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Equazioni a derivate parziali. — Extension of a regularity result concerning the dam 

problem. N o t a d i G I A N N I G I L A R D I e S T E P H A N L U C K H A U S , p re sen ta t a (*) da l Socio E . 

MAGENES. 

ABSTRACT. — One proves, in the case of piecewise smooth coefficients, that the time derivative of 
the solution of the so called dam problem is a measure, extending the result proved by the same authors 
in the case of Lipschitz continuous coefficients. 

KEY WORDS: Regularity; Porous media; Non negative subharmonic functions. 

RIASSUNTO. — Estensione di un risultato di regolarità sul problema della diga. Si dimostra, nel caso di 
coefficienti regolari a tratti, che la derivata rispetto alla variabile temporale della soluzione del cosiddetto 
problema della diga è una misura, estendendo il risultato che gli stessi autori hanno già dimostrato nel 
caso di coefficienti lipschitziani. 

INTRODUCTION 

We deal with the solution to the dam problem, that is 

(0.1) ueL2(QJ;Hl(Q)) and xeL°°(Q); 

(0.2) « ^ 0 , O ^ x ^ l , « ( l - x ) = 0 in Q; 

(0.3) u = g on i ? D ; 

(0.4) J ( ~xdt v + a^u + Xe) * Vi;) ̂  0 
Q 

for every veH1 (Q) such that 

(0.5) ^ 0 o n i ; D , ^ O o n ^ n f ^ O } , v(;0) = v(;T) = 0 in Û; 

(0.6) x(->0) = z° inQ. D 

Here Q is a connected bounded open set in Rn with Lipschitz boundary and repre
sents the porous medium. The boundary dû consists of the pervious part rD and the 
impervious part rNy whose closures are C1,1 manifolds intersecting in a smooth 
(n — 2)-dimensional submanifold of 3D. a = (a#) is the permeability matrix and eeRn 

is a given unit vector, which takes gravity into account in the physical model. The 
function u represents the unknown pressure and the velocity is given by —a(Vu + ye) 
by Darcy's law. Finally the following notations have been used 
(0.7) Q = OX]0,T[ and ID =TD X]0,T[. 

We assume the following regularity for the data 

(0.8) ge&HR""), g^0, x°eL°°(Q), O ^ ^ l . • 

This problem has been studied by several authors from different points of view: 

(*) Nella seduta del 20 aprile 1991. 
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results deal mainly with the stationary case, but the evolution problem is also consid
ered (see [1,3-6,8-11,13,14]; see also the lists of references of [2,5,7,12]). 

In[11] it is proved that dtu is a measure whose negative part is a function, under 
the assumption that a is a uniformly elliptic matrix with Lipschitz continuous coef
ficients. Here we extend that result to the case of piecewise smooth coefficients, in or
der to cover the case of layered materials. More precisely we assume 

(0.9) ^ 6 L " ( Û ) , y ^ l , 2 ^ ( x ) Ç , ^ A | Ç | 2 a.e. in O, VÇeR", 
v 

(0.10) div(ae)^0 in Q and ae-v<0 on P N , 

where À > 0 is fixed, and v is the outer unit normal vector to dû. Moreover we assume 
the following regularity condition: there exists a smooth manifold with boundary, 
whose interior T0 lies in Q, such that dr0 c dû and 

(0.11) ^ - e C 0 ' 1 ® ViJ,k and ae-v^O on F0 

where Q^ are the connected components of Q\r0, which we assume to be C0,1. 
Notice that no more than two û^'s can have nonempty intersection. For technical 

reasons we assume that a is continuous in a neighbourhood of rN. 

1. KNOWN RESULTS FOR SMOOTH a 

In the paper [11] the idea of the proof was to use an inequality from below on the 
term div (a(Vu + e)) in terms of the measure of the set where u = 0. We give a few of 
the inequalities from this paper without proof. 

We work on sets of the type described in the following definition. 

1.1. DEFINITION. Assume A > 0 and p > 0. A set Oc Rn is said to be a A, p-set if there 
exists a connected set Vi such that 

(1.1) d iamll^Ap; 

(1.2) G = BAU), i.e. 0= U BAx). 

