II. Una proprietà geodetica di certi moti per sistemi Lagrangiani, con caratteri di scoppio. In questa Nota, che è la Parte II di una precedente Nota dallo stesso titolo si mostra che, per ogni scelta della suddetta successione $u_a(\cdot)$, la traiettoria l_a di Σ_a dopo $d + \eta_a$ tende in un certo senso naturale, per $a \to \infty$, a una certa geodetica l della varietà V_d , uscente dal punto $(\overline{q}, \overline{u})$. Tra l'altro la l è indipendente dalla scelta delle forze attive in un intorno di $(\overline{q}, \overline{u})$ comunque prefissato.

4. INTRODUCTORY CONSIDERATIONS. SOME KINEMATIC PRELIMINARIES

This Part II is the continuation of Part I of the *Note* of the same title. Please refer to Part I for definitions, annotations and references (see Rend. Mat. Acc. Lincei, s. 9, vol. 2, 1991, 339-343).

This second part of the work is restricted to systems whose applied forces have Lagrangian components at most *linear* in \dot{u} (but \dot{u}^2 occurs in $SHE_{\Sigma,u}$). For these, a certain family of controls $u_{j,\eta}(\cdot)$ is considered as well as the trajectory $l_{j,\eta}$ described by $\Sigma_{u(\cdot)}$'s representative point P in Hertz's space $\mathbf{R}^{3\nu}$, in connection with Σ_u 's dynamic motion that solves the Cauchy problem (1.1). Briefly speaking, certain sequences of controls $u_{j,\eta}(\cdot)$ are used along which $|j| \rightarrow 0, \eta \rightarrow 0^+$ and $j^2 \eta^{-1} \rightarrow +\infty$; Theor. 6.1 asserts that along them $l_{j,\eta}$ tends in a certain sense to a geodesic of the manifold that represents in $\mathbf{R}^{3\nu}$ the possible positions for P at t = d.

It is not restrictive to regard Σ as a system of ν mass points P_1 to P_{ν} having the respective masses m_1 to m_{ν} and subject to holonomic and frictionless constraints. Let $Oc_1 c_2 c_3$ be a (physical) orthonormal frame and let x_i, y_i, z_i be P_i 's coordinates in it $(i = 1, ..., \nu)$. We now consider Hertz's space $\mathbb{R}^{3\nu}$, which is referred to the coordinates ξ_1 to $\xi_{3\nu}$:

(4.1) $\xi_i = (m_i)^{1/2} x_i$, $\xi_{\nu+i} = (m_i)^{1/2} y_i$, $\xi_{2\nu+i} = (m_i)^{1/2} z_i$, $(i = 1, ..., \nu)$.

Thus any configuration $(x_1, y_1, z_1, ..., x_v, y_v, z_v)$ of Σ is represented by $P = (\xi_1, ..., \xi_{3v})$. Furthermore, we fix the intervals *I* and *H*, with *H* compact, and in con-

^(*) Nella seduta del 14 giugno 1991.

nection with the typical function $u \in C^2(I, H)$, we consider the system $\Sigma_{u(\cdot)}$ obtained from Σ by adding the (frictionless) constraint u = u(t). For the sake of simplicity, we assume that, for some open set Ω and some function $P(\cdot, \cdot, \cdot) \in C^2(I \times \Omega \times H, \mathbb{R}^{3\nu})$ the manifold $V[V^{u(\cdot)}]$ «allowed» to $\Sigma[\Sigma_{u(\cdot)}]$ by its constraints – or a suitable part of it – is represented by the 1st [2nd] of the equations

(4.2)
$$\begin{cases} P = \mathbb{P}(t, q, u) & \text{for } (t, q, u) \in I \times \Omega \times H, \\ P = P(t, q), & \text{where } P(t, q) := \mathbb{P}(t, q, u(t)) & \text{for } (t, q) \in I \times \Omega. \end{cases}$$

We set $V_t := \{P(t,q) | (q,u) \in \Omega \times H\}$ and $V_t^u := \{P(t,q,u) | q \in \Omega\}$. Now in connection with $\Sigma_{u(\cdot)}$, we consider an ideal fluid $F^{u(\cdot)}$ whose points are represented by Ω 's elements and, for every $q \in \Omega$, $\ll F^{u(\cdot)}$'s point $q \gg$ undergoes the motion (4.2). Hence, along any given motion $x_1 = x_1(t), \dots, z_v = z_v(t)$ for $\Sigma_{u(\cdot)}$, P's motion q = q(t) w.r.t. (with respect to) $F^{u(\cdot)}$ is determined, as well as P's motion

