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Teoria dei controlli. — Regularity of wave and plate equations with interior point 
control. Nota di ROBERTO TRIGGIANI, presentata (*) dal Corrisp. R. CONTI. 

ABSTRACT. — The regularity of solutions of various dynamical equations (wave, Euler-Bernoulli, 
Kirchhoff, Schròdinger) in a bounded open domain Q in RN, subject to the action of a point control at 
some point of D, is studied. Detailed proofs of the results are contained in the references [8-10]. 

KEY WORDS: Control Theory; Wave and plate equations; Regularity. 

RIASSUNTO. — Regolarità delle equazioni delle onde e delle piastre con controllo puntuale interno. Si stu
dia la regolarità delle soluzioni di varie equazioni dinamiche (onde, Euler-Bernoulli, Kirchhoff, Schrò
dinger) in una regione limitata Q di RN, sotto l'azione di un controllo esercitato in un punto di Q. Le di
mostrazioni dettagliate si trovano nei riferimenti bibliografici [8-10]. 

1 . I N T R O D U C T I O N , S T A T E M E N T O F M A I N P R O B L E M 

Let Q be an open bounded domain in RN, N= 1,2,3, with sufficiently smooth 
boundary r. In this Note we announce new sharp results on the regularity of solutions 
of various dynamical equations, subject to the action of point control exercised at an 
interior point of Q, which without loss of generality we take to be the origin. We shall 
consider: wave equations; Euler-Bernoulli (plate) equations and Kirchhoff (plate) 
equations; and Schròdinger equations under a variety of boundary conditions. The 
only known result in the literature so far concerns the wave equation with Dirichlet 
B.C. with N= dimQ = 3, where three different proofs are in fact available: see[l]: 
one, due to Y. Meyer, uses harmonic analysis; another one due to L. Nirenberg, uses 
the classical Kirchhoff formula for the solutions of the Cauchy problem in R3 as well 
as finite speed of propagation arguments; a third one, due to J. L. Lions uses a recent
ly established [3-6] property of the normal trace of the homogeneous wave equation. 
Our approach is different and very general. In particular it does not requires finite 
speed of propagation arguments or exact solution formulas. For lack of space we omit 
corresponding duality results, concerning point observation. Details and proofs are 
given in [8-10]. 

2. WAVE EQUATION WITH HOMOGENEOUS DIRICHLET B.C. 

In this section we consider 

(2.1a) wtt =Aw + S(x) v(t) in (0, T] X û = Q 

(2.1b) w(0yx) = wt(0yx) = 0 in Û 

(2.1c) ^ s O in (o,r\xr=z 

(*) Nella seduta del 14 giugno 1991. 
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where S(x) is the Dirac mass + 1 at the interior point 0 (origin). We define the positi
ve, self-adjoint operator A 

(2.2) Ah = -Ah; (D(A) = H2(Q)nH^(Q); Q(Am) = Hl(Q); ®(A1/4)=H^(Q). 

THEOREM 2.1. With reference to problem (2.1), let 

(2.3) veU(0,1). 

Then, continuously: 

(a) for N=d imO = 3, 

(2.4a) weC([0,Ti;L2(Q)), 

(2Ab) wt e C([0, T]; H"1 (Û) = [Q(A1/2)T), 

(2.4c) wtt eL^(0,T; H~2(0)), 

moreover 

(2Ad) eH-1®); Sw 
dv 

(b) for N = dimG = 2, 

(25a) ^ eC( [0 ,71 ; H&2 (Q) = ®(A1/4)), 

(2.5b) wteC([0,n [Htf(0)Y = [®(A1/4)]')y 

(2.5c) wtt e U (0, T; [Q(A3/4)V ) c U (0, T; [H0
3'2 (Q)Y ), 

moreover 

-1/2 , (2.5d) &• 
ov 

eH~V2(Z); 
E 

(c) for N = dimû = l, 

(2.6a) weC([0,T};HÙ(Q) = ®(A1/2)), 

(2.6b) wteC{[0,Ti;L2(Q)), > 

(2.6c) wtteL2(0, T; H~l(Q) = [®(Am)Y), 

moreover 

(2.6d) dw eLzp). D 
s 

REMARK 2.1. If one studies the regularity of problem (2.1) by using only that, by 
Sobolev embedding, S e [H* (Û)]', where a = 3/2 + e for N = 3; a = 1 + s for N = 2; 
a = 1/2 + s for N= 1, then one would obtain a regularity result for, say, w which is 
lower by «1/2 4- s» in space regularity, measured in Sobolev space order, than those of 
Theorem 2.1: e.g., forN = 3 one would get only weH~1/2~s(Q) rather than l^ (Q) as 
in (2.4a); for N = 2, one would get only w e H~£ (Q) rather than HQQ2 (Q) as in (2.5a); 
for N = 1 one would get only weH1/2~£(Q) rather than HQ(Q) as in (2.6#). To see 
this, we use [H* (Q)]' c [Q(Aa/2)Y, so that A"a/2 £ e 1^ (Q) for the second-order opera-
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tor A in (2.2). Then the solution w of (2.1) satisfies abstractly 
t 