A connected set It satisfying (1.1) and (1.2) is called a core of O. • 

Assuming that a is a uniformly elliptic matrix with L00 coefficients, for these sets 
the Harnack inequality holds. Moreover, if a is globally C0'1, the Hopf maximum 
principle holds too. 

The first Lemma holds for L°° coefficients (see [11], Lemma 1.5): 

1.2. LEMMA. Let O to be a A, p-set with core Vi. Suppose that ueHl(Q) is nonnegative 
and satisfies 

(1.3) div(*(V« + e ) ) ^ 0 in 0 , 

and that weu + H1 (Q) satisfies 

(1.4) div(rf(V^ + e)) = 0 in Q. 
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Then for any p ^ 0 we have 

(1.5) J div (a(Vu + e))&clp\{w-u&p}nG\1~ 

o 

where cx depends only on X 
Furthermore, if for some xeV 

(1.6) I u^2 I W 

Bp/2(x) Bp/2(x) 

then, for any y e Vi and every p ^p, toe have the estimate 

jdiv(a{Vu + e))^c2l ju-c3pl 

o \Bp>/2(y) ) 

(1.7) \div(a{Vu + e))^c2[ <\u-c,p\p> 
o 

n-2 

where c2 and c3 depend only on A and A. • 

Using 1.2. and also the Hopf maximum principle, the main results for «subhar-
monic» functions are (see [11], Lemmas 1.9 and 1.12): 

1.3. MAIN LEMMA. Assume 0 to be a A, p-set, with p ^ 1 and core V, and a to be Lip
schitz continuous. If u eHl{&) is nonnegative and satisfies (1.3), then, for every xeV 
and p ^p, we have the estimate 

(1.8) j &v(a{Vu + e))^cA- \ u-cX \{u = 0}nO\1-
0 \ £,72 M / 

Un 

where cx and c2 depend only on X, A, and the norm of a in C0'1. • 

1.4. MAIN LEMMA (for NEUMANN BOUNDARY POINTS). Assume that a is Lipschitz 
continuous and x0 eTN) and let O be a A, p-set with core V such that 

(1.9) Bp(x0)nQçOçBAp(x0)nQ; 

(1.10) 30ndQçrN. 

Moreover assume that ueH1(Q) is non negative and satisfies (1.3) and {in a suitable 
sense, see [11])-

(1.11) \aVu-v\^K on dOndQ. 

Then for any x e Bp/2 {x0) n Q and any p < p/2 we have 

(1.12) J div{a{Vu + e))^cA- fu- c2{l + K) \-\{u = 0} nO\l~l/n 

O \ Bp.(x) J 

where q and c2 depend only on A, A, Q, and the norm of a in C0 ' l. D 
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From Lemma 1.10 and Remark 1.11 of [11] we derive the following: 

1.5. MAIN LEMMA (for DIRICHLET BOUNDARY POINTS). Assume that a is Lipschitz 
continuous and x0 € rD, and let G he a A, p-set whose core XI is contained in Q. We set G — 
= Q n O and assume 

(1.13) Bp(x0)nQçGçBAp(x0)nQ; 

(1.14) \v(x)-v(x')\^A\x-x'\/p for xyx' eOndG. 

Finally let ueHl{Q) be nonnegative and satisfy (1.3). Then 

(1.15) \àiv{a{Vu + e))^cA- \ udXn~l-c2\-\{u = 0} nO\ 

0 \ BAXù)ndû 

1 - lin , 

(1. 

J div(*(V« + e))^C! - r ; 
O \ Bp(x0)na 

1.16) Jdiv(tf(V« + e ) ) ^ c 3 | - j udXn-l-c\-Y\m sup -j |A£| 
O y Bp(x0)n3D ^ £~* 

where Az = {J(x, dG) <e} n {u = Q} and q, . . . , c4 depend only on X} A, and the norm of a 
in C0'1. • 

We can apply these results because the following statements hold for the solution 
(Uj x) of the dam problem with L00 coefficients (see [11], Proposition 2.2 and Lem
ma 2.4): 

1.6. PROPOSITION. The following inequalities hold 

(1.17) div(*(V«+-e))^0 and 9,(1 - x) ~ div((l -/)<«?) ^ 0 . D 

1.7. LEMMA. Assume that 0 « ròe characteristic function of an open subset ofQ X jR. 
Assume moreover <peBV(Rn+1) and 

(1.18) 3 , 0 - * e - V f ^ O and O^^^XQXR-

Then we have 

(1.19) sJ^Z) (1 -*(/)) ^ " /div(*(V«(/) + *)).#/). 

