Rendiconti Lincei Matematica e Applicazioni

Aldo Bressan, Marco Favretti
On motions with bursting characters for
Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 3 (1992), n.1, p. 35-42.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1992_9_3_1_35_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

$$
\begin{gathered}
\text { Articolo digitalizzato nel quadro del programma } \\
\text { bdim (Biblioteca Digitale Italiana di Matematica) } \\
\text { SIMAI \& UMI } \\
\text { http://www.bdim.eu/ }
\end{gathered}
$$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1992.

Meccanica. - On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems. Nota di Aldo Bressan e Marco Favretti, presentata (*) dal Corrisp. A. Bressan.

Abstract. - This Note is the continuation of a previous paper with the same title. Here (Part II) we show that for every choice of the sequence $u_{a}(\cdot), \Sigma_{a}$'s trajectory l_{a} after the instant $d+\eta_{a}$ tends in a certain natural sense, as $a \rightarrow \infty$, to a certain geodesic l of V_{d}, with origin at (\bar{q}, \bar{u}). Incidentally l is independent of the choice of applied forces in a neighbourhood of (\bar{q}, \bar{u}) arbitrarily prefixed.

Key words: Lagrangian systems; Feedback theory; Bursts.
Rrassunto. - Sui moti per sistemi Lagrangiani con controllo scalare, aventi caratteri di scoppio. II. Una proprietà geodetica di certi moti per sistemi Lagrangiani, con caratteri di scoppio. In questa Nota, che è la Parte II di una precedente Nota dallo stesso titolo si mostra che, per ogni scelta della suddetta successione $u_{a}(\cdot)$, la traiettoria l_{a} di Σ_{a} dopo $d+\eta_{a}$ tende in un certo senso naturale, per $a \rightarrow \infty$, a una certa geodetica l della varietà V_{d}, uscente dal punto (\bar{q}, \bar{u}). Tra l'altro la l è indipendente dalla scelta delle forze attive in un intorno di (\bar{q}, \bar{u}) comunque prefissato.

4. Introductory considerations. Some kinematic preliminaries

This Part II is the continuation of Part I of the Note of the same title. Please refer to Part I for definitions, annotations and references (see Rend. Mat. Acc. Lincei, s. 9, vol. 2, 1991, 339-343).

This second part of the work is restricted to systems whose applied forces have Lagrangian components at most linear in \dot{u} (but \dot{u}^{2} occurs in $S H E_{\Sigma, u}$). For these, a certain family of controls $u_{j, \eta}(\cdot)$ is considered as well as the trajectory $l_{j, \eta}$ described by $\Sigma_{u(\cdot)}$'s representative point P in Hertz's space $\mathbf{R}^{3 v}$, in connection with Σ_{u} 's dynamic motion that solves the Cauchy problem (1.1). Briefly speaking, certain sequences of controls $u_{j, \eta}(\cdot)$ are used along which $|j| \rightarrow 0, \eta \rightarrow 0^{+}$and $j^{2} \eta^{-1} \rightarrow+\infty$; Theor. 6.1 asserts that along them $l_{j, \eta}$ tends in a certain sense to a geodesic of the manifold that represents in $\mathbf{R}^{3 v}$ the possible positions for P at $t=d$.

It is not restrictive to regard Σ as a system of ν mass points P_{1} to P_{ν} having the respective masses m_{1} to m_{ν} and subject to holonomic and frictionless constraints. Let $O c_{1} c_{2} c_{3}$ be a (physical) orthonormal frame and let x_{i}, y_{i}, z_{i} be P_{i} 's coordinates in it $(i=1, \ldots, \nu)$. We now consider Hertz's space $\mathbf{R}^{3 \nu}$, which is referred to the coordinates ξ_{1} to $\xi_{3 v}$:

$$
\begin{equation*}
\xi_{i}=\left(m_{i}\right)^{1 / 2} x_{i}, \quad \xi_{v+i}=\left(m_{i}\right)^{1 / 2} y_{i}, \quad \xi_{2 v+i}=\left(m_{i}\right)^{1 / 2} z_{i}, \quad(i=1, \ldots, \nu) \tag{4.1}
\end{equation*}
$$

Thus any configuration $\left(x_{1}, y_{1}, z_{1}, \ldots, x_{\nu}, y_{\nu}, z_{\nu}\right)$ of Σ is represented by $P=$ $=\left(\xi_{1}, \ldots, \xi_{3 v}\right)$. Furthermore, we fix the intervals I and H, with H compact, and in con-
(*) Nella seduta del 14 giugno 1991.
nection with the typical function $u \in C^{2}(I, H)$, we consider the system $\Sigma_{u(\cdot)}$ obtained from Σ by adding the (frictionless) constraint $u=u(t)$. For the sake of simplicity, we assume that, for some open set Ω and some function $\mathbb{P}(\cdot, \cdot, \cdot) \in C^{2}\left(I \times \Omega \times H, R^{3 v}\right)$ the manifold $V\left[V^{u(\cdot)}\right]$ «allowed» to $\Sigma\left[\Sigma_{u(\cdot)}\right]$ by its constraints - or a suitable part of it - is represented by the $1^{\text {st }}\left[2^{\text {nd }}\right]$ of the equations

$$
\begin{cases}P=\mathbb{P}(t, q, u) & \text { for }(t, q, u) \in I \times \Omega \times H \tag{4.2}\\ P=P(t, q), & \text { where } P(t, q):=\mathbb{P}(t, q, u(t)) \\ \text { for }(t, q) \in I \times \Omega\end{cases}
$$

