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Fisica matematica. — An existence result in nonlinear theory of electromagnetic 

fields. Nota di DORIN IESAN e ANTONIO SCALIA, presentata (*) dal Socio D. 

GRAFFI. 

ABSTRACT. — This paper is concerned with the nonlinear theory of equilibrium for materials which 

do not conduct electricity. An existence and uniqueness result is established. 

KEY WORDS: Electromagnetism; Nonlinear theory; Existence and uniqueness. 

RIASSUNTO. — Un risultato di esistenza nella teoria nonlineare dell'elettromagnetismo. In questo lavoro 

si affronta lo studio dell'equilibrio per materiali non lineari e non conduttori di elettricità. Per tale pro

blema vengono formulati teoremi di esistenza e di unicità. 

1. I N T R O D U C T I O N 

The equations of electromagnetic theory have been the subject of many investiga
tions (see, for example, [1-5]). 

This paper is concerned with the nonlinear theory of equilibrium for materials 
which do not conduct electricity. Moreover, only isothermal processes are consid
ered. 

The aim of this paper is to establish an existence theorem for a boundary-value 
problem by using results on the nonlinear operators presented in [6,7]. 

2. BASIC EQUATIONS 

We assume that a bounded region R of three dimensional Euclidean space 83 is oc
cupied by a rigid body which does not move. We let R denote the closure of R and call 
dR the boundary of R. We assume that dR is sufficiently smooth for the divergence 
theorem and Friedrichs, inequality to be applicable. Letters in boldface stand for vec
tor fields. We write ^ for the components of v in the underlying rectangular Cartesian 
coordinate frame. We shall employ the usual summation and differentiation conven
tions: the subscripts are understood to range over the integers (1, 2, 3); summation 
over repeated subscripts is implied and subscripts preceded by a comma denote par
tial differentiation with respect to the corresponding Cartesian coordinate. 

In the case of equilibrium, the field equations of the electromagnetic theory re
duce to 

(2.1) c u r l £ = 0, curl H=0, 

(2.2) d i v D = p , d i v 5 = 0, 

where E is the electric intensity, H is the magnetic intensity, D is the electric induc
tion, B is the magnetic induction, and p is the density of charge. 

(*) Nella seduta del 15 dicembre 1990. 
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The material at each place x in R is specified by the following constitutive 
equations 

A A 

(2.3) K=mm, 0—à§'A
 B=-ià> 

where Ç is the enthalpy density. We assume that Ç is a smooth function. We restrict 
our attention to materially homogeneous bodies. 

It follows from (2.1) that 

(2.4) 3 = 9>l-, Hf. = ^ , 

where — 9 is the potential of the electric field and — <// is the magnetic potential. The 
constitutive equation can be written in the form 

A A 

A sr dr 
(2.5) C = « 9 , 0 U > D< = - ^ > Bi = -^T' 

We consider the boundary conditions 

(2.6) ? — ?y </> = <£ on 3R, 

where 9 and $ are prescribed functions. 
The problem consists in finding the functions 9 and </> which satisfy the equations 

(2.2) and (2.5) in R and the boundary conditions (2.6) on dR. 

3. EXISTENCE THEOREMS 

In order to derive existence theorems, we first recall some results established by 
Langenbach[7]. These results have been used in [8] to establish existence theo
rems for the first boundary-value problem of elastostatics. 

Let Q be a bounded region of R*, with the boundary surface dû, and let X(Q) be a 
Hilbert space on Q. The boundary dQ is assumed to be sufficiently smooth for the di
vergence theorem to be applicable. 

Let P be an operator P: D(P)-+X(Q), D(P) cX(Q), D(P) being a linear subset, 
dense in X(Q). We assume that P has a linear Gâteaux differential on OJCD(P), i.e. 
there exists an operator (DP) such that (DP): a)^>L(D(P),X{Q))y and 

lim 7-[P(x + th) -P(x)] = (DP)(x)h, xeo), beD(P), 
/-»o * 

where L(D(P),X(P)) is the set of all linear operators from D(P) in X(Q). The connec
tion between P and (DP) is given by 

1 

Px - Px0 = \(DP)(x0 + /(x - %o))(% - x0) at. 
0 

The operator P is monotone if for all uy v e D(P), (Pu-Pv,u — v)^0. The opera
tor P is said to be strictly monotone if it is monotone and (Pu — Pv,u — v)=0 only for 
u = v. 
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We consider the equation 

(3.1) P « = / , 

with the linear and homogeneous boundary-value conditions 

(3.2) I ,« = 0, (z= 1,2,...,/>). 