7^ particular the left hand side of (1.19) « nonpositive. D 

1.8. REMARK. The condition (1.18) can be replaced by the following one: (1.18) 
holds in an open set coi of Rn+1, # = 1 in an open set <w2, and ^ u c ^ D 
DQXR. D 
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2. T H E PROOF OF THE RESULT 

Here, as in [11], we use the following approximation of dtu: 

t-h 
\ 

(2.1) 
2 i f 

dh
t u(x, t) = — \ u(x, t) — - u(x, s) ds 

3h \ h J 
\ t-2h / 

for xeQ, h>0, and 2h<t<T. 
In the whole section we use the assumptions and the notations of the introduction 

and denote by (u,x) the solution of the dam problem (0.1),...,(0.6). 

2.1. THEOREM. Suppose that OtcQ is a A,p-set such that a^ e C0,1 (Ot) and suppose 
that (//(•,/) : = xot satisfies (1.18). Assume 2h<t< T. Then there exists a constant q , de
pending only on À,A, |H|c°.i(ój> &nd p/h, such that either 

(2.2) \ dh
t u(yy t)dy ^ - q for all Bp. (x) ç Bp/2 (x) ç fi 0T 

J r r t-2h<x<t 
or 

Bp.(x) 

(2.3) X(',T) = 1 in 0T for t-h<T<t. • 

PROOF. The proof of a quite similar statement is given in [11]. Here we sketch 
the proof again. By 1.7 and 1.3 we get 

9, J ( l - X(s)) ^ ~ \ div (a(Vu(s) + e)) ^ 

^-c2lj ju(y,s)dy-cA+\Osn{u(s) = 0}\1 

\ *,•(*> J 
Let q be any positive number and assume (2.2) to be false for some ball Bp> (x): we 

prove that if q is large enough then (2.3) holds. Our assumption implies 

t-h \ 

-\ln 

(2.4) dy>3cxh
2/2. T I u(y> s) ds 

Bp.(x) \t-2h j 

But setting/(.y) =1(1— x(s))> w e have/CO ^ \Os n {u(s) = 0}|; so the previous inequal-

mes give 

f'(s)^-c2U fu(y,s)dy-c\+(f(s))1 

\ W / 

-\/n 

From this it follows that either f(t — h) = 0 or 

t-h 

fy»(t-2h)-fy\t-h)>Cj\± fl \ u(y,s)ds\dy-c}h 
Bf.(x) \t-2h 
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Using (2.4) this gives f1/n(t-2h)^ (c2 In) \$l2)cxhfl - c}]h. As fl/n{t~2h) ^c4py 

this gives for cx an upper bound depending on p/h. So, if cx is large enough (depending 
on p/h), we have / ( / — 2h) = 0 and the monotonicity of / gives the result. • 

For points on P0 we have to split the argument into two parts: «above» and «be
low» the interface. 

2.2. THEOREM. Assume 2h<t<T, x0er0, e.g. x0 6 ^ 0 % Then there exists a 
constant c^\ depending on the geometry such that, if Bcp{x0) cQinQ2, then either 

(2.5) fdh
tu(y>^)dy^-cl forali Bp. (x) cBp/2(x0) or 

Bp'(x) 

X(%T) = 1 in Bp(x0) for t-h<r<t. • 

PROOF. We can assume a(x0) e • v < 0 where v is the outer normal at % to dui. For 
t — 2h<T<t let 0(T) be a A,p-set whose core 11(T) contains x0 and satisfying (1.18) 
with <//(•, T) = XO(T) • Let also Ox (r) be a A, p-set whose core Hi (T) intersects 1X(T) and 
assume that also <P(',T) = Xo^z) satisfies (1.18). Assume moreover that OI(T)CQI for 
t-2h<r<s and that OX{T) contains a /3(T-^-neighbourhood of r0nO(r) for 
s<z<t-h. 