(4.3)
$$P = P(t, q(t)) = \mathbb{P}(t, q(t), u(t))$$

w.r.t. Hertz's space $\mathbf{R}^{3\nu}$. As is well known, *P*'s velocity and acceleration w.r.t. $\mathbf{R}^{3\nu}$ (along *P*'s actual motion) have the expressions (1)

(4.4)
$$\begin{cases} \boldsymbol{v} = \boldsymbol{v}^{(d)} + \boldsymbol{v}^{(r)} := P_{/0} + P_{/b} \dot{q}^{b}, \\ \boldsymbol{A} = \boldsymbol{a}^{(d)} + \boldsymbol{a}^{(r)} + \boldsymbol{a}^{(c)} := P_{/00} + (P_{/b} \ddot{q}^{b} + P_{/bk} \dot{q}^{b} \dot{q}^{k}) + 2P_{/0b} \dot{q}^{b}. \end{cases}$$

When $\mathbf{R}^{3\nu}$ is regarded as the fixed space, one can call $v^{(d)}[a^{(d)}]$ dragging velocity [acceleration], $v^{(r)}[a^{(r)}]$ relative velocity [acceleration], and $a^{(c)}$ complementary (or generalized Coriolis') acceleration of P at the instant t.

Having fixed the instant t^* , we say that M^* is (a local) *virtual* motion of P relative to t^* in case M^* is the motion on the manifold $V_{t^*}^{u(t^*)}$ represented in some neighbourhood I of t^* by $t \vdash \mathbb{P}(t^*, q(t), u(t^*))$, see (4.3). Calling $v^* = v^*(t)[a^* = a^*(t)] P$'s velocity [acceleration] w.r.t. $\mathbf{R}^{3\nu}$ along the motion M^* at any $t \in I$, by (4.4) we have

(4.5)
$$v^*(t^*) = v^{(r)}(t^*), \quad a^*(t^*) = a^{(r)}(t^*) - \text{see} (4.4) \text{ and ftn.1.}$$

For $(t, q, u) \in I \times \Omega \times H$, let T(t, q, u) be the tangent space of V_t^u at $P = \mathbb{P}(t, q, u)$ *i.e.* the affine space P + span { $\mathbb{P}_{/1}(t, q, u), \dots, \mathbb{P}_{/N}(t, q, u)$ } endowed with the norm determined by the metric tensor $a_{bk} := \mathbb{P}_{/b} \times \mathbb{P}_{/k}(b, k = 1, \dots, N)$. Thus, e.g. $v^* = |v^*| = (a^{bk} v_b^* v_k^*)^{1/2}$, being $a^{bk} = (a_{bk})^{-1}$. By projecting a^* and A^* on $V_t^{u(t^*)}$'s tangent space $T(P^*)$ at $P^* = \mathbb{P}(t^*, q(t^*), u(t^*))$ one obtains

(4.6)
$$\boldsymbol{a}_{\sigma}^{\star} := (\boldsymbol{a}^{\star} \times P^{/b}) P_{/b} = \left[\begin{pmatrix} h \\ k & l \end{pmatrix} \dot{q}^{k} \dot{q}^{l} + \ddot{q}^{b} \right] P_{/b}$$

(1) We set $q^0 = t$, $q^N = u$, $P_{/\alpha} := \partial P / \partial q^{\alpha}$, $P_{/\alpha\beta} := \partial^2 P / \partial q^{\alpha} \partial q^{\beta}$, and briefly we mean definitions (4.4)₂₋₄ «termwise»; furthermore, Greek indices run from 0 to N, Latin indices run from 1 to N.

and

(4.7)
$$A_{\sigma} := (A \times P^{/b}) P_{/b} = [(a^{(d)} + a^{(c)} + a^{(r)}) \times P^{/b}] P_{/b} = \left[\left\{ \begin{matrix} h \\ 0 & 0 \end{matrix} \right\} + 2 \left\{ \begin{matrix} h \\ 0 & k \end{matrix} \right\} \dot{q}^{k} + \left\{ \begin{matrix} h \\ k & l \end{matrix} \right\} \dot{q}^{k} \dot{q}^{l} + \ddot{q}^{b} \right] P_{/b} \right]$$

5. Sequences of controls that afford a burst of Σ

In this section, conditions (α) to (β) below are assumed:

(a) $u_a = u_{j_a, \eta_a}$ for some $j_a > 0, \eta_a > 0 \quad \forall a \in N_* := \{1, 2, 3, ...\},$

(β) $z^{(a)}(\cdot) = (q_{(a)}(\cdot), p^{(a)}(\cdot))$ is the (maximal) solution of (2.5) for $u = u_a$ $\forall a \in N_*$.

