Rendiconti Lincei

 Matematica E Applicazioni
Gianni Gilardi, Stephan Luckhaus
 Extension of a regularity result concerning the dam problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 2 (1991), n.4, p. 287-296.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1991_9_2_4_287_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1991.

Equazioni a derivate parziali. - Extension of a regularity result concerning the dam problem. Nota di Gianni Gilardi e Stephan Luckhaus, presentata(*) dal Socio E. Magenes.

Abstract

One proves, in the case of piecewise smooth coefficients, that the time derivative of the solution of the so called dam problem is a measure, extending the result proved by the same authors in the case of Lipschitz continuous coefficients.

Key words: Regularity; Porous media; Non negative subharmonic functions.
Riassunto. - Estensione di un risultato di regolarità sul problema della diga. Si dimostra, nel caso di coefficienti regolari a tratti, che la derivata rispetto alla variabile temporale della soluzione del cosiddetto problema della diga è una misura, estendendo il risultato che gli stessi autori hanno già dimostrato nel caso di coefficienti lipschitziani.

Introduction

We deal with the solution to the dam problem, that is

$$
\begin{array}{ll}
u \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \quad \text { and } \quad \chi \in L^{\infty}(Q) ; \\
u \geqslant 0,0 \leqslant \chi \leqslant 1, u(1-\chi)=0 & \text { in } Q ; \\
u=g & \text { on } \Sigma_{D} ; \\
\int_{Q}\left(-\chi \partial_{t} v+a(\nabla u+\chi e) \cdot \nabla v\right) \leqslant 0 & \tag{0.4}
\end{array}
$$

for every $v \in H^{1}(Q)$ such that

$$
\begin{align*}
& v \geqslant 0 \text { on } \Sigma_{D}, \quad v=0 \text { on } \Sigma_{D} \cap\{g>0\}, \quad v(\cdot, 0)=v(\cdot, T)=0 \text { in } \Omega ; \tag{0.5}\\
& \chi(\cdot, 0)=\chi^{0} \quad \text { in } \Omega . \quad \square \tag{0.6}
\end{align*}
$$

Here Ω is a connected bounded open set in R^{n} with Lipschitz boundary and represents the porous medium. The boundary $\partial \Omega$ consists of the pervious part Γ_{D} and the impervious part Γ_{N}, whose closures are $C^{1,1}$ manifolds intersecting in a smooth $(n-2)$-dimensional submanifold of $\partial \Omega . a=\left(a_{i j}\right)$ is the permeability matrix and $e \in R^{n}$ is a given unit vector, which takes gravity into account in the physical model. The function u represents the unknown pressure and the velocity is given by $-a(\nabla u+\chi e)$ by Darcy's law. Finally the following notations have been used

$$
\begin{equation*}
Q=\Omega \times] 0, T\left[\quad \text { and } \quad \Sigma_{D}=\Gamma_{D} \times\right] 0, T[. \tag{0.7}
\end{equation*}
$$

We assume the following regularity for the data

$$
\begin{equation*}
g \in C^{0,1}\left(\boldsymbol{R}^{n+1}\right), \quad g \geqslant 0, \quad \chi^{0} \in L^{\infty}(\Omega), \quad 0 \leqslant \chi^{0} \leqslant 1 . \tag{0.8}
\end{equation*}
$$

This problem has been studied by several authors from different points of view:
(*) Nella seduta del 20 aprile 1991.
results deal mainly with the stationary case, but the evolution problem is also considered (see [1, 3-6, 8-11, 13, 14]; see also the lists of references of $[2,5,7,12]$).

In [11] it is proved that $\partial_{t} u$ is a measure whose negative part is a function, under the assumption that a is a uniformly elliptic matrix with Lipschitz continuous coefficients. Here we extend that result to the case of piecewise smooth coefficients, in order to cover the case of layered materials. More precisely we assume

$$
\begin{equation*}
a_{i j} \in L^{\infty}(\Omega), \quad\left|a_{i j}\right| \leqslant 1, \quad \sum_{i j} a_{i j}(x) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2} \quad \text { a. e. in } \Omega, \forall \xi \in R^{n}, \tag{0.9}
\end{equation*}
$$

where $\lambda>0$ is fixed, and \boldsymbol{v} is the outer unit normal vector to $\partial \Omega$. Moreover we assume the following regularity condition: there exists a smooth manifold with boundary, whose interior Γ_{0} lies in Ω, such that $\partial \Gamma_{0} \subset \partial \Omega$ and

$$
\begin{equation*}
a_{i j} \in C^{0,1}\left(\overline{\Omega_{k}}\right) \forall i, j, k \quad \text { and } \quad \boldsymbol{a e} \cdot \boldsymbol{v} \neq 0 \text { on } \overline{\Gamma_{0}} \tag{0.11}
\end{equation*}
$$

where Ω_{k} are the connected components of $\Omega \backslash \Gamma_{0}$, which we assume to be $C^{0,1}$.
Notice that no more than two $\overline{\Omega_{k}}$'s can have nonempty intersection. For technical reasons we assume that \boldsymbol{a} is continuous in a neighbourhood of Γ_{N}.