A{ì~«)/2w(t) = JA^S^-^A-^Sv^dreC^n, 1^(0)) 
o 

by convolution properties between A~a/2 Sv e l^ (0, T; J^ (Û)) and /-> A112 S(t) strongly 
continuous on l^ (Q), where 

t 

S(t) = jC(r)dr 
o 

and C(t) is the cosine operator generated by —A in (2.2). • 

3. WAVE EQUATION WITH HOMOGENEOUS NEUMANN B.C. 

The same interior regularity results in terms of Sobolev spaces as above hold true 
for the Neumann problem with r = T0 uT j : 

(3.1a) wtt = Aw + S(x) v(t) in (0, T] x Q = Q 

(3.1*) 

OAc) 

(3.1*/) 

w(0, x) = wt (0, x) = 0 

wk s 0 

3v 
= 0 

^ i 

in D 

in (o,r]xro=i:o 

in (0,71 X A =2?! 

except that now: for N = 2, HQO2 (Û) in (2.5a) for M; is replaced by Hm (Q); for N = 1, 
HQ(Q) in (2.6#) for to is replaced by Hl(Q). As to boundary regularity we now 
have 

(3.2) w\s e< 

Ha'l(^) N = 3 
H ( a + ^ - l ) / 2 ( i ; ) N = 2 

H*(2) N=l 

where 

a = 3/5 — e; /3 = 3/5: for a general &; 

a = /3 = 2/3 : for D being a sphere; 

a = /3 = 3/4: for & being a parallelepiped. 

4 . K lRCHHOFF EQUATION WITH HOMOGENEOUS BOUNDARY CONDITIONS 

w\s =Aw\z = 0 

In this section we consider 

(4. la) wtt - kA wtt + A2w = S(x) v(t) in (0, T] x û = Q 

(4. lb) w(0, x) = wt(0Jx) = 0 in û 

(4.1c) w\2=0 in (0,T}xr = 2 

(4.1 d) Aw\s=0 i n i ; 
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where k is a positive constant with the origin 0 as an interior point of Q. The constant 
k > 0 makes problem (4.1) hyperbolic over the case k = 0 of the next sect. 5. Through
out this section, let A be the positive self-adjoint operator defined by 

(4.2) Ah = A2 h; 0)(A) = {hcH4 (Û) : h\r = Ah\r = 0} . 

We recall that (with equivalent norms) 

(4.3) Q(Am) = {heH} (Q) : h\r = Ah\r = 0}; Q(A1/4) = Ho1 (Û) ; 

(4.4) A1/2h=-Ah; ®(A1/2) = H2(Q)nHÙ(Q); 

(4.5) G)(A1/8) = [Q(A1/4)y L, (Q)]1/2 = [ffl (Û), L, (D)]1/2 = H^2 (Q). 

THEOREM 4.1. With reference to problem (4.1), let 

(4.6) ve I* (0,1). 

Then, continuously, 

(a) for N = dimD = 3, 

(4.7*) w e C([0,71; 6D(^1/2) = H2 (Q) n HQ1 (Û)), 

(4.7*) «;, e C([0, 71; (D(^1/4) = Ho1 (0)), 

(4.7c) ^ e M 0 , T ; M O ) ) ; 

(A) for N = dim£ = 2, 

(4.8a) ^ eC( [0 ,71 ; Q(A5/S)) c C([0,T]; H5 /2(0)), 

(4.8*) «,, eC([0,71; 0)G43/8)) cC([0,71; H3/2(D)), 

(4.8c) «;„ e la (0, T; 0)(,41/8) = Htf (Q)) ; 

(c) for N = dim£ = l, 

(4.9a) weC([0yT];®(A3/4)), 

(4.9b) wt e C([0,71; ®>(A1/2) = H2 (Q) n Hi (Q)), 

(4.9c) wtt e C([0, Ti; Q(AlM) = H* (O)). 