In the sequel, we set

$$|b| = \left(\sum_{k=1}^{N} b_{k}^{2}\right)^{1/2} \quad \text{for } b \in \mathbf{R}^{3\nu},$$
$$|p^{(a)}(t)| = \left(\sum_{k=1}^{N} p_{k}^{(a)}(t)^{2}\right)^{1/2}, \quad \text{and} \quad |q_{(a)}(t)| = \left(\sum_{k=1}^{N} q_{(a)}^{k}(t)^{2}\right)^{1/2}.$$

THEOREM 5.1. (a) For some sequences u_a of controls of the type (2.8) – see (α) (5.1) $|q_{(a)}(d + \eta_a) - \overline{q}| < 1/a$, $|\dot{q}^b_{(a)}(d + \eta_a) P_{/b}| > a$ $(a \in N_*)$.

(b) If (5.1) holds and $\overline{\zeta} := (d, \overline{q}, \overline{u}) \in I \times \Omega \times H$, then, by using «u.v.» for «unit vector of»

(5.2)
$$\begin{cases} \lim w_a = u.v. \left[2^{-1} (A_{NN,b}(\overline{\zeta}) + 2Q_{bNN}(\overline{\zeta})) P'^b \right], \\ \text{where} \\ w_a = u.v. \left[q_{(a)}^b(T_a) \mathbb{P}_{/b}(T_a, q_{(a)}(T_a), u_a(T_a)) \right] \text{ with } T_a := d + \eta_a, u_a(T_a) = u + j_a. \end{cases}$$

PROOF. Fix the last integer r > 0 with $\overline{D} \subseteq I \times \Omega \times H$, where $D := B(d, 1/r) \times B(\overline{q}, 1/r) \times B(\overline{u}, 1/r)$, call $\rho(>0)$ and $\sigma(>0)$ the maximum and minimum eigenvalues of the matrix a_{bk} for $(t, q, u) \in \overline{D}$, and call b the maximum value of |b(t, q, u)| for $(t, q, u) \in \overline{D}$. By Theor. 3.1 for any $a \in N_*$ there is a constant C_* and a $j_a \in (0, 1)$ such that for a suitably small $\eta_a \in (0, 1)$ we have (5.1) and (i) $|p^{(a)}(d + \eta_a)| > C_* j_a^2 \eta_a^{-1}$. Hence, by rendering η_a smaller, we also have (ii) $C_* j_a^2 \eta_a^{-1} > (a\rho\sigma^{-1} + b)$. Furthermore, by (2.4)₂, (iii) $|\dot{q}_{(a)}(d + \eta_a)| > \rho^{-1}(|p^{(a)}(d + \eta_a)| - b)$; then by (i) and (ii) $|\dot{q}_{(a)}^b(d + \eta_a)| > \sigma\rho^{-1}(C_* j_a^2 \eta_a^{-1} - b) > \sigma\rho^{-1} a\sigma^{-1}\rho = a$. Hence (5.1)₂ also holds. Thus (a) is proved. Note that, for any sequence of controls satisfying condition (α) and (5.1), one has (iv) $j_a \to 0$, $\eta_a \to 0^+$ and $j_a^2 \eta_a^{-1} \to \infty$ as $a \to \infty$.

To prove (b), consider the following transformation $(q_{(a)}(\cdot), p^{(a)}(\cdot)) \mapsto (K_{(a)}(\cdot), P^{(a)}(\cdot))$ for any solution $z^{(a)}(\cdot)$ of the ODE (2.5) with $u = u_a$ where $a \in N_*$,

(5.1) holds, and for $\tau \in [0, 1]$:

(5.3)
$$\begin{cases} K_{(a)}^{b}(\tau) := q_{(a)}^{b}(t(\tau)), \quad P_{b}^{(a)}(\tau) := p_{b}^{(a)}(t(\tau)) \lambda_{a}, \\ \text{being} \\ t(\tau) := d + \gamma_{a}\tau \quad \text{and} \quad \lambda_{a} = \gamma_{a} j_{a}^{-2}. \end{cases}$$

It is easy to see that thus, since $u_a = j_a \eta_a^{-1}$ and e.g. $\dot{P}_b^{(a)} := dP_b^{(a)}/d\tau$, problem (2.4) takes the form:

(5.4)
$$\begin{cases} p_{b}^{(a)} = -\frac{j_{a}^{2}}{2} P^{(a)} [(a^{-1})_{,b} - 2Q_{b}^{(2)}] P^{(a)} + \gamma_{a} P^{(a)} [(a^{-1}b)_{,b} + Q_{b}^{(1)}] + \\ + \frac{1}{2} [A_{NN,b} + 2Q_{bNN}] + [B_{b} + Q_{bN}] \lambda_{a} j_{a} + \\ + \frac{1}{2} \{ [b^{-1}ab + 2C]_{,b} + 2Q_{0b} \} \lambda_{a} \gamma_{a} , \qquad P_{b}^{(a)}(0) = \overline{p}_{b} \lambda_{a} , \\ K_{(a)}^{b} = j_{a} a^{bk} (P_{k}^{(a)} - \lambda_{a} b_{k}) , \qquad K_{(a)}^{b}(0) = \overline{q}^{b} ; \end{cases}$$

and $(5.2)_2$ yields the first two among the equalities

(5.5)
$$\begin{cases} W_{(a)}^{b} = \frac{\dot{K}_{(a)}^{b}(1)}{|\dot{K}_{(a)}^{b}(1)P_{/b}|} = \frac{a^{bk}(P_{k}^{(a)}(1) - \lambda_{a}b_{k})}{[a_{kl}a^{ks}(P_{s}^{(a)}(1) - \lambda_{a}b_{s})a^{lm}(P_{m}^{(a)} - \lambda_{a}b_{m})]^{1/2}}, \\ W^{b} := \frac{a^{bk}P_{k}(1)}{[a^{kl}P_{l}(1)P_{k}(1)]^{1/2}}, \end{cases}$$

where *e.g.* $a_{bk} = a_{bk} [t, q, u_a(t)]$. In addition, first, as $a \to \infty$, $(\lambda_a, \eta_a, j_a) \to \mathbf{0}$, see (*iv*) above (5.3). Furthermore, the solution of ODE (5.4) depends on the parameters λ_a, η_a , and j_a continuously, so that sup $\{|P_b^{(a)}(\tau) - P_b(\tau)| : \tau \in (0, 1)\} \to 0$ as $a \to \infty$ where $(P_1(\cdot), ..., P_N(\cdot))$ is the solution of the limit problem

(5.6)
$$\begin{cases} \dot{P}_{b} = \alpha_{b}(\tau, \overline{u}, K) := [2^{-1} (A_{NN, b}(\tau, \overline{u}, K) + 2Q_{bNN}(\tau, \overline{u}, K))], & P_{b}(0) = 0, \\ \dot{K}^{b} = 0, & K^{b}(0) = \overline{q}^{b}. \end{cases}$$

Then by $(5.5)_3 W_{(a)}^b \to W^b$ as $a \to \infty$. Furthermore by $(5.6)_{4.5}$, $K^b(\tau) = \overline{q}^b$, so that $(5.6)_1$ and the inverse of $(5.3)_{3,4}$ yield

(5.7)
$$P_{b}(1) = \int_{0}^{1} \tilde{\alpha}_{b}(\tau, \overline{u}, \overline{q}) d\tau = \lim_{a \to \infty} \frac{1}{\eta_{a}} \int_{a}^{T_{a}} \alpha_{b}(t, \overline{u}, \overline{q}) dt = \alpha_{b}(d, \overline{u}, \overline{q}) \quad (b = 1, \dots, N).$$

Then, by $(5.6)_2$ and $(5.5)_3$ one has $(5.2)_1$. Q.E.D.

REMARK. Note that the hypotesis (2.4) on the coefficients of Σ 's kinetic energy renders the «q-part» (2.4)₂ of the SHE (2.4) independent of \dot{u} in a neighbourhood Uof (d, \bar{q}, \bar{u}) unlike what happens for the typical choice of $\Sigma_{u(\cdot)}$ (see (11.6) in [3]). By Theor 3.1, one can assume $(t, u_a(t), q_a(t)) \in [d, d + \eta_a] \times [\bar{u}, \bar{u} + j_a] \times B(\bar{q}, 1/a)$ for sufficiently large *a*. Furthermore, since the motion $t \vdash (q_{(a)}(t), p^{(a)}(t))$ for $\Sigma_{u(\cdot)}$ is related to a continuous control $u_a(t)$ – see (2.8) –, $p^{(a)}(\cdot)$ is continuous (even where $u(\cdot)$ has a discontinuity) and therefore the R.H.S. of (2.5) is continuous in *U*. Hence $\dot{q}_{(a)}(\cdot)$ – unlike \dot{u}_a – is continuous everywhere and in particular at *d* and T_a .