1. Known results for smooth a

In the paper [11] the idea of the proof was to use an inequality from below on the term $\operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e}))$ in terms of the measure of the set where $u=0$. We give a few of the inequalities from this paper without proof.

We work on sets of the type described in the following definition.
1.1. Definition. Assume $\Lambda>0$ and $\rho>0 . A$ set $\mathcal{O} \subset R^{n}$ is said to be a Λ, ρ-set if there exists a connected set U such that

$$
\begin{equation*}
\operatorname{diam} U \leqslant \Lambda_{\rho} ; \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{O}=B_{\rho}(\mathcal{U}), \quad \text { i.e. } \mathcal{O}=\bigcup_{x \in \mathcal{U}} B_{\rho}(x) . \tag{1.2}
\end{equation*}
$$

A connected set \mathcal{U} satisfying (1.1) and (1.2) is called a core of \mathcal{O}.
Assuming that \boldsymbol{a} is a uniformly elliptic matrix with L^{∞} coefficients, for these sets the Harnack inequality holds. Moreover, if a is globally $C^{0,1}$, the Hopf maximum principle holds too.

The first Lemma holds for L^{∞} coefficients (see [11], Lemma 1.5):
1.2. Lemma. Let \mathcal{O} to be a Λ, ρ-set with core \mathcal{U}. Suppose that $u \in H^{1}(\mathcal{O})$ is nonnegative and satisfies

$$
\begin{equation*}
\operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant 0 \quad \text { in } \mathcal{O}, \tag{1.3}
\end{equation*}
$$

and that $w \in u+H^{1}(\mathcal{O})$ satisfies

$$
\begin{equation*}
\operatorname{div}(\boldsymbol{a}(\nabla w+\boldsymbol{e}))=0 \quad \text { in } \mathcal{O} \tag{1.4}
\end{equation*}
$$

Then for any $\beta \geqslant 0$ we have

$$
\begin{equation*}
\int_{\mathcal{O}} \operatorname{div}(\boldsymbol{a}(\nabla u+e)) \geqslant c_{1} \beta|\{w-u \geqslant \beta\} \cap \mathcal{O}|^{1-2 / n} \tag{1.5}
\end{equation*}
$$

where c_{1} depends only on λ.
Furthermore, if for some $x \in \mathcal{U}$

$$
\begin{equation*}
\int_{B_{\rho / 2}(x)} u \leqslant \frac{1}{2} \int_{B_{\rho / 2}(x)} w \tag{1.6}
\end{equation*}
$$

then, for any $y \in \mathcal{U}$ and every $\rho^{\prime} \leqslant \rho$, we bave the estimate

$$
\begin{equation*}
\int_{0} \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant c_{2}\left(f_{B_{\rho^{\prime} / 2}(y)} u-c_{3} \rho\right) \rho^{n-2} \tag{1.7}
\end{equation*}
$$

where c_{2} and c_{3} depend only on λ and Λ.

Using 1.2. and also the Hopf maximum principle, the main results for «subharmonic» functions are (see [11], Lemmas 1.9 and 1.12):
1.3. Main Lemma. Assume \mathcal{O} to be a Λ, ρ-set, with $\rho \leqslant 1$ and core \mathcal{U}, and a to be Lipschitz continuous. If $u \in H^{1}(\mathcal{O})$ is nonnegative and satisfies (1.3), then, for every $x \in U$ and $\rho^{\prime} \leqslant \rho$, we have the estimate

$$
\begin{equation*}
\int_{\mathcal{O}} \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant c_{1}\left(\frac{1}{\rho} f_{B_{\rho^{\prime \prime} / 2}(x)} u-c_{2}\right)+|\{u=0\} \cap \mathcal{O}|^{1-1 / n} \tag{1.8}
\end{equation*}
$$

where c_{1} and c_{2} depend only on λ, Λ, and the norm of a in $C^{0,1}$.
1.4. Main Lemma (for Neumann boundary points). Assume that a is Lipschitz continuous and $x_{0} \in \Gamma_{N}$, and let \mathcal{O} be a Λ, ρ-set with core U such that

$$
\begin{align*}
& B_{\rho}\left(x_{0}\right) \cap \Omega \subseteq \mathcal{O} \subseteq B_{\Lambda \rho}\left(x_{0}\right) \cap \Omega ; \tag{1.9}\\
& \partial \mathcal{O} \cap \partial \Omega \subseteq \Gamma_{N} . \tag{1.10}
\end{align*}
$$

Moreover assume that $u \in H^{1}(\Omega)$ is non negative and satisfies (1.3) and (in a suitable sense, see [11])

$$
\begin{equation*}
|\boldsymbol{a} \nabla u \cdot v| \leqslant K \quad \text { on } \partial \mathcal{O} \cap \partial \Omega . \tag{1.11}
\end{equation*}
$$