We set $V_{t}:=\{P(t, q) \mid(q, u) \in \Omega \times H\}$ and $V_{t}^{u}:=\{\mathbb{P}(t, q, u) \mid q \in \Omega\}$. Now in connection with $\Sigma_{u(\cdot)}$, we consider an ideal fluid $F^{u(\cdot)}$ whose points are represented by Ω 's elements and, for every $q \in \Omega$, « $F^{u(\cdot)}$'s point $q »$ undergoes the motion (4.2). Hence, along any given motion $x_{1}=x_{1}(t), \ldots, z_{\nu}=z_{v}(t)$ for $\Sigma_{u(\cdot)}, P$'s motion $q=q(t)$ w.r.t. (with respect to) $F^{u(\cdot)}$ is determined, as well as P 's motion

$$
\begin{equation*}
P=P(t, q(t))=\mathbb{P}(t, q(t) ; u(t)) \tag{4.3}
\end{equation*}
$$

w.r.t. Hertz's space $\mathbf{R}^{3 \nu}$. As is well known, P's velocity and acceleration w.r.t. $\mathbf{R}^{3 v}$ (along P 's actual motion) have the expressions (${ }^{1}$)

$$
\left\{\begin{array}{l}
v=v^{(d)}+v^{(r)}:=P_{/ 0}+P_{/ b} \dot{q}^{b}, \tag{4.4}\\
A=\boldsymbol{a}^{(d)}+\boldsymbol{a}^{(r)}+\boldsymbol{a}^{(c)}:=P_{/ 00}+\left(P_{/ b} \ddot{q}^{b}+P_{/ b k} \dot{q}^{b} \dot{q}^{k}\right)+2 P_{/ 0 b} \dot{q}^{b}
\end{array}\right.
$$

When $\mathbf{R}^{3 v}$ is regarded as the fixed space, one can call $\boldsymbol{v}^{(d)}\left[\boldsymbol{a}^{(d)}\right]$ dragging velocity [acceleration], $\boldsymbol{v}^{(r)}\left[\boldsymbol{a}^{(r)}\right]$ relative velocity [acceleration], and $\boldsymbol{a}^{(c)}$ complementary (or generalized Coriolis') acceleration of P at the instant t.

Having fixed the instant t^{*}, we say that M^{*} is (a local) virtual motion of P relative to t^{*} in case M^{*} is the motion on the manifold $V_{t^{*}}^{u\left(t^{*}\right)}$ represented in some neighbourhood I of t^{*} by $t \vdash \mathbb{P}\left(t^{*}, q(t)\right.$, $u\left(t^{*}\right)$), see (4.3). Calling $v^{*}=v^{*}(t)\left[a^{*}=a^{*}(t)\right]$ P's velocity [acceleration] w.r.t. $\mathbf{R}^{3 \nu}$ along the motion M^{*} at any $t \in I$, by (4.4) we have

$$
\begin{equation*}
v^{*}\left(t^{*}\right)=v^{(r)}\left(t^{*}\right), \quad a^{*}\left(t^{*}\right)=a^{(r)}\left(t^{*}\right) \quad \text { - see (4.4) and ftn.1. } \tag{4.5}
\end{equation*}
$$

For $(t, q, u) \in I \times \Omega \times H$, let $T(t, q, u)$ be the tangent space of V_{t}^{u} at $P=\mathbb{P}(t, q, u)$ i.e. the affine space $P+\operatorname{span}\left\{\mathbb{P}_{/ 1}(t, q, u), \ldots, \mathbb{P}_{/ N}(t, q, u)\right\}$ endowed with the norm determined by the metric tensor $a_{b k}:=\mathbb{P}_{/ b} \times \mathbb{P}_{/ k}(h, k=1, \ldots, N)$. Thus, e.g. $v^{*}=\left|v^{*}\right|=$ $=\left(a^{b k} v_{b}^{*} v_{k}^{*}\right)^{1 / 2}$, being $a^{b k}=\left(a_{b k}\right)^{-1}$. By projecting a^{*} and A^{*} on $V_{t^{*}}^{\mu\left(t^{*}\right)}$'s tangent space $T\left(P^{*}\right)$ at $P^{*}=\mathbb{P}\left(t^{*}, q\left(t^{*}\right), u\left(t^{*}\right)\right)$ one obtains

$$
\boldsymbol{a}_{\sigma}^{*}:=\left(\boldsymbol{a}^{*} \times P^{/ b}\right) P_{l b}=\left[\left\{\begin{array}{c}
b \tag{4.6}\\
k
\end{array} l\right\} \dot{q}^{k} \dot{q}^{l}+\ddot{q}^{b}\right] P_{l b}
$$

${ }^{(1)}$ We set $q^{0}=t, q^{N}=u, P_{/ \alpha}:=\partial P / \partial q^{\alpha}, P_{\not / \beta}:=\partial^{2} P / \partial q^{\alpha} \partial q^{\beta}$, and briefly we mean definitions (4.4) $)_{2-4}$ «termwise»; furthermore, Greek indices run from 0 to N, Latin indices run from 1 to N .
and

$$
\begin{align*}
& A_{\sigma}:=\left(A \times P^{/ b}\right) P_{/ b}=\left[\left(\boldsymbol{a}^{(d)}+\boldsymbol{a}^{(c)}+\boldsymbol{a}^{(r)}\right) \times P^{/ b}\right] P_{/ b}= \tag{4.7}\\
&=\left[\left\{\begin{array}{cc}
b & \\
0 & 0
\end{array}\right\}+2\left\{\begin{array}{cc}
b \\
0 & k
\end{array}\right\} \dot{q}^{k}+\left\{\begin{array}{cc}
b & \\
k & l
\end{array}\right\} \dot{q}^{k} \dot{q}^{l}+\ddot{q}^{b}\right] P_{/ b} .
\end{align*}
$$

5. Sequences of controls that afford a burst of Σ

In this section, conditions (α) to (β) below are assumed:
($\alpha) u_{a}=u_{j_{a}, \eta_{a}}$ for some $j_{a}>0, \eta_{a}>0 \forall a \in N_{*}:=\{1,2,3, \ldots\}$,
$(\beta) z^{(a)}(\cdot)=\left(q_{(a)}(\cdot), p^{(a)}(\cdot)\right)$ is the (maximal) solution of (2.5) for $u=u_{a}$ $\forall a \in N_{*}$.