6. On the trajectory of Σ immediately after a burst

In this section we assume

(6.1)
$$Q_{hkl}(t,\chi) \equiv 0, \quad (h,k,l=1,...,N).$$

For every $a \in N_*$, in connection with the motion $z^{(a)}(\cdot)$ for Σ_{u_a} we consider the motion $t \mapsto \mathbb{P}(t, q, u_a(t)) - \text{see}(4.2) - \text{of}$ the ideal fluid $F^{u_a(\cdot)}$, and the dynamic motion $P = P_a(t) = \mathbb{P}(t, q_a(t), u_a(t))$ of the representative point P of Σ_{u_a} ; see (4.3). Furthermore, for every $a \in N_*$, we denote by l_a P's trajectory in Hertz's space $\mathbb{R}^{3\nu}$, along the motion $P_a(\cdot)$; and we call $v_{(a)}^{(r)}$ P's velocity w.r.t. $F^{u_a(\cdot)}$. In the sequel we replace the time $t \ge T_a$ with the arclength w.r.t. $F^{u_a(\cdot)}$ covered by P along the motion $P_a(\cdot)$:

(6.2)
$$\sigma = \sigma_a(t) = \int_{T_a}^{t} v_{(a)}^{(r)}(\tau) d\tau.$$

Note that $\dot{\sigma} \ge 0$ even if *P* goes onward and backward on a line *l* of arclength *s*, in which cases $\dot{\sigma} = \pm \dot{s}$ respectively. However, if $\dot{\sigma}$ never vanishes, it is not restrictive to assume $\sigma = s$. We denote by $q(\cdot)$ the maximal solution of the problem

where W^b is defined by $(5.5)_3$. The equation $P = \mathbb{P}(d, q(s), \overline{u})$ for $s \in [0, \lambda_M)$ with $\lambda_M \in (0, +\infty)$ represents a geodesic of the fixed manyfold $V_d^{\overline{u}}$; see below (4.2).

THEOREM 6.1. Let (6.1)-(6.3) hold. Then the sequence l_a of trajectories for P along the motions $P = P_a(t)$ ($a \in N_*$) tends, as $a \to \infty$, to $V_d^{\overline{u}}$'s geodesic l defined below (6.3), in the sense that for any fixed $\lambda \in [0, \lambda_M)$ – see below (6.3) – for a large enough, (i) σ_a 's restriction to $[0, \lambda]$ has an inverse $t \vdash t_a(\sigma)$ with $s = \sigma$ and

(6.4)
$$\lim_{a\to\infty} \sup\left\{\left|\mathbb{P}(t_a(s),q(t_a(s)),u(t_a(s)))-\mathbb{P}(d,q(s),\overline{u})\right|:s\in[0,\lambda]\right\}=0,$$

where $\mathbb{P}(\cdot, \cdot, \cdot) \in C^2(I \times \Omega \times H, \mathbf{R}^{3\nu})$ is defined in (4.2).

PROOF. Calling $f^i[\phi^i]$ the applied [reaction] force acting on the mass point P_i , in Hertz's space $\mathbf{R}^{3\nu}$, $\Sigma_{u(\cdot)}$'s dynamic equations have the version

(6.5)
$$A = F + \phi$$
, where $F_{3i-3+r} = (m_i)^{-1/2} f_r^i$, $\phi_{3i-3+r} = (m_i)^{-1/2} \phi_r^i$,
 $(i = 1, ..., v; r = 1, 2, 3)$

and since constraints are frictionless, $\mathbf{0} = \boldsymbol{\phi}_{\sigma} (= (\boldsymbol{\phi} \times P^{/b}) P_{/b})$. Then the projection of $(6.5)_1$ on $V_t^{u(t)}$'s tangent space at $P = \mathbb{P}[t, q(t), u(t)]$ reads $A_{\sigma} = F_{\sigma}$. Hence by (4.7) and $(4.6)_2$

(6.6)
$$\ddot{q}^{b} = -\left\{ \frac{b}{r} \right\} \dot{q}^{r} \dot{q}^{s} + A_{r}^{b} \dot{q}^{r} + B^{b}, \quad \text{with } e.g. \quad A_{r}^{b} = A_{r}^{b} [t, q(t), u(t)]$$

where, remembering (2.3) and that Q_{0b} , Q_{bk} , $\begin{cases} h \\ r \\ s \end{cases}$, $\begin{cases} h \\ 0 \\ s \end{bmatrix}$, $\begin{cases} h \\ 0 \\ s \end{bmatrix}$, a_{rs} , and $(a^{bk}) = (a_{rs})^{-1}$ are C^1 -functions of (t, q, u),

(6.7)
$$A_r^b(t,q,u) := a^{bl} Q_{lr} - 2 \begin{cases} b \\ 0 & r \end{cases}, \qquad B^b := a^{bl} Q_{0l} - 2 \begin{cases} b \\ 0 & 0 \end{cases}.$$

Note that (6.6) is the Lagrangian version of the semi-Hamiltonian ODE (2.4).