Then for any $x \in B_{\rho / 2}\left(x_{0}\right) \cap \Omega$ and any $\rho^{\prime}<\rho / 2$ we have

$$
\begin{equation*}
\int_{\mathcal{O}} \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant c_{1}\left(\frac{1}{\rho} f_{B_{\rho^{\prime}(x)}} u-c_{2}(1+K)\right) \cdot|\{u=0\} \cap \mathcal{O}|^{1-1 / n} \tag{1.12}
\end{equation*}
$$

where c_{1} and c_{2} depend only on λ, Λ, Ω, and the norm of a in $C^{0,1}$.

From Lemma 1.10 and Remark 1.11 of [11] we derive the following:
1.5. Main Lemma (for Dirichlet boundark points). Assume that a is Lipschitz continuous and $x_{0} \in \Gamma_{D}$, and let $\tilde{\mathcal{O}}$ be a Λ, ρ-set whose core \mathcal{U} is contained in Ω. We set $\mathcal{O}=$ $=\Omega \cap \widetilde{\mathcal{O}}$ and assume

$$
\begin{align*}
& B_{\rho}\left(x_{0}\right) \cap \Omega \subseteq \mathcal{O} \subseteq B_{\Lambda \rho}\left(x_{0}\right) \cap \Omega \tag{1.13}\\
& \left|\boldsymbol{v}(x)-\boldsymbol{v}\left(x^{\prime}\right)\right| \leqslant \Lambda\left|x-x^{\prime}\right| / \rho \quad \text { for } x, x^{\prime} \in \Omega \cap \partial \mathcal{O} \tag{1.14}
\end{align*}
$$

Finally let $u \in H^{1}(\Omega)$ be nonnegative and satisfy (1.3). Then

$$
\begin{equation*}
\int_{\mathcal{O}} \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant c_{1}\left(\frac{1}{\rho} \int_{B_{\rho}\left(x_{0}\right) \cap \partial \Omega} u d \mathcal{C}^{n-1}-c_{2}\right) \cdot|\{u=0\} \cap \mathcal{O}|^{1-1 / n} ; \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathcal{O}} \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e})) \geqslant c_{3}\left(\frac{1}{\rho} f_{B_{\rho}\left(x_{0}\right) \cap \partial \Omega} u d \mathcal{C}^{n-1}-c_{4}\right) \cdot \lim \underset{\varepsilon \rightarrow 0}{ } \frac{1}{\varepsilon}\left|A_{\varepsilon}\right| \tag{1.16}
\end{equation*}
$$

where $A_{\varepsilon}=\{d(x, \partial \mathcal{O})<\varepsilon\} \cap\{u=0\}$ and c_{1}, \ldots, c_{4} depend only on λ, Λ, and the norm of \boldsymbol{a} in $C^{0,1}$.

We can apply these results because the following statements hold for the solution (u, χ) of the dam problem with L^{∞} coefficients (see [11], Proposition 2.2 and Lemma 2.4):
1.6. Proposition. The following inequalities hold
(1.17) $\operatorname{div}(\boldsymbol{a}(\nabla u+e)) \geqslant 0$ and $\partial_{t}(1-\chi)-\operatorname{div}((1-\chi) a e) \leqslant 0$.
1.7. Lemma. Assume that ψ is the characteristic function of an open subset of $\Omega \times \boldsymbol{R}$. Assume moreover $\psi \in B V\left(\boldsymbol{R}^{n+1}\right)$ and

$$
\begin{equation*}
\partial_{t} \psi-a e \cdot \nabla \psi \leqslant 0 \quad \text { and } \quad 0 \leqslant \psi \leqslant \chi_{\Omega \times R} \tag{1.18}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\partial_{t} \int_{\Omega} \psi(t)(1-\chi(t)) \leqslant-\int_{\Omega} \operatorname{div}(\boldsymbol{a}(\nabla u(t)+\boldsymbol{e})) \psi(t) \tag{1.19}
\end{equation*}
$$

In particular the left band side of (1.19) is nonpositive.
1.8. Remark. The condition (1.18) can be replaced by the following one: (1.18) holds in an open set ω_{1} of $R^{n+1}, \chi=1$ in an open set ω_{2}, and $\omega_{1} \cup \omega_{2} \supseteq$ $\supseteq \Omega \times R$.