Here A depends essentially on n, on the norm of a, and on the infimum of ae • v in a 
neighbourhood of x0 ; the constant c must be larger than a uniform A;/3 obviously de
pends on miacv, s will be chosen later. 

Take C\ > 0 and assume (2.5) to be false for some x and p' as in the statement. Thus 
(for some c2 depending on A) 

t-h 

J ( f u{yyT)dy\dr^c2clh
2. 

t-2h \©(T) / 

Choose ^ such that 

(2.6) J [ ju(y>r)dy\dT = c2c1h
2/2. 

t-2h \0(r) ) 

Define w{; T) e «(•, T) + H 1 ( 0 ( T ) > by div (*(VH;(-, T) + e)) = 0 in 0(T), and call <Tthe set 
of all re]t-2h,t- h[ such that 

Ix€ 0(r): w(x,T) — u(x,T)>af &(T 
0(T) 

>ap* 

where a will be specified later. From (1.5) and (1.19) we get 
t-h 

c3*j fuir)-*1-2'" pn~2 dr^ \ J* div (a(Vu(z) + e)) di 

t-

\ 9 T / ( 1 - X ( T ) ) J T « C P - . 

$ 0{z) t~2hO{r) 
t-h 

t-2h 0(T) 
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Hence 

j" fu(T)dT^c5«
{2/n)-2p2 

S 0(T) 

and , if cx > {c5 /4c2 ) <x(2/n) ' 2 {p/hf, then 

(2.7) J juizìdr^^-h2, i = l , 2 , 

% 0(r) 

where ffi = ] / - 2h, s[\S and 5* =]j , / - h[\S. 
Suppose that y' is such that Bp/4(y') CO(T): then by Harnack's inequality 

w(yf
yz)^c6 j U(T)-C7 p. 

0(T) 

Therefore, if a < c6/2, a < |B1/4|, T £ <T, and jBp/2 (y) c 0(T), then there exists y' e Bp/4 (y) 
such that 

u{y'yT)^w{y',T)-(X j u{z) ^ y JU(T)-C7P. 

0(r) 0(r) 

Taking 3; e l l ^ r ) nH(r) , by the Main Lemma 1.3 we obtain 

J div(*(V«(T) + e ) ) ^ ( | f ^ - J l W ^ O j n ^ T f 

UT) \ O(T) / 

-1/n 

As in the previous proof we derive the differential inequality 

3, J(l-x('))^-[f ^ ( T ) - J + ( J(1-*(T)) 

which gives as a consequence, after integration over J i , either 

(2.8) £ |0! (/ -2h)\1/n^jl^ j U(T) - cA dz or 

*i \ 0(r) J 

(2.9) J ( l - z M ) = 0 for 5 < T < ^ . 

©I (T ) 

By (2.7), from (2.8) it follows that 

c10(A)p^cnc1h
2/p-c9h i.e. cx^{p/h){cl2 p/h + cn). 

So, if cx is larger than the last number, then (2.9) holds, />. %(T) = 1 in 01{z) for 
J < T < / . 

Now we construct 02 (z) C D2 such that %(r) = 1 in 02 (T) for / — /? < T < /. A naive 
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construction of such an 02 (T) satisfying (1.18) will produce a gap between 02 (T) and 
Oi (T) for T> s, since /3 is small. This can be avoided by constructing 02 (T) CQ2 such 
that we have (1.18) outside of 0X (T) (with <//(•, T) = xo2 (T) ) • 

There is a difficult in constructing the «upper» boundary of 02 (T): changing coor
dinates, fix a(x0) e to be parallel to the n-th. axis and represent r 0 locally by xn = <p{x') 
(where x= (xr ,xn)). Then give the «upper» boundary by x„ = # ( X ' , T ) := <p(x') — 
- p"1 (\xf -xi\-cup + %/T1 / 2 (p(r - s))m )2

+ . We have dr$(x', T) ^ -c15 at those *' 
such that <p(xr) — $(x', T) ^ /3(T — J). SO we choose % according to the velocity of the 
solutions of x— —a(x)ey and c14 large enough, namely c14 ̂  ci5p~1/2 • ((2h/p)1/2 + 1). 
So, applying Remark 1.8, we conclude che proof. D 

Now we deal with points on F0 nrD and distinguish between Dirichlet boundary 
values which are larger or smaller than a number of order h. 