Now fix $\lambda \in [0, \lambda_M)$ and $\mu \in (\lambda, \lambda_M)$; furthermore call P_{μ} *l*'s point whose distance in $V_d^{\overline{\mu}}$ from *l*'s origin $P_0 := (d, \overline{q}, \overline{u})$ is μ . Then *l*'s arc $l_{\mu} := \overline{P_0 P_{\mu}}$ lies in some open set

(6.8)
$$A := B(d, \varepsilon_1) \times Q \times B(\overline{u}, \varepsilon_2) (\neq \emptyset),$$

whose closure \overline{A} is compact and belongs to the (n+2)-dimensional manifold $V \in \mathbf{R}^{1+3\nu}$. The dynamic motion $P = P_a(t)$ of Σ_{u_a} (immediately) after the burst, *i.e.* for $t > d + \eta_a := T_a$, solves the ODE (6.6) with $u = u_a(t) = v_j(t - \eta_a)$, and satisfies the initial conditions at $T = T_a$

(6.9)
$$q(T_a) = q_{(a)}(T_a), \quad \dot{q}(T_a) = \dot{q}_{(a)}(T_a), \quad (u_{(a)}(T_a) = v_{j_a}(d) = \overline{u} + j_a)$$

where the R.H.S.s of $(6.9)_{1.2}$ are constructed with the solution $t \vdash z(t) = (q_{(a)}(t), p^{(a)}(t))$ in $[d, T_a]$ of problem (2.5) for $u = u_a(t)$; see also the Remark below (5.7).

Hence, remembering (5.1-2) and (4.2)₃, for a unique $W_a > 0$ – see (5.2)₃ – we have that

(6.10)
$$\begin{cases} P_a(T_a) = \mathbb{P}(T_a, q_{(a)}(T_a), \overline{u} + j_a), \\ \dot{P}_a(T_a) = W_a w_a = \mathbb{P}_{/b}(T_a, q_{(a)}(T_a), \overline{u} + j_a) \dot{q}^b(T_a) \end{cases}$$

and that, as $a \to \infty$, $(j_a \to 0, \eta_a \to 0^+, T_a \to d \text{ and})$ (6.11) $P_a(T_a) \to P_0 = \mathbb{P}(d, \overline{q}, \overline{u}), \quad W_a \to +\infty \quad (w_a \to w; \text{ see } (5.2)_2).$ Now set, for e.g. $M^{-1} = W_a$ and $T = T_a$

(6.12)
$$\xi = (t - T) M^{-1}, \quad \dot{q} = dq/d\xi = M\dot{q}, \quad q(\xi) := q(T + M\xi),$$

so that the point $P(T_a + M_a \xi)$ covers $l_{a,\xi}$ when ξ covers $[0,\mu]$. Then the problem (6.6) \cup (6.9), for $t \ge T_a$ becomes the problem for $\xi \ge 0$ formed by the ODE

(6.13)
$$\ddot{\mathbf{q}} = - \left\{ \begin{matrix} h \\ r \end{matrix} \right\} \dot{\mathbf{q}}^r \dot{\mathbf{q}}^s + M A_r^b \dot{\mathbf{q}}^r + M^2 B^b ,$$

where $A_r^b = A_r^b [T + M\xi, q(\xi), j + v(T + M\xi)], \quad B^b = B^b [T + M\xi, q(\xi), j + v(T + M\xi)],$ $M^{-1} = W_a$, and $T = T_a$, coupled with the initial conditions

(6.14)
$$q_{a}^{b}(0) = q_{a}^{b}(T_{a}), \quad \dot{q}^{b}(0) = M\dot{q}_{a}^{b}(T_{a})(=w_{a}^{b}, \text{ where } w_{a} = w_{a}^{b}P_{b});$$

we regard the R.H.S. of $(6.13)_{1\cdot 2}$ as constructed by means of the solution $q_{(a)}(\cdot)$ of (2.5)– see below (6.9). For some ε_1 small enough, the ODE (6.13) has the form $\overset{"}{\mathbf{q}} = f(\xi, \mathbf{q}, \dot{\mathbf{q}}, u, M, j)$ with $f \in C^1$ in the compact set $K := [-\varepsilon_1, \mu] \times Q \times S \times B(\overline{u}, \varepsilon_1) \times [0, \varepsilon_1] \times [0, \varepsilon_1]$. Infact for M = 0 problem (6.12) \cup (6.14)_{1.3} coincides with problem (6.3); and the solution of this in $[0, \mu]$ exists in that it represents the geodesic $l_{P_{0,\mu}}$. Incidentally, for M = 0, ξ is the arclength on l. Call $q(\cdot, \tilde{q}, \tilde{w}, M, j)$ the general solution in $[0, \mu]$ of the second order ODE (6.13), coupled with the initial conditions $q^{b}(0) = \tilde{q}^{b}$ and $\dot{q}^{b}(0) = \tilde{w}^{b}$. By a well known theorem (of existence and uniqueness in the large), there is some $\eta > 0$ such that for