2. The proof of the result

Here, as in [11], we use the following approximation of $\partial_{t} u$:

$$
\begin{equation*}
\partial_{t}^{b} u(x, t)=\frac{2}{3 b}\left(u(x, t)-\frac{1}{b} \int_{t-2 b}^{t-b} u(x, s) d s\right) \tag{2.1}
\end{equation*}
$$

for $x \in \Omega, b>0$, and $2 b<t<T$.
In the whole section we use the assumptions and the notations of the introduction and denote by (u, χ) the solution of the dam problem (0.1),...,(0.6).
2.1. Theorem. Suppose that $\mathcal{O}_{t} \subset \Omega$ is a Λ, ρ-set such that $a_{i j} \in C^{0,1}\left(\overline{\mathcal{O}}_{t}\right)$ and suppose that $\psi(\cdot, t):=\chi_{0_{t}}$ satisfies (1.18). Assume $2 b<t<T$. Then there exists a constant c_{1}, depending only on $\lambda, \Lambda,\|a\|_{C^{0,1}\left(\overline{\mathcal{O}}_{t}\right)}$, and ρ / b, such that either

$$
\begin{equation*}
\int_{B_{\rho^{\prime}(x)}} \partial_{t}^{b} u(y, t) d y \geqslant-c_{1} \quad \text { for all } \quad B_{\rho^{\prime}}(x) \subseteq B_{\rho / 2}(x) \subseteq \bigcap_{t-2 h<\tau<t} \mathcal{O}_{\tau} \text { or } \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\chi(\cdot, \tau)=1 \quad \text { in } \mathcal{O}_{\tau} \quad \text { for } t-b<\tau<t \tag{2.3}
\end{equation*}
$$

Proof. The proof of a quite similar statement is given in [11]. Here we sketch the proof again. By 1.7 and 1.3 we get

$$
\begin{aligned}
\partial_{s} \int_{\mathcal{O}_{s}}(1-\chi(s)) \leqslant-\int_{\mathcal{O}_{s}} \operatorname{div}(\boldsymbol{a}(\nabla u(s)+\boldsymbol{e})) & \leqslant \\
& \leqslant-c_{2}\left(\frac{1}{\rho} \int_{B_{\rho^{\prime}}(x)} u(y, s) d y-c_{3}\right)+\left|\mathcal{O}_{s} \cap\{u(s)=0\}\right|^{1-1 / n} .
\end{aligned}
$$

Let c_{1} be any positive number and assume (2.2) to be false for some ball $B_{\rho^{\prime}}(x)$: we prove that if c_{1} is large enough then (2.3) holds. Our assumption implies

$$
\begin{equation*}
f_{B_{\rho^{\prime}(x)}}\left(\int_{t-2 b}^{t-b} u(y, s) d s\right) d y>3 c_{1} b^{2} / 2 . \tag{2.4}
\end{equation*}
$$

But setting $f(s)=\int(1-\chi(s))$, we have $f(s) \leqslant\left|\mathcal{O}_{s} \cap\{u(s)=0\}\right|$; so the previous inequalities give

$$
f^{\prime}(s) \leqslant-c_{2}\left(\frac{1}{\rho} f_{B_{\rho^{\prime}}(x)} u(y, s) d y-c_{3}\right)^{+}(f(s))^{1-1 / n}
$$

From this it follows that either $f(t-b)=0$ or

$$
f^{1 / n}(t-2 h)-f^{1 / n}(t-b) \geqslant \frac{c_{2}}{n}\left(\frac{1}{\rho} f_{B_{\rho^{\prime}}(x)}\left(\int_{t-2 b}^{t-h} u(y, s) d s\right) d y-c_{3} b\right)
$$

Using (2.4) this gives $f^{1 / n}(t-2 b) \geqslant\left(c_{2} / n\right)\left[(3 / 2) c_{1} b \rho^{-1}-c_{3}\right] b$. As $f^{1 / n}(t-2 b) \leqslant c_{4} \rho$, this gives for c_{1} an upper bound depending on ρ / b. So, if c_{1} is large enough (depending on $\rho / b)$, we have $f(t-2 h)=0$ and the monotonicity of f gives the result.

For points on Γ_{0} we have to split the argument into two parts: «above» and «below» the interface.
2.2. Theorem. Assume $2 b<t<T, x_{0} \in \Gamma_{0}$, e.g. $x_{0} \in \overline{\Omega_{1}} \cap \overline{\Omega_{2}}$. Then there exists a constant $c \geqslant 1$ depending on the geometry such that, if $B_{c \rho}\left(x_{0}\right) \subset \overline{\Omega_{1}} \cap \overline{\Omega_{2}}$, then either

$$
\begin{equation*}
\int_{B_{p^{\prime}}(x)} \partial_{t}^{b} u(y, t) d y \geqslant-c_{1} \quad \text { for all } \quad B_{\rho^{\prime}}(x) \subset B_{\rho / 2}\left(x_{0}\right) \text { or } \tag{2.5}
\end{equation*}
$$

$$
\chi(\cdot, \tau)=1 \quad \text { in } \quad B_{\rho}\left(x_{0}\right) \quad \text { for } t-b<\tau<t
$$