In the sequel, we set

$$
\begin{gathered}
|b|=\left(\sum_{k=1}^{N} b_{k}^{2}\right)^{1 / 2} \quad \text { for } b \in \mathbf{R}^{3 v}, \\
\left|p^{(a)}(t)\right|=\left(\sum_{k=1}^{N} p_{k}^{(a)}(t)^{2}\right)^{1 / 2}, \quad \text { and } \quad\left|q_{(a)}(t)\right|=\left(\sum_{k=1}^{N} q_{(a)}^{k}(t)^{2}\right)^{1 / 2} .
\end{gathered}
$$

Theorem 5.1. (a) For some sequences u_{a} of controls of the type (2.8) - see (α)

$$
\begin{equation*}
\left|q_{(a)}\left(d+\eta_{a}\right)-\bar{q}\right|<1 / a, \quad\left|\dot{q}_{(a)}^{b}\left(d+\eta_{a}\right) P_{/ b}\right|>a \quad\left(a \in N_{\star}\right) . \tag{5.1}
\end{equation*}
$$

(b) If (5.1) holds and $\bar{\zeta}:=(d, \bar{q}, \bar{u}) \in I \times \Omega \times H$, then, by using «u.v.» for «unit vector of»
(5.2) $\left\{\begin{array}{l}\lim w_{a}=\text { u.v. }\left[2^{-1}\left(A_{N N, b}(\bar{\zeta})+2 Q_{b N N}(\bar{\zeta})\right) P^{/ b}\right], \\ \text { where } \\ w_{a}=\text { u.v. }\left[q_{(a)}^{b}\left(T_{a}\right) \mathbb{P}_{/ b}\left(T_{a}, q_{(a)}\left(T_{a}\right), u_{a}\left(T_{a}\right)\right)\right] \text { with } T_{a}:=d+\eta_{a}, u_{a}\left(T_{a}\right)=u+j_{a} .\end{array}\right.$

Proof. Fix the last integer $r>0$ with $\bar{D} \subseteq I \times \Omega \times H$, where $D:=B(d, 1 / r) \times$ $\times B(\bar{q}, 1 / r) \times B(\bar{u}, 1 / r)$, call $\rho(>0)$ and $\sigma(>0)$ the maximum and minimum eigenvalues of the matrix $a_{b k}$ for $(t, q, u) \in \bar{D}$, and call b the maximum value of $|b(t, q, u)|$ for $(t, q, u) \in \bar{D}$. By Theor. 3.1 for any $a \in N_{*}$ there is a constant C_{*} and a $j_{a} \in(0,1)$ such that for a suitably small $\eta_{a} \in(0,1)$ we have (5.1) and (i) $\left|p^{(a)}\left(d+\eta_{a}\right)\right|>C_{*} j_{a}^{2} \eta_{a}^{-1}$. Hence, by rendering η_{a} smaller, we also have (ii) $C_{*} j_{a}^{2} \eta_{a}^{-1}>\left(a \rho \sigma^{-1}+b\right)$. Furthermore, by $(2.4)_{2},(i i i)\left|\dot{q}_{(a)}\left(d+n_{a}\right)\right|>\rho^{-1}\left(\left|p^{(a)}\left(d+n_{a}\right)\right|-b\right)$; then by (i) and (ii) $\mid \dot{q}_{(a)}^{b}(d+$ $\left.+\eta_{a}\right) P_{/ b}|>\sigma| \dot{q}_{(a)}^{b}\left(d+\eta_{a}\right) \mid>\sigma \rho^{-1}\left(C_{*} j_{a}^{2} \eta_{a}^{-1}-b\right)>\sigma \rho^{-1} a \sigma^{-1} \rho=a$. Hence (5.1) $)_{2}$ also holds. Thus (a) is proved. Note that, for any sequence of controls satisfying condition (α) and (5.1), one has (iv) $j_{a} \rightarrow 0, \eta_{a} \rightarrow 0^{+}$and $j_{a}^{2} \eta_{a}^{-1} \rightarrow \infty$ as $a \rightarrow \infty$.

To prove (b), consider the following transformation $\left(q_{(a)}(\cdot), p^{(a)}(\cdot)\right) \vdash$ $\vdash\left(K_{(a)}(\cdot), P^{(a)}(\cdot)\right)$ for any solution $z^{(a)}(\cdot)$ of the $\operatorname{ODE}(2.5)$ with $u=u_{a}$ where $a \in N_{*}$,
(5.1) holds, and for $\tau \in[0,1]$:

$$
\left\{\begin{array}{l}
K_{(a)}^{b}(\tau):=q_{(a)}^{b}(t(\tau)), \quad P_{b}^{(a)}(\tau):=p_{b}^{(a)}(t(\tau)) \lambda_{a} \tag{5.3}\\
\text { being } \\
t(\tau):=d+\eta_{a} \tau \quad \text { and } \quad \lambda_{a}=\eta_{a} j_{a}^{-2}
\end{array}\right.
$$