Let D0 (P) = {u e D(P);L{u — 0}, and /e DC(Q). The next three theorems are estab
lished in [6] (see also [7]). 

THEOREM 3.1. If 

i) D0(P) and D(P) are linear sets, and D0(P) is dense in X(Q); 

it) for all u, h e D(P)y P has linear Gâteaux differential, and (DP)(u)h is a 
continuous mapping of u in every two-dimensional hyperplane which contains the 
point u\ 

Hi) P(0) = 0; 

iv) for all ueD(P)y hygeD0(P)y we have ((DP)(u)hyg) = ((DP)(u)gyh); 

v) for all ueD(P)y heDQ(P)y h*0y ((DP)(u)h,h)>0, 

then 

a) if there exists a solution u0 e D0 (P) of the eq. (3.1), it is unique and attains on 
D0 (P) the minimum of the functional 

l 

(3.3) *(«) = /<P(/w), «>̂ fe 
. o 

$ conversely, if an element of D0(P) attains on D0 (P) the minimum of the func
tional (3.3), then it is a solution of (3.1). 

This theorem allow us to associate a variational problem with the boundary-value 
problem considered in the section 2. 

THEOREM 3.2. If the condition (v) of Theorem 3.1 is changed into 
((DP)(u)hyh)^c\h\2

y ueD(P)9 heD0(P)y c= const, c>0y then 

t) the functional (3.3) is bounded below on D0(P)-y 

it) the functional (3.3) is strictly convex on D0(P); 

Hi) any minimizing sequence of the functional (3.3) is convergent in X(Q). 

The limit of a minimizing sequence of the functional (3.3) is called generalized so
lution of the boundary-value problem (3.1), (3.2). It is known that the generalized so
lution is unique (cf. [6]). 

THEOREM 3.3. If there exists UQEDQÌP) such that ((DP)(u)hyh) ^ 
^ q ((DP)(uo)hyh) ^c2\\h\\2

y where clyc2 Site positive constants, then the generalized 
solution of (3.1), (3.2) is an element of the energetic space of the linear operator 
(DP)(u0). 
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We now consider the boundary-value problem (2.2), (2,5) and (2.6). The field 
equations can be written in the form 

Let V be the space of all two-dimensional vector fields u = (9, <£) defined on R. We 
introduce the notations 

*—tel- *—fê).' 
on V, and the notations 

(3.6) Mw= (M1^,M2w), F = (P,0). 

Clearly, the equations (3.4) take the form 
(3.7) Mu = F on R. 

Let ^ 6 V, v= (vi,v2) such that #1=9, v2 =<p on 3R. 
We now define îe> and 4̂îe> by 

(3.8) w = u — vy Aw=(A1w,A2w)=M{w + v)—Mv. 

The boundary value problem (2.2), (2.5) and (2.6) becomes 

(3.9) Aw=f on R, 

(3.10) w = Q on 9R, 
where f=F — Mv. 

Let L2 (R) be the Hilbert space of all vector fields u = (9, <p) whose components are 
square-integrable on R. The norm of this space is generated by the scalar 
product 

(u,v) =J(99 ' +W)dv, 
R 

where «=(9 ,^) , *;= (9',<//). 
Let WQ (-R) be the set of elements of l^ (R) belonging to C2 (R) and satisfying the 

condition (3.10). 
We now consider the operator A: WQÌR)-*!^ (R). In what follows we assume that 

fe^(R). 

THEOREM 3.4. If the function £ has continuous derivatives of second order with re
spect to E and H, and satisfies the inequality 

R x 

(3-lD H ^ ^ ^ + 2 ^ ^ + ^ ^ ^ 0 , 

for all w = ( 9 , 0 , g = (a, j8) 6 Wg (R), g # 0 , £, = P)/-, H,-=£f-, G , = a ; , !$=£,•, 
then 

a) if a solution fe>0
 e Wo CR) °f the equation (3.9) exists, it is unique and attains 
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on Wl (R) the minimum of the functional 

l 

(3.12) 0(w) = \{A{tw)yw)dt-(jyw) ; 
o 

p) conversely, if an element w0 e Wl (R) attains on Wl (R) the minimum of the 
functional (3.12), then it is a solution of (3.9). 