Proof. We can assume $\boldsymbol{a}\left(x_{0}\right) \boldsymbol{e} \cdot \boldsymbol{v}<0$ where \boldsymbol{v} is the outer normal at x_{0} to $\partial \Omega_{1}$. For $t-2 b<\tau<t$ let $\mathcal{O}(\tau)$ be a Λ, ρ-set whose core $\mathcal{U}(\tau)$ contains x_{0} and satisfying (1.18) with $\psi(\cdot, \tau)=\chi_{\mathcal{O}(\tau)}$. Let also $\mathcal{O}_{1}(\tau)$ be a Λ, ρ-set whose core $\mathcal{U}_{1}(\tau)$ intersects $\mathcal{U}(\tau)$ and assume that also $\psi(\cdot, \tau)=\chi_{\mathcal{O}_{1}(\tau)}$ satisfies (1.18). Assume moreover that $\mathcal{O}_{1}(\tau) \subset \Omega_{1}$ for $t-2 b<\tau<s$ and that $\mathcal{O}_{1}(\tau)$ contains a $\beta(\tau-s)$-neighbourhood of $\Gamma_{0} \cap \mathcal{O}(\tau)$ for $s<\tau<t-b$.

Here Λ depends essentially on n, on the norm of \boldsymbol{a}, and on the infimum of $\boldsymbol{a e} \cdot \boldsymbol{v}$ in a neighbourhood of x_{0}; the constant c must be larger than a uniform $\Lambda ; \beta$ obviously depends on $\inf \boldsymbol{a e} \cdot \boldsymbol{v} ; s$ will be chosen later.

Take $c_{1}>0$ and assume (2.5) to be false for some x and ρ^{\prime} as in the statement. Thus (for some c_{2} depending on Λ)

$$
\int_{t-2 b}^{t-b}\left(f_{\mathfrak{O}(\tau)} u(y, \tau) d y\right) d \tau \geqslant c_{2} c_{1} b^{2}
$$

Choose s such that

$$
\begin{equation*}
\int_{t-2 b}^{s}\left(f_{\mathcal{O}(\tau)} u(y, \tau) d y\right) d \tau=c_{2} c_{1} b^{2} / 2 \tag{2.6}
\end{equation*}
$$

Define $w(\cdot, \tau) \in u(; \tau)+H^{1}(\mathcal{O}(\tau))$ by $\operatorname{div}(\boldsymbol{a}(\nabla w(\cdot, \tau)+\boldsymbol{e}))=0$ in $\mathcal{O}(\tau)$, and call \mathfrak{J} the set of all $\tau \epsilon] t-2 h, t-b[$ such that

$$
|\{x \in \mathcal{O}(\tau): w(x, \tau)-u(x, \tau)>\alpha \underset{\mathcal{O}(\tau)}{f} u(\tau)\}|>\alpha \rho^{n}
$$

where α will be specified later. From (1.5) and (1.19) we get

$$
\begin{aligned}
c_{3} \alpha \int_{\mathcal{J} O(\tau)} f_{\mathcal{O}} u(\tau) \cdot \alpha^{1-2 / n} \rho^{n-2} d \tau \leqslant \int_{t-2 b}^{t-h} \int_{\mathcal{O}(\tau)} \operatorname{div}(\boldsymbol{a}(\nabla u(\tau)+e)) & d \tau \leqslant \\
& \leqslant \int_{t-2 b}^{t-b} \partial_{\tau} \int_{\mathcal{O}(\tau)}(1-\chi(\tau)) d \tau \leqslant c_{4} \rho^{n}
\end{aligned}
$$

Hence

$$
\int_{\mathcal{J}} f_{\mathcal{O}(\tau)} u(\tau) d \tau \leqslant c_{\mathcal{F}} \alpha^{(2 / n)-2} \rho^{2}
$$

and, if $c_{1}>\left(c_{5} / 4 c_{2}\right) \alpha^{(2 / n)-2}(\rho / b)^{2}$, then

$$
\begin{equation*}
\int_{\mathscr{J}_{i} \mathcal{O}(\tau)} f u(\tau) d \tau \geqslant \frac{c_{2} c_{1}}{4} b^{2}, \quad i=1,2 \tag{2.7}
\end{equation*}
$$

where $\left.\mathscr{I}_{1}=\right] t-2 h, s\left[\backslash \mathcal{T}\right.$ and $\left.\mathscr{T}_{2}=\right] s, t-h[\backslash \mathscr{T}$.
Suppose that y^{\prime} is such that $B_{\rho / 4}\left(y^{\prime}\right) \subset \mathcal{O}(\tau)$: then by Harnack's inequality

$$
w\left(y^{\prime}, \tau\right) \geqslant c_{6} \int_{\mathcal{O}(\tau)} u(\tau)-c_{7} \rho .
$$

Therefore, if $\alpha<c_{6} / 2, \alpha<\left|B_{1 / 4}\right|, \tau \notin \mathcal{T}$, and $B_{\rho / 2}(y) \subset \mathcal{O}(\tau)$, then there exists $y^{\prime} \in B_{\rho / 4}(y)$ such that

$$
u\left(y^{\prime}, \tau\right) \geqslant w\left(y^{\prime}, \tau\right)-\alpha \int_{\mathcal{O}(\tau)} u(\tau) \geqslant \frac{c_{6}}{2} \int_{\mathcal{O}(\tau)} u(\tau)-c_{7} \rho .
$$