It is easy to see that thus, since $u_{a}=j_{a} \eta_{a}^{-1}$ and e.g. $\dot{P}_{b}^{(a)}:=d P_{b}^{(a)} / d \tau$, problem (2.4) takes the form:

$$
\left\{\begin{array}{l}
\dot{P}_{b}^{\prime(a)}=-\frac{j_{a}^{2}}{2} P^{(a)}\left[\left(a^{-1}\right)_{, b}-2 Q_{b}^{(2)}\right] P^{(a)}+\eta_{a} P^{(a)}\left[\left(a^{-1} b\right)_{, b}+Q_{b}^{(1)}\right]+ \tag{5.4}\\
\\
\quad+\frac{1}{2}\left[A_{N N, b}+2 Q_{b N N}\right]+\left[B_{b}+Q_{b N}\right] \lambda_{a} j_{a}+ \\
\\
\quad+\frac{1}{2}\left\{\left[b^{-1} a b+2 C\right]_{, b}+2 Q_{0 b}\right\} \lambda_{a} \eta_{a}, \quad P_{b}^{(a)}(0)=\bar{p}_{b} \lambda_{a} \\
\dot{K}_{(a)}^{b}=j_{a} a^{h k}\left(P_{k}^{(a)}-\lambda_{a} b_{k}\right), \quad K_{(a)}^{b}(0)=\bar{q}^{b}
\end{array}\right.
$$

and $(5.2)_{2}$ yields the first two among the equalities

$$
\left\{\begin{align*}
W_{(a)}^{b} & =\frac{\dot{K}_{(a)}^{b}(1)}{\left|\dot{K}_{(a)}^{b}(1) P_{l b}\right|}=\frac{a^{b k}\left(P_{k}^{(a)}(1)-\lambda_{a} b_{k}\right)}{\left[a_{k l} a^{k s}\left(P_{s}^{(a)}(1)-\lambda_{a} b_{s}\right) a^{l m}\left(P_{m}^{(a)}-\lambda_{a} b_{m}\right)\right]^{1 / 2}} \tag{5.5}\\
W^{b}: & =\frac{a^{b k} P_{k}(1)}{\left[a^{k l} P_{l}(1) P_{k}(1)\right]^{1 / 2}}
\end{align*}\right.
$$

where e.g. $a_{b k}=a_{b k}\left[t, q, u_{a}(t)\right]$. In addition, first, as $a \rightarrow \infty,\left(\lambda_{a}, \eta_{a}, j_{a}\right) \rightarrow \mathbf{0}$, see (iv) above (5.3). Furthermore, the solution of ODE (5.4) depends on the parameters λ_{a}, η_{a}, and j_{a} continuously, so that sup $\left\{\left|P_{b}^{(a)}(\tau)-P_{b}(\tau)\right|: \tau \in(0,1)\right\} \rightarrow 0$ as $a \rightarrow \infty$ where $\left(P_{1}(\cdot), \ldots, P_{\mathrm{N}}(\cdot)\right)$ is the solution of the limit problem

$$
\left\{\begin{array}{l}
\dot{P}_{b}=\alpha_{b}(\tau, \bar{u}, K):=\left[2^{-1}\left(A_{N N, b}(\tau, \bar{u}, K)+2 Q_{b N N}(\tau, \bar{u}, K)\right)\right], \quad P_{b}(0)=0 \tag{5.6}\\
\dot{K}^{b}=0, \quad K^{b}(0)=\bar{q}^{b}
\end{array}\right.
$$

Then by $(5.5)_{3} W_{(a)}^{b} \rightarrow W^{b}$ as $a \rightarrow \infty$. Furthermore by $(5.6)_{4.5}, K^{b}(\tau) \equiv \bar{q}^{b}$, so that $(5.6)_{1}$ and the inverse of $(5.3)_{3,4}$ yield

$$
\begin{equation*}
P_{b}(1)=\int_{0}^{1} \tilde{\alpha}_{b}(\tau, \bar{u}, \bar{q}) d \tau=\lim _{a \rightarrow \infty} \frac{1}{\eta_{a}} \int_{a}^{T_{a}} \alpha_{b}(t, \bar{u}, \bar{q}) d t=\alpha_{b}(d, \bar{u}, \bar{q}) \quad(b=1, \ldots, \mathrm{~N}) \tag{5.7}
\end{equation*}
$$

Then, by $(5.6)_{2}$ and $(5.5)_{3}$ one has $(5.2)_{1}$. Q.E.D.
Remark. Note that the hypotesis (2.4) on the coefficients of Σ 's kinetic energy renders the «q-part» $(2.4)_{2}$ of the SHE (2.4) independent of \dot{u} in a neighbourhood U of (d, \bar{q}, \bar{u}) unlike what happens for the typical choice of $\Sigma_{u(\cdot)}$ (see (11.6) in [3]). By Theor 3.1, one can assume $\left(t, u_{a}(t), q_{a}(t)\right) \in\left[d, d+\eta_{a}\right] \times\left[\bar{u}, \bar{u}+j_{a}\right] \times B(\bar{q}, 1 / a)$ for sufficiently large a. Furthermore, since the motion $t \vdash\left(q_{(a)}(t), p^{(a)}(t)\right)$ for $\Sigma_{u(\cdot)}$ is related to
a continuous control $u_{a}(t)-$ see $(2.8)-, p^{(a)}(\cdot)$ is continuous (even where $u(\cdot)$ has a discontinuity) and therefore the R.H.S. of (2.5) is continuous in U. Hence $\dot{q}_{(a)}(\cdot)$ - unlike \dot{u}_{a} - is continuous everywhere and in particular at d and T_{a}.