2.3. LEMMA. Let xer0nrD. Then for every a > 0 there exists rj>0 such that if 
u(x, t) > rjh then % = 1 in (Q n B^ (x)) X]t — h,t + h[ provided 2<xh < d(x,TN). • 

PROOF. Let Qx and Q2 be the components of Q\r0 whose closures contain x and 
choose open subsets 0X cQi and 02 cQ2 satisfying the following conditions (where A 
will depend e.g. in the C u structure of T0): \v(x) - v(x')\ ^A(ah)~x \x- x'\ 
VxiX'eQjndGj, i= 1,2; faMnQcfyvtycB^x); 3*, etynTD: BM(x^nQcOh 

i= 1,2. If Y] is large enough, u(xif T) > 17/7/2 for |T — /| < 2h. Then we can apply Lemma 
1.5. with p = och and deduce 

I div (*(V«(T) + e))^J\ j n f «(•, T) - J |{z(-, T) < 1} n 0f-

/ 

1-1/» 

div (a(Vu(z) + e)) ^ c3 7- j n f «(•, T) — c4 j • lim sup — |̂ 4/e (T) 

0/ 

where Ak = {û?(*,D n 3D,) < s} n {«(T) = 0}. Now we argue as in the smooth case and 
deduce 

dt 1(1 —x) = — |div(*(V« + e)) + l i m s u p - ..JMIL-X{« = O} ^ 
£—>0 

©,- O,- { 4ûn30 , - )< î } 

From this differential inequality we conclude the result as in [11]. • 

As in [11] we can find a «parallel» boundary to dû n {g<ph} such that dh
tu is 

bounded there. 
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2.4. LEMMA. Assume a,/3>0 and define weH1(Q) by 

div(a(Vw + e)) = 0 in Q; w = g on TD and a(Vw + e)*v=0 on TN. 

Then there exists a smooth Q^cQ such that d(Qh,{g^fih})>ah and 

j \w\s^ch£ 

QndQh 

for some s>0, where c depends on a and (3. • 

2.5. REMARK ON THE PROOF. The estimate follows from an estimate on 3vw. Near 
the points oirDnr0 dvw has a singularity which can be estimate by the e-Holder con
tinuity of w. • 

2.6. MAIN THEOREM. Under the assumptions of the introduction, let («,%) be the so
lution to the dam problem. Then dt u is a measure on Q X ]0, + o° [ whose negative part is a 
locally bounded function. 

More precisely, for every T> 0 and 8>0 there exists a constant c, wich depends only 
on T, $, X, on the norm of a in C0,1 of the components Qj,, on the norm of g in C0 ' l, and on 
the geometry, such that 

(2.10) 3tu^-c in Q(T,$), where 

(2.11) Q(T, S) = {(*, t)eQ x]0, T[: d(x,rD n {g < S}) > S}. • 

PROOF. Arguing as in [11], but using Theorems 2.1 and 2.2 in the interior, 
a similar statement for JHN (see [11] Lemma 2.9), and Lemma 2.3, we see that 
wh := (3h

tu) A ( - q ) fulfills 
rdiv(rfV^)^0 in O^, 

Mfc = (9j u) A ( - q ) on JPD n 90A (5), 

rfV^* v^O on r N , 

where û^ is as in the Lemma 2.4. So one can estimate w^ from below by the solution of 
the corresponding equalities. 

Since on Q n SQh is estimated by — w/h from below, with w given in Lemma 2.4, 
one finally gets the estimate 

Qh 

and, more precisely, Wj, is bounded pointwise from below away from the set where 
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