REMARK 4.1. If one studies the regularity of problem (4.1) by using that, by 
Sobolev embedding, $e[Ha(Q)]' where a = 3/2 + s for N = 3; a = l + s for N = 2; 
a = 1/2 + £ for N= 1, then one would obtain a regularity result for, say, w which is 
lower by « 1/8 + e» in space regularity, measured in fractional powers of A (essentially 
«1/2 + 4s» measured in Sobolev space order), than those of Theorem 4.1; e.g., for 
N = 3 one would get only w e Q(A3/8~£) rather than Q(Am) as in (4.7*); for N = 2, 
one would get only weQ(A1/2~£) rather than Q(A5/S) as in (4.8*); for N = 1 one 
would get only we(D(A5/8~£) rather than weQ(A3/4) as in (4.9a). O 
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5 . K lRCHHOFF EQUATION WITH HOMOGENEOUS D I R I C H L E T / N E U M A N N BOUNDARY 

CONDITIONS (w\s = dw/dv\s =0) 

In this section we consider 

(5.1a) wtt - kA wtt + A2w = S(x) v(t) 

(5.1b) w(0yx) = wt(0,x) = 0 

(5.1c) w\z=0 

dw 
(5.Id) ^ = 0 

in (0 ,nxu = Q, 

in Q, 

in (0,71 xr = Z, 

in U, 

= 0 . 

(53) 
(D(A3/4) = \heH3(Q):h\r=^-

ov 

with k a positive constant and with the origin 0 as an interior of Q. Throughout this 
section let A be the positive definite self-adjoint operator on L^ (Q) defined by 

(52) Ah = A2h; Q(A) = \heH4(Q):h\r = ^~ 
{ ov 

We recall that (with equivalent norms) 

" - 0 | ; 

®(A1/2)=H2
0(Q); ®(A1/4)=m(Q); 

(5.4) Q(A3/8) = [®(Ai/2), ®(A1/4)]1/2 = [H2
0 (Û), HQ1 (Q)]1/2 = Hffî (Q) ; 

(5.5) Q(Am) = [Q(A1/4)}L2(Q)]l/2 = [H2(Û),I^(Û)]^ = H$(Q). 

Moreover, we introduce the positive definite, self-adjoint operators B and Bk on 1^(0) 
defined by 

(5.6) Bh = -Ah; Q(B) = H2 (Q) n Hi (Q); Bk = (I + kB); (D(Bk) = Q(B). 

We note that by (5.3) and (5.6) we have (properly): 

(5.7) Q(Am) c <D(B); hence BA~m e £(1^ (Q)), 

while A1/2B~1 is an unbounded operator on 1^(0). 

(5.8) ®(A3/s-£) = (D(B3/4-2£)=H3/2-4£(Q)nHl(Q)y e>0; 

in particular we explicitly note 

(5.9) (D(Bl/2) = ®(B1/2) = ®(A1/4) = HQ1 (Q) ; 

(5.10) Q(Bl/4) = (D(B1/4) = Q(A1/S) = Hm (Q) = H0
1/2 (Q) ; 

(5.11) (D(A3/S) = [a>(A1/2), (D(A1/4)]1/2 c [(D(B), ®(Bm)\/2 = (D(B3M) = 0)(B3
k
/4). 

The fact that under the boundary conditions in (5.2), the operator BA~1/2 is not an iso
morphism on L2 (O) as noted in (5.7) is a major technical difference over the case of 
the preceding section, and is responsible for additional technical difficulties, which 
are reflected in the following regularity result (compare with Theorem 4.1, particular
ly the case N = 3). 
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THEOREM 5.1. With reference to problem (5.1) let 

(5.12) » e l * (0,1). 

Then, continuously 

(a) for N = dimG = 3, 

(5.13a) weC{[0,T];®(Am) = H$(Q)), 

(5.13*) wt e C([0, T]; Û9(A1/4) = Ho1 (Û)), 

(5.13c) Bwtt e U (0, T; [Q(A1/2)Y = H - 1 (Û)) ; 

(b) for N=d imO = 2, 

(5.14a) ^£C([0,r];(B(y45/8)), 

(5.14b) wt e C([0, I I ; (B(^3/8) = H0
3o2 (Û)), 

(5.14c) B«;«€^(0,T;[(B(^3 / 8)] ') ; 

(c) for N = dim£ = l, 

(5.15a) weC([0,T];(3)(Ai/4)=H}(O)nHUO)), 

(5.15b) wteC([<ò,T];Q(Am)=Hl(Q)), 

(5.15c) wtt e U (0, T; ®(A1M) = Ho1 (Û)). • 

6. EULER-BERNOULLI EQUATION WITH HOMOGENEOUS DIRICHLET/NEUMANN B.C. 

In this section we consider 

(6.1a) wtt + A2w = 8(x)v(t) in (0,71 xf l = Q, 

(6. lb) w(0, x) = wt(0,x) = 0 in Q, 

(6.1c) ^ | i : = 0 in ( 0 , T ] x r = i;, 

(6.1J) Ir- =0 ini:, 
av 2; 

with the origin 0 as an interior point of O. Let A the positive, self-adjoint operator de
fined in (5.2). 