6. On the trajectory of Σ immediately after a burst

In this section we assume

$$
\begin{equation*}
Q_{b k l}(t, \chi) \equiv 0, \quad(h, k, l=1, \ldots, N) \tag{6.1}
\end{equation*}
$$

For every $a \in N_{\star}$, in connection with the motion $z^{(a)}(\cdot)$ for $\Sigma_{u_{a}}$ we consider the motion $t \vdash \mathbb{P}\left(t, q, u_{a}(t)\right)$ - see (4.2) - of the ideal fluid $F^{u_{a}(\cdot)}$, and the dynamic motion $P=$ $=P_{a}(t)=\mathbb{P}\left(t, q_{a}(t), u_{a}(t)\right)$ of the representative point P of $\Sigma_{u_{a}} ;$ see (4.3). Furthermore, for every $a \in N_{*}$, we denote by $l_{a} P$'s trajectory in Hertz's space $\mathbf{R}^{3 v}$, along the motion $P_{a}(\cdot)$; and we call $v_{(a)}^{(r)} P$'s velocity w.r.t. $F^{u_{a}(\cdot)}$. In the sequel we replace the time $t \geqslant T_{a}$ with the arclength w.r.t. $F^{u_{a}(\cdot)}$ covered by P along the motion $P_{a}(\cdot)$:

$$
\begin{equation*}
\sigma=\sigma_{a}(t)=\int_{T_{a}}^{t} v_{(a)}^{(r)}(\tau) d \tau . \tag{6.2}
\end{equation*}
$$

Note that $\dot{\sigma} \geqslant 0$ even if P goes onward and backward on a line l of arclength s, in which cases $\dot{\sigma}= \pm \dot{s}$ respectively. However, if $\dot{\sigma}$ never vanishes, it is not restrictive to assume $\sigma=s$. We denote by $\mathrm{q}(\cdot)$ the maximal solution of the problem

$$
\ddot{q}^{b}+\left\{\begin{array}{c}
b \tag{6.3}\\
k
\end{array}\right\}(d, \mathrm{q}, \bar{u}) \dot{\mathrm{q}}^{k} \dot{\mathrm{q}}^{l}=0 ; \quad \mathrm{q}^{b}(0)=\bar{q}^{b}, \quad \dot{\mathrm{q}}^{b}(0)=W^{b}, \quad\left(\dot{\mathrm{q}}^{b}:=d q^{b} / d s\right)
$$

where W^{b} is defined by $(5.5)_{3}$. The equation $P=\mathbb{P}(d, q(s), \bar{u})$ for $s \in\left[0, \lambda_{M}\right)$ with $\lambda_{M} \in(0,+\infty)$ represents a geodesic of the fixed manyfold $V_{d}^{\bar{u}}$; see below (4.2).

Theorem 6.1. Let (6.1)-(6.3) bold. Then the sequence l_{a} of trajectories for P along the motions $P=P_{a}(t)\left(a \in N_{*}\right)$ tends, as $a \rightarrow \infty$, to $V_{d}^{\bar{u}}$,s geodesic l defined below (6.3), in the sense that for any fixed $\lambda \in\left[0, \lambda_{M}\right.$) - see below (6.3) - for a large enough, (i) σ_{a} 's restriction to $[0, \lambda]$ has an inverse $t \vdash t_{a}(\sigma)$ with $s=\sigma$ and

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \sup \left\{\left|\mathbb{P}\left(t_{a}(s), q\left(t_{a}(s)\right), u\left(t_{a}(s)\right)\right)-\mathbb{P}(d, q(s), \bar{u})\right|: s \in[0, \lambda]\right\}=0 \tag{6.4}
\end{equation*}
$$

where $\mathbb{P}(\cdot, \cdot, \cdot) \in C^{2}\left(I \times \Omega \times H, \mathbf{R}^{3 \nu}\right)$ is defined in (4.2).
Proof. Calling $f^{i}\left[\boldsymbol{\phi}^{i}\right]$ the applied [reaction] force acting on the mass point P_{i}, in Hertz's space $\mathbf{R}^{3 v}, \Sigma_{u(\cdot)}$'s dynamic equations have the version

$$
\begin{array}{r}
A=\boldsymbol{F}+\boldsymbol{\phi}, \quad \text { where } \quad F_{3 i-3+r}=\left(m_{i}\right)^{-1 / 2} f_{r}^{i}, \quad \begin{array}{r}
\phi_{3 i-3+r}
\end{array}=\left(m_{i}\right)^{-1 / 2} \phi_{r}^{i}, \tag{6.5}\\
\\
(i=1, \ldots, \nu ; r=1,2,3)
\end{array}
$$

and since constraints are frictionless, $\mathbf{0}=\boldsymbol{\phi}_{\sigma}\left(=\left(\boldsymbol{\phi} \times P^{/ b}\right) P_{/ b}\right)$. Then the projection of $(6.5)_{1}$ on $V_{t}^{u(t)}$'s tangent space at $P=\mathbb{P}[t, q(t), u(t)]$ reads $A_{\sigma}=F_{\sigma}$. Hence by (4.7) and (4.6) ${ }_{2}$

$$
\ddot{q}^{b}=-\left\{\begin{array}{c}
b \tag{6.6}\\
r \\
s
\end{array}\right\} \dot{q}^{r} \dot{q}^{s}+A_{r}^{b} \dot{q}^{r}+B^{b}, \quad \text { with e.g. } A_{r}^{b}=A_{r}^{b}[t, q(t), u(t)]
$$

where, remembering (2.3) and that $Q_{0 b}, Q_{b k},\left\{\begin{array}{ll}b \\ r & s\end{array}\right\},\left\{\begin{array}{c}b \\ 0\end{array} s, s\right\},\left\{\begin{array}{c}b \\ 0\end{array} \quad 0\right\}, a_{r s}$, and $\left(a^{b k}\right)=$ $=\left(a_{r s}\right)^{-1}$ are C^{1}-functions of (t, q, u),

$$
A_{r}^{b}(t, q, u):=a^{b l} Q_{l r}-2\left\{\begin{array}{c}
b \tag{6.7}\\
0
\end{array} \quad r\right\}, \quad B^{b}:=a^{b l} Q_{0 l}-2\left\{\begin{array}{cc}
b \\
0 & 0
\end{array}\right\}
$$