(6.15)
$$|\tilde{\mathbf{q}}^{b} - \bar{q}^{b}| \leq \eta, \quad |\tilde{w}^{b} - w^{b}| \leq \eta, \quad |M| \leq \eta, \quad |j| \leq \eta,$$

the above solution in $[0,\mu]$ exists and is (uniformly) continuous and even C^1 in K, together with $\dot{q}(\cdot,\tilde{q},\tilde{w},M,j)$. Hence, given $\varepsilon \in (0,1)$ arbitrarily, there is some $\overline{\eta} > 0$ such that, for $\eta < \overline{\eta}$, $\{(T + M\xi, q(\xi, \tilde{q}, \tilde{w}, M, j), j + v(T + M\xi)) | \xi \in [0,\mu]\} \subset A$ and

$$(6.16) \qquad \left| \mathbf{q}(\xi, \tilde{\mathbf{q}}, \tilde{\boldsymbol{w}}, M, j) - \mathbf{q}(\xi, \bar{q}, \boldsymbol{w}, 0, 0) \right| < \varepsilon, \qquad \left| \dot{\mathbf{q}}(\xi, \tilde{\mathbf{q}}, \tilde{\boldsymbol{w}}, M, j) - \dot{\mathbf{q}}(\xi, \bar{q}, \boldsymbol{w}, 0, 0) \right| < \varepsilon.$$

Now, by (6.8)-(6.10), there is an $\alpha \in N_{\star}$ such that for $a > \alpha$ the solution $q_{(a)}(\cdot) := q(\cdot, q_{(a)}(T_a), \boldsymbol{w}_a, M_a, j_a)$ of (6.13)-(6.14) fulfils requirements (6.15). Then (6.16) holds for $q_{(a)}(\cdot)$; hence, by the continuity of the function $(\xi, q, \boldsymbol{w}, M, j) \vdash [a_{bk}(\xi, q, u) \dot{q}^b \dot{q}^k]^{1/2}$ in K, for $\varepsilon(>0)$ arbitrarily fixed, there is an $\overline{\alpha} > \alpha$ such that $\forall \xi \in [0, \mu]$ and $\forall a > \overline{\alpha}$

(6.17)
$$[a_{bk}(\xi, \mathbf{q}_{(a)}(\xi), u_a(\xi)) \, \dot{\mathbf{q}}_{(a)}^{b}(\xi) \, \dot{\mathbf{q}}_{(a)}^{k}(\xi)]^{1/2} - [a_{bk}(d, \mathbf{q}(\xi), \overline{u}) \, \dot{\mathbf{q}}^{b}(\xi) \, \dot{\mathbf{q}}^{k}(\xi)]^{1/2} < \varepsilon.$$

Furthermore, by the definition involving (6.3), $q(\xi) = q(\xi, \overline{q}, w, 0, 0) \quad \forall \xi \in [0, \mu]$, while by (6.2) and (6.12)₁, for $t \ge T_a(\xi = (t - T_a)/M_a)$

$$(6.18) \quad |\sigma_{a}(t) - \xi| = \left| \int_{T_{a}}^{t} [a_{bk} \dot{q}_{(a)}^{b}(\tau) \dot{q}_{(a)}^{k}(\tau)]^{1/2} d\tau - \xi \right| = \\ = \left| \int_{0}^{\xi} \{ [a_{bk} \dot{q}_{(a)}^{b}(\zeta) \dot{q}_{(a)}^{k}(\zeta)]^{1/2} - [a_{bk} \dot{q}^{b}(\zeta) \dot{q}_{(a)}^{k}(\zeta)]^{1/2} \} d\zeta \right| \leq \\ \leq \int_{0}^{\xi} |[\dots]^{1/2} - [\dots]^{1/2} | d\zeta \leq \epsilon \mu, \quad \forall a > \overline{\alpha}.$$