PROOF. Let us show that the hypotheses of Theorem 3.1 are satisfied 

i) WQ(R) is a linear set, dense in LziR) (see e.g. [9]). 

it) For all w,ge Wl (R), A has the linear Gâteaux differential 

(DAl)(w)g = lim±-[A1(w + tg)-A1(w)] = 

It is easy to see that for a given g, (DA)(w)g is a continuous mapping of w in every 
hyperplane which contains the point w. 

Hi) It follows from (3.8) that 4(0) = 0. 

iv) For all w,g, h e Wl (R), h = (r, rj)y Q = r>/, £ = rjti we get 

(3.13) ((DA)(w)g,b) = 
. - A , - A ,_ A _ A 

= {{DA){w)hyg). 

v)lt follows from (3.11) and (3.13), that {{DA)(w)h,h) > 0 , for all 
w,heWl{R), h¥=0. This completes the proof. 

THEOREM 3.5. Assume that (3.11) holds. If there exists a solution ueC2 (R) for the 
boundary-value problem (2.2), (2.5) and (2.6) then this solution is unique. 

PROOF. Let Z be the set of all vector fields u — (9, </>) of class C2 (R) that 
satisfy the boundary conditions (2.6). We begin by establishing that the operator 
M defined by (3.5) and (3.6) is strictly monotone on Z. To prove this assertion 
we use the following result [9]: «if D(P) is convex, then a sufficient condition 
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for P to be strictly monotone on D(P) is that the derivative 

exists and is strictly positive for all u, v e D(P), g = v — u, g¥=0». 
Let «, v e Z, 0 « / =S 1. It is easy to see that tu + (I — t)veZ. Next, with the aid of 

(3.11) and (3.13) we have 

j;[(M(u + tg),g)l=0 = ((DA)(H)g,g)>0, 

for all u,v e Z, g = v — uy g = 0 on dR. Thus, we conclude that M is strictly monotone 
on Z. Then, for two solutions ux and «2, we have {Mux —Mu2,ul — %} = (0,ux — 
— #2) = 0, so that u1=u2. 

The following proposition is a direct consequence of Theorem 3.2. 

THEOREM 3.6. Assume that the hypotheses of Theorem 3.4 hold, and 

(3-14) w^=i(ékG^+2^G^+^K^ 
R 

dEidEj l J dEidHj l J dHidHj 

rjtf + r2)^, 
R 

for all w,g e Wl (R) with w = (9, <£), g = (rj9 r)> £/ = 9,/> H* = £/> Q = *?,/>. ^ = r,/> a n d 

c= const., c > 0 . Then 

z) the functional (3.12) is bounded below on WQ{R); 

it) the functional (3.12) is strictly convex on Wl(R); 

iii) any minimizing sequence of the functional (3.12) is convergent in Lz{R)\ 
and the limit is generalized solution of (3.9), (3.10); 

iv) the generalized solution is unique. 

REMARK. If there exists a positive constant c' such that for all w=(<p,<p), 

where Eï = 9ti, H, = ^>iy G, = r\ih K( = 7/, then the condition (3.14) is satisfied. In
deed, by Friedrichs' inequality, there exists a real constant cf such that 

(3.16) d-2\(G2+&)dv&\tf + ?)dv. 
R R 

Clearly, (3.15) and (3.16) imply (3.14). 
The convexity of thermodynamical potentials for electromagnetic materials has 

been studied by Fabrizio (see [10,11]). 
The next result is an immediate consequence of Theorem 3.3. 
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THEOREM 3.7. If there exists w0 e WQ(R) and the positive constants cX)c2 such 
that 

W(w) ^ cx W(w0) ^ c2 j(r)2 + r2) dv, 
R 

for all w,ge WQ (R), g= {Y],Y), then the generalized solution of the boundary-value 
problem (3.9), (3.10) belongs to the energetic space of linear operator (DA)(w0). 

We note that a variational formulation for nonlinear dielectrics has been estab
lished by Morrò [12]. 

This work has been performed under the auspices of G.N.F.M. of the Italian C.N.R. and partially 
supported by M.U.R.S.T. through the 40% and 60% projects. 
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