Note that (6.6) is the Lagrangian version of the semi-Hamiltonian ODE (2.4).
Now fix $\lambda \in\left[0, \lambda_{M}\right)$ and $\mu \in\left(\lambda, \lambda_{M}\right)$; furthermore call $P_{\mu} l$'s point whose distance in $V_{d}^{\bar{u}}$ from l 's origin $P_{0}:=(d, \bar{q}, \bar{u})$ is μ. Then l 's arc $l_{\mu}:={\overrightarrow{P_{0} P}}_{\mu}$ lies in some open set

$$
\begin{equation*}
A:=B\left(d, \varepsilon_{1}\right) \times Q \times B\left(\bar{u}, \varepsilon_{2}\right)(\neq \emptyset), \tag{6.8}
\end{equation*}
$$

whose closure \bar{A} is compact and belongs to the $(n+2)$-dimensional manifold $V \subset \mathbf{R}^{1+3 \nu}$. The dynamic motion $P=P_{a}(t)$ of $\Sigma_{u_{a}}$ (immediately) after the burst, i.e. for $t>d+\eta_{a}:=T_{a}$, solves the $\operatorname{ODE}(6.6)$ with $u=u_{a}(t)=v_{j}\left(t-\eta_{a}\right)$, and satisfies the initial conditions at $T=T_{a}$

$$
\begin{equation*}
q\left(T_{a}\right)=q_{(a)}\left(T_{a}\right), \quad \dot{q}\left(T_{a}\right)=\dot{q}_{(a)}\left(T_{a}\right), \quad\left(u_{(a)}\left(T_{a}\right)=v_{j_{a}}(d)=\bar{u}+j_{a}\right) \tag{6.9}
\end{equation*}
$$

where the R.H.S.s of (6.9) ${ }_{1-2}$ are constructed with the solution $t \vdash z(t)=\left(q_{(a)}(t), p^{(a)}(t)\right)$ in $\left[d, T_{a}\right]$ of problem (2.5) for $u=u_{a}(t)$; see also the Remark below (5.7).

Hence, remembering (5.1-2) and $(4.2)_{3}$, for a unique $W_{a}>0$ - see $(5.2)_{3}$ - we have that

$$
\left\{\begin{array}{l}
P_{a}\left(T_{a}\right)=\mathbb{P}\left(T_{a}, q_{(a)}\left(T_{a}\right), \bar{u}+j_{a}\right), \tag{6.10}\\
\dot{P}_{a}\left(T_{a}\right)=W_{a} w_{a}=\mathbb{P}_{/ b}\left(T_{a}, q_{(a)}\left(T_{a}\right), \bar{u}+j_{a}\right) \dot{q}^{b}\left(T_{a}\right)
\end{array}\right.
$$

and that, as $a \rightarrow \infty,\left(j_{a} \rightarrow 0, \eta_{a} \rightarrow 0^{+}, T_{a} \rightarrow d\right.$ and $)$

$$
\begin{equation*}
P_{a}\left(T_{a}\right) \rightarrow P_{0}=\mathbb{P}(d, \bar{q}, \bar{u}), \quad W_{a} \rightarrow+\infty \quad\left(w_{a} \rightarrow w ; \text { see }(5.2)_{2}\right) \tag{6.11}
\end{equation*}
$$

Now set, for e.g. $M^{-1}=W_{a}$ and $T=T_{a}$

$$
\begin{equation*}
\xi=(t-T) M^{-1}, \quad \dot{q}=d q / d \xi=M \dot{q}, \quad q(\xi):=q(T+M \xi) \tag{6.12}
\end{equation*}
$$

so that the point $P\left(T_{a}+M_{a} \xi\right)$ covers $l_{a, \xi}$ when ξ covers $[0, \mu]$. Then the problem (6.6) $\cup(6.9)$, for $t \geqslant T_{a}$ becomes the problem for $\xi \geqslant 0$ formed by the ODE

$$
\ddot{q}=-\left\{\begin{array}{c}
b \tag{6.13}\\
r
\end{array} s\right\} \dot{\mathrm{q}}^{r} \dot{\mathrm{q}}^{s}+M A_{r}^{b} \dot{\mathrm{q}}^{r}+M^{2} B^{b},
$$

where $A_{r}^{b}=A_{r}^{b}[T+M \xi, \mathrm{q}(\xi), j+v(T+M \xi)], \quad B^{b}=B^{b}[T+M \xi, \mathrm{q}(\xi), j+v(T+M \xi)]$, $M^{-1}=W_{a}$, and $T=T_{a}$, coupled with the initial conditions

$$
\begin{equation*}
\mathrm{q}^{b}(0)=q_{(a)}^{b}\left(T_{a}\right), \quad \dot{q}^{b}(0)=M \dot{q}_{(a)}^{b}\left(T_{a}\right)\left(=w_{a}^{b}, \quad \text { where } w_{a}=w_{a}^{b} P_{/ b}\right) ; \tag{6.14}
\end{equation*}
$$

we regard the R.H.S. of $(6.13)_{1-2}$ as constructed by means of the solution $q_{(a)}(\cdot)$ of (2.5) - see below (6.9). For some ε_{1} small enough, the ODE (6.13) has the form $\stackrel{\prime}{q}=$ $=f(\xi, \mathrm{q}, \dot{\mathrm{q}}, u, M, j)$ with $f \in C^{1}$ in the compact set $K:=\left[-\varepsilon_{1}, \mu\right] \times Q \times S \times B\left(\bar{u}, \varepsilon_{1}\right) \times$ $\times\left[0, \varepsilon_{1}\right] \times\left[0, \varepsilon_{1}\right]$. Infact for $M=0$ problem (6.12) $\cup(6.14)_{1-3}$ coincides with problem (6.3); and the solution of this in $[0, \mu]$ exists in that it represents the geodesic $l_{P_{0, \mu}}$. Incidentally, for $M=0, \xi$ is the arclength on l.