Taking $y \in \mathcal{U}_{1}(\tau) \cap \mathcal{U}(\tau)$, by the Main Lemma 1.3 we obtain

$$
\int_{\mathcal{O}_{1}(\tau)} \operatorname{div}(\boldsymbol{a}(\nabla u(\tau)+\boldsymbol{e})) \geqslant\left(\frac{c_{8}}{\rho} f_{\mathcal{O}(\tau)} u(\tau)-c_{9}\right)^{+}\left|\{u(\tau)=0\} \cap \mathcal{O}_{1}(\tau)\right|^{1-1 / n} .
$$

As in the previous proof we derive the differential inequality

$$
\partial_{\tau} \int_{\mathcal{O}_{,}(\tau)}(1-\chi(t)) \leqslant-\left(\frac{c_{8}}{\rho} f_{\mathcal{O}(\tau)} u(\tau)-c_{9}\right)+\left(\int_{\mathcal{O}_{1}(\tau)}(1-\chi(\tau))\right)^{1-1 / n},
$$

which gives as a consequence, after integration over \mathscr{I}_{1}, either

$$
\begin{equation*}
\frac{1}{n}\left|\mathcal{O}_{1}(t-2 b)\right|^{1 / n} \geqslant \int_{\mathscr{I}_{1}}\left(\frac{c_{8}}{\rho} f_{\mathcal{O}(\tau)} u(\tau)-c_{9}\right) d \tau \text { or } \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathcal{O}_{1}(\tau)}(1-\chi(\tau))=0 \quad \text { for } s<\tau<t \tag{2.9}
\end{equation*}
$$

By (2.7), from (2.8) it follows that

$$
c_{10}(\Lambda) \rho \geqslant c_{11} c_{1} b^{2} / \rho-c_{9} b \quad \text { i.e. } \quad c_{1} \leqslant(\rho / b)\left(c_{12} \rho / b+c_{13}\right) .
$$

So, if c_{1} is larger than the last number, then (2.9) holds, i.e. $\chi(\tau)=1$ in $\mathcal{O}_{1}(\tau)$ for $s<\tau<t$.

Now we construct $\mathcal{O}_{2}(\tau) \subset \Omega_{2}$ such that $\chi(\tau)=1$ in $\mathcal{O}_{2}(\tau)$ for $t-b<\tau<t$. A naive
construction of such an $\mathcal{O}_{2}(\tau)$ satisfying (1.18) will produce a gap between $\mathcal{O}_{2}(\tau)$ and $\mathcal{O}_{1}(\tau)$ for $\tau>s$, since β is small. This can be avoided by constructing $\mathcal{O}_{2}(\tau) \subset \Omega_{2}$ such that we have (1.18) outside of $\mathcal{O}_{1}(\tau)$ (with $\psi(\cdot, \tau)=\chi_{\mathcal{O}_{2}(\tau)}$).

There is a difficult in constructing the «upper» boundary of $\mathcal{O}_{2}(\tau)$: changing coordinates, fix $\boldsymbol{a}\left(x_{0}\right) \boldsymbol{e}$ to be parallel to the n-th axis and represent Γ_{0} locally by $x_{n}=\varphi\left(x^{\prime}\right)$ (where $x=\left(x^{\prime}, x_{n}\right)$). Then give the «upper» boundary by $x_{n}=\Phi\left(x^{\prime}, \tau\right):=\varphi\left(x^{\prime}\right)-$ $-\rho^{-1}\left(\left|x^{\prime}-x_{0}^{\prime}\right|-c_{14} \rho+c_{15} \beta^{-1 / 2}(\rho(\tau-s))^{1 / 2}\right)_{+}^{2}$. We have $\partial_{\tau} \Phi\left(x^{\prime}, \tau\right) \leqslant-c_{15}$ at those x^{\prime} such that $\varphi\left(x^{\prime}\right)-\Phi\left(x^{\prime}, \tau\right) \geqslant \beta(\tau-s)$. So we choose c_{15} according to the velocity of the solutions of $\dot{x}=-\boldsymbol{a}(x) \boldsymbol{e}$, and c_{14} large enough, namely $c_{14} \geqslant c_{15} \beta^{-1 / 2} \cdot\left((2 h / \rho)^{1 / 2}+1\right)$. So, applying Remark 1.8, we conclude che proof.

Now we deal with points on $\overline{\Gamma_{0}} \cap \Gamma_{D}$ and distinguish between Dirichlet boundary values which are larger or smaller than a number of order h.
2.3. Lemma. Let $x \in \overline{\Gamma_{0}} \cap \Gamma_{D}$. Then for every $\alpha>0$ there exists $\eta>0$ such that if $u(x, t)>\eta b$ then $\chi=1$ in $\left.\left(\Omega \cap B_{\alpha b}(x)\right) \times\right] t-h, t+b\left[\right.$ provided $2 \alpha b<d\left(x, \Gamma_{N}\right)$.