By (6.16), for $\xi \in [0,\mu]$ we have $d\sigma_a/d\xi = [a_{bk}(\xi, \mathbf{q}_{(a)}(\xi), u_a(\xi)) \mathbf{q}_{(a)}^b(\xi) \mathbf{q}_{(a)}^k(\xi)]^{1/2} =$ $= |\mathbf{q}_{(a)}(\xi, q_{(a)}(T_a), \mathbf{w}_a, M_a, j_a)| \ge 1 - \varepsilon > 0$. Therefore σ_a is a strictly increasing function of ξ and hence of t. Then the inverse $t = t_a(\sigma)$ of $\sigma = \sigma_a(t)$ exists in $[T_a, T_a + \mu M_a]$ and s = $\sigma = \sigma_a(t)$. By (6.18) $\sigma_a(t) \in [\xi - \mu\varepsilon, \xi + \mu\varepsilon]$. Hence, for $\varepsilon\mu < \mu - \lambda$, $\{P(T_a + \xi M_a, \mathbf{q}_{(a)}(\xi), u_a(\xi))|\xi \in [0,\mu]\}$ is an arc (of l_a) containing the arc $l_{a,\lambda}$ of l_a that has $\mathbb{P}(T_a, q_{(a)}(T_a), \overline{u} + j_a)$ as an endpoint. Hence the function $s = s_a(\xi) := \sigma_a[t_a(\xi)]$ is defined in $[0,\mu]$, it is strictly increasing, and with $[0,\lambda] \subseteq s_a([0,\mu])$. Furthermore, by (6.18)₁₋₃,

(6.19) $|s_a(\xi) - \xi| \leq \varepsilon \xi \leq \varepsilon \mu \quad \forall \xi \in [0, \mu], \quad \text{hence } |s - \xi_s| \leq \varepsilon \mu \quad \forall s \in [0, \lambda], \quad \forall a > \alpha$

where ξ_s is the inverse of $\xi \vdash s = s_a(\xi)$. In order to prove (6.4) we set

(6.20)
$$\begin{cases} \tilde{\mathbb{P}}(\xi, \tilde{\mathbf{q}}, \tilde{w}, M, j) := \mathbb{P}[T + M\xi, \mathbf{q}(\xi, \tilde{\mathbf{q}}, \tilde{w}, M, j), M, j, j + v(T + M\xi)] \\ \text{and} \\ \mathbb{P}_{a}(\xi) := \tilde{\mathbb{P}}(\xi, q_{(a)}(T_{a}), \boldsymbol{w}_{a}, M_{a}, j_{a}). \end{cases}$$

Note that by the definition of $\sigma_a(\xi)$ below (6.18) and by (6.12)₁ one has

(6.21)
$$\mathbb{P}[t_a(s), q_{(a)}(t_a(s)), u_a(t_a(s))] = \mathbb{P}_a(\xi_s) \quad \forall s \in [0, \lambda], \ \forall a > \overline{\alpha}.$$

By the uniform continuity of $q(\xi, \tilde{q}, \tilde{w}, M, j)$ in the set defined by (6.15) and $\xi \in [0, \mu]$, given $\varepsilon' > 0$ arbitrarily, for $\varepsilon(>0)$ small enough, (6,19), and (6.16)₁ \cup (6.11) yield the first and the second of the inequalities below respectively

(6.22) $|\mathbb{P}_a(\xi_s) - \mathbb{P}_a(s)| < \varepsilon'$, $|\mathbb{P}_a(s) - \mathbb{P}(d, \mathbb{q}(s), \overline{u})| < \varepsilon' \quad \forall s \in [0, \lambda], \forall a > \overline{\alpha}$. Then for $s \in [0, \lambda] (\subseteq [0, \mu])$ and $a > \overline{\alpha}$ one has

 $\begin{array}{l} (6.23) \quad \left| \mathbb{P}_{a}(\xi_{s}) - \left(\mathbb{P}_{a}(d,q(s),\overline{u}) \right) \right| \leq \left| \mathbb{P}_{a}(\xi_{s}) - \mathbb{P}_{a}(s) \right| + \left| \mathbb{P}_{a}(s) - \mathbb{P}(d,q(s),\overline{u}) \right| < \varepsilon' + \varepsilon' \ . \\ \text{Therefore, by (6.21), sup } \left\{ \left| \mathbb{P}[t_{a}(s), q_{(a)}(t_{a}(s)), u_{a}(t_{a}(s))] - \mathbb{P}(d,q(s),\overline{u}) \right| : s \in [0,\lambda] \right\} < 2\varepsilon' \ . \\ \text{By the arbitrariness of } \varepsilon' (>0), \ (6.4) \ \text{holds.} \qquad \text{Q.E.D.} \end{array}$

This work has been prepared in the activity sphere of the group N. 3 of the Consiglio Nazionale delle Ricerche in the academic years 1988-89 and 1989-90.

Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova Via Belzoni, 7 - 35131 PADOVA