Call $\mathrm{q}(\cdot, \tilde{\mathrm{q}}, \tilde{w}, M, j)$ the general solution in $[0, \mu]$ of the second order ODE (6.13), coupled with the initial conditions $q^{b}(0)=\tilde{q}^{b}$ and $q^{h}(0)=\tilde{w}^{b}$. By a well known theorem (of existence and uniqueness in the large), there is some $\eta>0$ such that for

$$
\begin{equation*}
\left|\tilde{\mathrm{q}}^{b}-\bar{q}^{b}\right| \leqslant \eta, \quad\left|\tilde{w}^{b}-w^{b}\right| \leqslant \eta, \quad|M| \leqslant \eta, \quad|j| \leqslant \eta, \tag{6.15}
\end{equation*}
$$

the above solution in $[0, \mu]$ exists and is (uniformly) continuous and even C^{1} in K, together with $\dot{q}(\cdot, \tilde{q}, \tilde{w}, M, j)$. Hence, given $\varepsilon \in(0,1)$ arbitrarily, there is some $\bar{\eta}>0$ such that, for $\eta<\bar{\eta},\{(T+M \xi, \mathrm{q}(\xi, \tilde{\mathrm{q}}, \tilde{w}, M, j), j+v(T+M \xi)) \mid \xi \in[0, \mu]\} \subset A$ and

$$
\begin{equation*}
|\mathrm{q}(\xi, \tilde{\mathrm{q}}, \tilde{w}, M, j)-\mathrm{q}(\xi, \bar{q}, w, 0,0)|<\varepsilon, \quad|\dot{\mathrm{q}}(\xi, \tilde{\mathrm{q}}, \tilde{w}, M, j)-\dot{\mathrm{q}}(\xi, \bar{q}, w, 0,0)|<\varepsilon . \tag{6.16}
\end{equation*}
$$

Now, by (6.8)-(6.10), there is an $\alpha \in N_{*}$ such that for $a>\alpha$ the solution $q_{(a)}(\cdot):=$ $=\mathrm{q}\left(\cdot, q_{(a)}\left(T_{a}\right), w_{a}, M_{a}, j_{a}\right)$ of (6.13)-(6.14) fulfils requirements (6.15). Then (6.16) holds for $\mathrm{q}_{(a)}(\cdot)$; hence, by the continuity of the function $(\xi, \mathrm{q}, w, M, j) \vdash\left[a_{b k}(\xi, \mathrm{q}, u) \dot{\mathrm{q}}^{b} \dot{\mathrm{q}}^{k}\right]^{1 / 2}$ in K, for $\varepsilon(>0)$ arbitrarily fixed, there is an $\bar{\alpha}>\alpha$ such that $\forall \xi \in[0, \mu]$ and $\forall a>\bar{\alpha}$

$$
\begin{equation*}
\left[a_{b k}\left(\xi, \mathrm{q}_{(a)}(\xi), u_{a}(\xi)\right) \stackrel{q}{\mathrm{q}}^{b}(a)(\xi) \stackrel{\prime}{\mathrm{q}}(a)(\xi)\right]^{1 / 2}-\left[a_{b k}(d, \mathrm{q}(\xi), \bar{u}) \dot{\mathrm{q}}^{b}(\xi) \dot{\mathrm{q}}^{k}(\xi)\right]^{1 / 2}<\varepsilon . \tag{6.17}
\end{equation*}
$$

Furthermore, by the definition involving (6.3), $\mathrm{q}(\xi)=\mathrm{q}(\xi, \bar{q}, w, 0,0) \forall \xi \in[0, \mu]$, while by (6.2) and $(6.12)_{1}$, for $t \geqslant T_{a}\left(\xi=\left(t-T_{a}\right) / M_{a}\right)$

$$
\begin{align*}
& \left|\sigma_{a}(t)-\xi\right|=\left|\int_{T_{a}}^{t}\left[a_{b k} \dot{q}_{(a)}^{b}(\tau) \dot{q}_{(a)}^{k}(\tau)\right]^{1 / 2} d \tau-\xi\right|= \tag{6.18}\\
& =\left|\int_{0}^{\xi}\left\{\left[a_{b k} \dot{q}_{(a)}^{b}(\zeta) \dot{q}_{(a)}^{\prime k}(\zeta)\right]^{1 / 2}-\left[a_{b k} \dot{q}^{b}(\zeta) \dot{q}^{\prime k}(\zeta)\right]^{1 / 2}\right\} d \zeta\right| \leqslant \\
& \\
& \leqslant \int_{0}^{\xi}\left|[\ldots]^{1 / 2}-[\ldots]^{1 / 2}\right| d \zeta \leqslant \varepsilon \mu, \quad \forall a>\bar{\alpha} .
\end{align*}
$$