Proof. Let Ω_{1} and Ω_{2} be the components of $\Omega \backslash \Gamma_{0}$ whose closures contain x and choose open subsets $\mathcal{O}_{1} \subset \Omega_{1}$ and $\mathcal{O}_{2} \subset \Omega_{2}$ satisfying the following conditions (where Λ will depend e.g. in the $C^{1,1}$ structure of $\left.\Gamma_{0}\right):\left|\boldsymbol{v}(x)-\boldsymbol{v}\left(x^{\prime}\right)\right| \leqslant \Lambda(\alpha b)^{-1}\left|x-x^{\prime}\right|$ $\forall x, x^{\prime} \in \Omega_{i} \cap \partial \mathcal{O}_{i}, i=1,2 ; B_{\alpha b}(x) \cap \Omega \subset \overline{\mathcal{O}_{1}} \cup \overline{\mathcal{O}_{2}} \subset B_{\Lambda \alpha b}(x) ; \exists x_{i} \in \overline{\mathcal{O}_{i}} \cap \Gamma_{D}: B_{\alpha b / 4}\left(x_{i}\right) \cap \Omega \subset \mathcal{O}_{i}$, $i=1,2$. If η is large enough, $u\left(x_{i}, \tau\right)>\eta b / 2$ for $|\tau-t|<2 h$. Then we can apply Lemma 1.5 with $\rho=\alpha h$ and deduce

$$
\begin{aligned}
& \int_{\mathcal{O}_{i}} \operatorname{div}(\boldsymbol{a}(\nabla u(\tau)+\boldsymbol{e})) \geqslant c_{1}\left(\frac{1}{b} \inf _{\bar{O}_{i} \cap \Gamma_{D}} u(\cdot, \tau)-c_{2}\right)\left|\{\chi(\cdot, \tau)<1\} \cap \mathcal{O}_{i}\right|^{1-1 / n} \\
& \int_{\mathcal{O}_{i}} \operatorname{div}(\boldsymbol{a}(\nabla u(\tau)+\boldsymbol{e})) \geqslant c_{3}\left(\frac{1}{b} \inf _{\bar{O}_{i} \cap \Gamma_{D}} u(\cdot, \tau)-c_{4}\right) \cdot \lim \underset{\varepsilon \rightarrow 0}{ } \frac{1}{\varepsilon}\left|A_{i \varepsilon}(\tau)\right|
\end{aligned}
$$

where $A_{i \varepsilon}=\left\{d\left(\cdot, \Omega \cap \partial \Omega_{i}\right)<\varepsilon\right\} \cap\{u(\tau)=0\}$. Now we argue as in the smooth case and deduce

$$
\begin{aligned}
\partial_{t} \int(1-\chi)=-\int_{\mathcal{O}_{i}} & \operatorname{div}(\boldsymbol{a}(\nabla u+\boldsymbol{e}))+\underset{\varepsilon \rightarrow 0}{\lim \sup } \frac{1}{\varepsilon} \int_{\left\{d\left(\cdot, \Omega \cap \partial \mathcal{O}_{i}\right)<\varepsilon\right\}}\|a\|_{L^{\infty}} \chi_{\{u=0\}} \leqslant \\
& \leqslant-c_{5}\left(\frac{1}{b} \inf _{\mathcal{O}_{i} \cap \Gamma_{D}} u(\cdot, \tau)-c_{6}\right) \cdot\left(\int_{\mathcal{O}_{i}}(1-\chi)\right)^{1-1 / n} \leqslant-c_{7}\left(\int_{\mathcal{O}_{i}}(1-\chi)\right)^{1-1 / n} .
\end{aligned}
$$

From this differential inequality we conclude the result as in [11].
As in [11] we can find a «parallel» boundary to $\partial \Omega \cap\{g<\beta b\}$ such that $\partial_{t}^{b} u$ is bounded there.
2.4. Lemma. Assume $\alpha, \beta>0$ and define $w \in H^{1}(\Omega)$ by
$\operatorname{div}(\boldsymbol{a}(\nabla w+\boldsymbol{e}))=0 \quad$ in $\Omega ; \quad w=g \quad$ on $\Gamma_{D} \quad$ and $\quad \boldsymbol{a}(\nabla w+\boldsymbol{e}) \cdot \boldsymbol{v}=0 \quad$ on Γ_{N}. Then there exists a smooth $\Omega_{b} \subset \Omega$ such that $d\left(\Omega_{b},\{g \leqslant \beta b\}\right)>\alpha b$ and

$$
\int_{\Omega \cap \partial \Omega_{b}}|w|^{\varepsilon} \leqslant c b^{\varepsilon}
$$

for some $\varepsilon>0$, where c depends on α and β.
2.5. Remark on the proof. The estimate follows from an estimate on $\partial_{\nu} w$. Near the points of $\overline{\Gamma_{D}} \cap \overline{\Gamma_{0}} \partial_{\nu} w$ has a singularity which can be estimate by the ε-Hölder continuity of w.
2.6. Main Theorem. Under the assumptions of the introduction, let (u, χ) be the solution to the dam problem. Then $\partial_{t} u$ is a measure on $\left.\Omega \times\right] 0,+\infty[$ whose negative part is a locally bounded function.