THEOREM 6.1. With reference to problem (6.1), let 

(6.2) velaio,!). 

Then, continuously: 

(a) for N = d i m £ = 3, 

(63a) w e C([0,71; Htf (Q) = Q(Al/s)), 

(63b) wteC([0,T]; [H^(Q)]f = [(D(A™)Y), 

(63c) w^eUiOJ; [®(Am)Y); 
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(*) for N=dimQ = 2, 

(6.4*) weC([OiT\;Hl(Q) = ^(AV4))i 

(6Ab) wt e C([0,71; H"1 (Û) = [®(A1/4)]')y 

(6 Ac) wtteL2(0j;[Q(A3/4)if); 

(c) for N = d i m û = l, 

(6.5a) ^eC( [0 ,71 ; ti& (Q) = ®(Ays))> 

(65b) wt e C([0,71; [flj? (0)]' = [©(A1*)]')-, 

(6.5c) ^ 6 1 ^ ( 0 , 7 ; [0)(,45/8)]'). 

REMARK 6.1. It was noted in Remark 2.1 that in the case of the wave problems 
(2.1) and (3.1) the present sharp approach produces regularity results which are 
«1/2 + e» higher in space regularity (measured in Sobolev space order) than the one 
directly obtained by simply using that Se [Ha(Q)]', a = 3/2 + e, 1 + e, 1/2 + e, for 
N = 3,2,1 respectively. The same gain in regularity is obtained in the case of Kirchhoff 
problems (also hyperbolic) as noted in Remark 4.1. Instead, in the case of Euler-
Bernoulli problems (both problem (6.1) as well the subsequent problem (7.1)) the 
present sharp approach produces only an «s-improvement» over Theorem 6.1. To see 
this, we use de [Ha(Q)Y c [Q(Aa/4)]\ equivalent^ that A'^Se^Q) for the fourth-
order operator A in (5.2). Then the solution w to, say, problem (6.1) satisfies 

A1/2-«/4w(t) = JA1/2S(t- r)A~a/4Sv(T) dx e C([0,71; L, (Û)), 
o 

by the usual convolution properties. This yields results which are «e-worse», i.e., 
weQ(Al/8~£)> Q(Al/4~s)y Q(A3/S~£)y in space regularity over those in (6.3*), (6.4*), 
(6.5*) respectively. • 

7. EULER-BERNOULLI EQUATION WITH w\z =Aw\z = 0 

If we now consider the Euler-Bernoulli equation (6.1*), (6.1&), (6.1c) with B.C. 
(6.1<i) replaced by 

(7.1) 4 t ^ = 0 , 

then the same regularity results as in Theorem 6.1 hold true if we replace the operator 
A defined by (52) with the operator A in (4.2). 

8 . SCHRODINGER EQUATIONS 

In this section we consider 

(8. la) yt = iAy + S(x) v(t) in Q = (0,71 X Q ; 

(SAb) y(0,*) = 0 in D; 

(8.1c) y\s=0 i n i : = (0,71 XT; 
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with the origin 0 an interior point of Q. We define the positive self-adjoint operator A 
on Li{Q). by 

(8.2) A = -A; Q(A)=H2(Q)nH^(Q); Q(A1/2) = H^(Q); Q(Al/A) = H^0
2 (Û). 

THEOREM 8.1. With reference to problem (8.1), let ve 1^(0,7). Then continu
ously 

(a) for N = d i m 0 = 3, 

(83a) yeC([0,T]; [Q(A*/4)Y) cC([0,71; H~3/2-£(0)); 

(83b) yteI^(OyT; [Q(A1/4)Y nH-1/2~£(Q)); 

(b) for dim& = 2, 

(8.4a) y e C([0,71; [®(Al/2)Y = H"1 (0)) ; 

(8.4*) y, e I* (0, T; [0>(43/2)]' n H " 3 (Û)); 

(c) for N = dimû = l, 

(8.5*) y e C([0,71; [0)(,41/4)]' = [H^2 (Û)]') c C([0,71; H " ^ " ' ( Û ) ) ; 

(85b) yteL2(0j; [Q(A5/4)]f nH~5/2~e(0)). 

REMARK 8.1. The above results are «e-smoother» in space regularity over the ones 
that can be obtained directly by simply using the property that, by Sobolev embed
ding, S e [H* (û)]', a = 3/2 + e; 1 + s; 1/2 4- s, for N = 3,2,1 respectively. • 

FINAL REMARK. It can be shown that exact controllability, as well as uniform stabi
lization, in the explicitly identified, sharp regularity spaces noted above are not possi
ble for all of the preceding problems with (finitely many) interior point controls in 
U (0, D, where dim£ = N ^ 2. • 
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