By (6.16), for $\xi \in[0, \mu]$ we have $d \sigma_{a} / d \xi=\left[a_{b k}\left(\xi, \mathrm{q}_{(a)}(\xi), u_{a}(\xi)\right) \stackrel{q}{\mathrm{q}}_{(a)}^{b}(\xi) \stackrel{1}{\mathrm{q}}_{(a)}^{k}(\xi)\right]^{1 / 2}=$ $=\left|\dot{\mathrm{q}}_{(a)}\left(\xi, q_{(a)}\left(T_{a}\right), w_{a}, M_{a}, j_{a}\right)\right| \geqslant 1-\varepsilon>0$. Therefore σ_{a} is a strictly increasing function of ξ and hence of t. Then the inverse $t=t_{a}(\sigma)$ of $\sigma=\sigma_{a}(t)$ exists in $\left[T_{a}, T_{a}+\mu M_{a}\right]$ and $s=$ $=\sigma=\sigma_{a}(t)$. By (6.18) $\sigma_{a}(t) \in[\xi-\mu \varepsilon, \xi+\mu \varepsilon]$. Hence, for $\varepsilon \mu<\mu-\lambda, \quad\left\{P\left(T_{a}+\right.\right.$ $\left.\left.+\xi M_{a}, \mathrm{q}_{(a)}(\xi), u_{a}(\xi)\right) \mid \xi \in[0, \mu]\right\}$ is an arc (of l_{a}) containing the arc $l_{a, \lambda}$ of l_{a} that has $\mathbb{P}\left(T_{a}, q_{(a)}\left(T_{a}\right), \bar{u}+j_{a}\right)$ as an endpoint. Hence the function $s=s_{a}(\xi):=\sigma_{a}\left[t_{a}(\xi)\right]$ is defined in $[0, \mu]$, it is strictly increasing, and with $[0, \lambda] \subseteq s_{a}([0, \mu])$. Furthermore, by (6.18) ${ }_{1-3}$,

$$
\begin{equation*}
\left|s_{a}(\xi)-\xi\right| \leqslant \varepsilon \xi \leqslant \varepsilon \mu \quad \forall \xi \in[0, \mu], \quad \text { hence }\left|s-\xi_{s}\right| \leqslant \varepsilon \mu \quad \forall s \in[0, \lambda], \quad \forall a>\alpha \tag{6.19}
\end{equation*}
$$

where ξ_{s} is the inverse of $\xi \vdash s=s_{a}(\xi)$. In order to prove (6.4) we set

$$
\left\{\begin{array}{l}
\tilde{\mathbb{P}}(\xi, \tilde{\mathrm{q}}, \tilde{w}, M, j):=\mathbb{P}[T+M \xi, \mathrm{q}(\xi, \tilde{\mathbb{q}}, \tilde{\boldsymbol{w}}, M, j), M, j, j+v(T+M \xi)] \tag{6.20}\\
\text { and } \\
\mathbb{P}_{a}(\xi):=\tilde{\mathbb{P}}\left(\xi, q_{(a)}\left(T_{a}\right), w_{a}, M_{a}, j_{a}\right) .
\end{array}\right.
$$

Note that by the definition of $\sigma_{a}(\xi)$ below (6.18) and by $(6.12)_{1}$ one has

$$
\begin{equation*}
\mathbb{P}\left[t_{a}(s), q_{(a)}\left(t_{a}(s)\right), u_{a}\left(t_{a}(s)\right)\right]=\mathbb{P}_{a}\left(\xi_{s}\right) \quad \forall s \in[0, \lambda], \quad \forall a>\bar{\alpha} \tag{6.21}
\end{equation*}
$$

By the uniform continuity of $\mathrm{q}(\xi, \widetilde{\mathrm{q}}, \tilde{w}, M, j)$ in the set defined by (6.15) and $\xi \in[0, \mu]$, given $\varepsilon^{\prime}>0$ arbitrarily, for $\varepsilon(>0)$ small enough, $(6,19)_{3}$ and $(6.16)_{1} \cup(6.11)$ yield the first and the second of the inequalities below respectively

$$
\text { (6.22) }\left|\mathbb{P}_{a}\left(\xi_{s}\right)-\mathbb{P}_{a}(s)\right|<\varepsilon^{\prime}, \quad\left|\mathbb{P}_{a}(s)-\mathbb{P}(d, \mathrm{q}(s), \bar{u})\right|<\varepsilon^{\prime} \quad \forall s \in[0, \lambda], \quad \forall a>\bar{\alpha}
$$

Then for $s \in[0, \lambda](\subseteq[0, \mu])$ and $a>\bar{\alpha}$ one has

$$
\begin{equation*}
\left|\mathbb{P}_{a}\left(\xi_{s}\right)-\left(\mathbb{P}_{a}(d, q(s), \bar{u})\right)\right| \leqslant\left|\mathbb{P}_{a}\left(\xi_{s}\right)-\mathbb{P}_{a}(s)\right|+\left|\mathbb{P}_{a}(s)-\mathbb{P}(d, \mathrm{q}(s), \bar{u})\right|<\varepsilon^{\prime}+\varepsilon^{\prime} \tag{6.23}
\end{equation*}
$$

Therefore, by (6.21), $\sup \left\{\left|\mathbb{P}\left[t_{a}(s), q_{(a)}\left(t_{a}(s)\right), u_{a}\left(t_{a}(s)\right)\right]-\mathbb{P}(d, \mathrm{q}(s), \bar{u})\right|: s \in[0, \lambda]\right\}<2 \varepsilon^{\prime}$. By the arbitrariness of $\varepsilon^{\prime}(>0)$, (6.4) holds. Q.E.D.

This work has been prepared in the activity sphere of the group N. 3 of the Consiglio Nazionale delle Ricerche in the academic years 1988-89 and 1989-90.