More precisely, for every $T>0$ and $\delta>0$ there exists a constant c, wich depends only on T, δ, λ, on the norm of a in $C^{0,1}$ of the components Ω_{k}, on the norm of g in $C^{0,1}$, and on the geometry, such that

$$
\begin{align*}
& \partial_{t} u \geqslant-c \quad \text { in } Q(T, \delta), \quad \text { where } \tag{2.10}\\
& Q(T, \delta)=\{(x, t) \in \Omega \times] 0, T\left[: d\left(x, \Gamma_{D} \cap\{g<\delta\}\right)>\delta\right\} . \tag{2.11}
\end{align*}
$$

Proof. Arguing as in [11], but using Theorems 2.1 and 2.2 in the interior, a similar statement for Γ_{N} (see [11] Lemma 2.9), and Lemma 2.3, we see that $w_{b}:=\left(\partial_{t}^{b} u\right) \wedge\left(-c_{1}\right)$ fulfills

$$
\begin{cases}\operatorname{div}\left(\boldsymbol{a} \nabla w_{b}\right) \leqslant 0 & \text { in } \Omega_{b} \\ w_{b}=\left(\partial_{t}^{b} u\right) \wedge\left(-c_{1}\right) & \text { on } \Gamma_{D} \cap \partial \Omega_{b}(s) \\ \boldsymbol{a} \nabla w_{b} \cdot \boldsymbol{v} \geqslant 0 & \text { on } \Gamma_{N}\end{cases}
$$

where Ω_{b} is as in the Lemma 2.4. So one can estimate w_{b} from below by the solution of the corresponding equalities.

Since on $\Omega \cap \partial \Omega_{b}$ is estimated by $-w / h$ from below, with w given in Lemma 2.4, one finally gets the estimate

$$
\int_{\Omega_{b}}\left(w_{b}^{-}\right)^{\varepsilon} \leqslant c_{2}
$$

and, more precisely, w_{b} is bounded pointwise from below away from the set where $g \leqslant O(b)$.

Acknowledgements

This work was partially supported by MURST (Italy), IAN-CNR of Pavia (Italy), and DFG through SFB 256 of Bonn (Germany).

References

[1] H. W. Alt - S. Luckhaus - A. Visitin, On nonstationary flow through porous media. Ann. Mat. Pura Appl., IV, 136, 1984, 303-316.
[2] C. Baiocchi - A. Capelo, Variational and quasivariational inequalities, applications to free boundary problems. Wiley, Chichester 1983.
[3] J. Carrillo, Uniqueness and periodic behaviour of the solution to the evolution dam problem. To appear.
[4] J. Carrillo - G. Gilardi, La vitesse de propagation dans le problème de la digue. Ann. Faculté des Sciences de Toulouse, to appear.
[5] M. Снірот, Variational inequalities and flow in porous media. Springer Verlag, New York 1974.
[6] E. Di Benedetto - A. Friedman, Periodic behaviour for the evolutionary dam problem and related free boundary problems. Comm. on Partial Diff. Equations, 11, 1986, 1297-1377.
[7] A. Friedman, Variational principles and free boundary problems. Wiley, New York 1982.
[8] G. Gilardi, A new approach to evolution free boundary problems. Comm. on Partial Diff. Equations, 4, 1979, 1099-1123; 5, 1980, 983-984.
[9] G. Gilardi, The support of the solution in the dam problem. Proceedings of the International colloquium on Free boundary problems: theory and applications (Montreal, Canada, 13-22/6/1990), to appear.
[10] G. Gilardi - D. Kroner, The dam problem in unbounded domains. Ann. Mat. Pura Appl., to appear.
[11] G. Gilardi - S. Luckhaus, A regularity result for the solution of the dam problem. To appear.
[12] D. Kinderlehrer - G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press, New York 1980.
[13] A. Torelli, Su un problema di frontiera libera di evoluzione. Boll. U.M.I.; (4), 11, 1975, 559-570.
[14] A. Visitin, Existence results for some free boundary filtration problems. Ann. Mat. Pura Appl., IV, 124, 1980, 293-320.
G. Gilardi: Dipartimento di Matematica Università degli Studi di Pavia Strada Nuova, 65-27100 Pavia
S. Luckhas: Institut für Angewandte Mathematik Universität Bonn - Wegelerstr., 6-5300 Bonn (Germania)

