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Geometria algebrica. —Another algebraic proof of Weil's reciprocity. Nota di EMMA 

PREVTATO, presentata (*) dal Socio G. ZACHER. 

ABSTRACT. — The Burchnall-Chaundy-Krichever correspondence which converts meromorphic func
tions on a curve into differential operators is used to interpret Weil's reciprocity as the calculation of a 
resultant. 

KEY WORDS: Riemann surface; Ordinary differential operator; Resultant. 

RIASSUNTO. — Un'altra dimostrazione algebrica della reciprocità di Weil. Il meccanismo di Burchnall-
Chaundy-Krichever che trasforma funzioni meromorfe su una curva in operatori differenziali viene usato 
per interpretare la reciprocità di Weil come il valore di un risultante. 

Weil's reciprocity [9] says that if / g are two meromorphic functions on a com
pact Riemann surface S and their divisors (/), (g) are disjoint then 

n f(pyp{g) = n g(P)Mf) 

PeS PeS 

where vP signifies the valuation at P, hence is nonzero for a finite number of points on
ly. In the limit, a similar statement for singular curves and/or overlapping divisors 
could be formulated but is beside the point of this Note. The resultant of a pair of 
monic polynomials in one variable f(x), g(x) e C [x] equals 

where 

n/(A)=(-irn «(«,-) 
«= 1 i= 1 

/=n (*-«,•), «=n(*-ft). 
/= l /= l 

This gives immediately Weil's reciprocity for S = P 1 whereas the traditional proof 
for higher genus is transcendental, as it involves logarithms [4,9]. In this Note we 
combine: the Euclidean algorithm for differential operators, which goes back at least 
to [3]; a remarkable analog of the resultant, which lies in the background of the 
Burchnall and Chaundy calculations (cf. [7]); and the Krichever dictionary (cf. [6]) 
and give an algebraic proof of Weil's reciprocity which generalizes the observation we 
made for P1 . We hope that this mechanism may find an extension to the multidimen
sional case, in the same vein as the adelic construction and the «other» algebraic proof 
referred to in the title, which introduces the Kac-Peterson representation [1]. The 
proofs of the basic facts on the resultant are short and elegant and we sketch them for 
completeness. 

(*) Nella seduta del 10 novembre 1990. 
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1. THE ALGEBRAIC AND DIFFERENTIAL RESULTANT 

1. Let/=tf0 + tfi*+ ... + a„xn
y g = b0 + &!#+ ... 4- bmxm e C[x]. It is well known 

(cf. for example [5]) that / and g have a common zero if and only if the resultant 
R ( / , g ) » 0 , where 

R(/,g) = det 

<k> 

0 

h 

«1 

4B 

£« 

a„ 
an 

0 

0...0" 
0...0 

...0 
= det 

G 3 G4 

0 

(G2 is m X #z, G3 is « X #) 

,,»-! 
This can be seen in many ways, but the spirit of our proof will be reprised in a differ
ent context. We consider the vector space Vf = C[x]/(/(x)), with basis l,x,. 
where multiplication by x is given by the companion matrix of /: 

-ao/an 

Q = 

0 0 
1 0 -*\l*n 

1 -a„-Jan 

Gi 

G3 

G2" 

G4 

" 0 

_G2"
1 

I 

—G2~ G ì 

As follows from the Euclidean algorithm in C [x], multiplication by g(x) on ty is in-
vertible if and only if/and g have no common roots. Now multiplication by g has ma
trix (G3 — G4G21 Gl)

T whose determinant is R(f,g)/a% as can be seen by writing 

I 0 

G4 CJ2 O3 ~~ O4 CJ2 Cr̂  

2. Let (for simplicity) / and g be monk, {a^,..., a„} {/^,...,fim } be the zeroes of / 
g, resp. Then 

/» « 

R(/,i)=n/(ft)=(-iriigw. 
1 - 1 / = i 

This can be seen by a standard argument of unique factorization by regarding the 
a and fi as indeterminates, but we insist on the point of view taken in 1. R (f, g) as we 
saw is the determinant of the multiplication by g(x) on V/; we change basis so as to 
write C/ as an upper triangular matrix with a1? ...,a„ on the diagonal (Jordan form) 
and use the fact that it represents multiplication by x; clearly then 

det(g(x)H ft «(«/). 

3. If L = d* + ^_1(x)a*-1 + ... + «0(x), B = 3*+tfc-i(x)9w~1 '+.. . + M*) are 
commuting differential operators (here 3 = d/dx) whose coefficients are analytic func
tions in a neighborhood of, say x = 0, we define the resultant polynomial R (LyB) = 
= det A (A, fx) where A (A, ju) = [A^] is the (« + m) X (# + m) matrix whose first m rows are 
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given by the coefficients of 

&o(L-X) = 
n + m— 1 

2 AJ+lti+1d
i 

i=0 
( / = 0 , . . . , ^ - l ) 

and last n rows by the coefficients of dJo(B— (x) similarly arranged (J = 0,..., n — 1). It 
is a consequence of the commutativity that R (L, B) is independent of x: indeed, it is 
the characteristic polynomial of the endomorphism obtained by applying B on the 
vector space Vx = Ker (L — A). This can be seen by choosing a fundamental system of 
solutions (at x = 0) for L —A: ji(x,A), ...,y„(x,X); then since B preserves Vx, 

(B-!x)yi ... (B-ti)yH 

((B-ix)yiy 

((B-p)yi) ( ' -1- ) 

((B-ti)ynY 

((B-M)y.) 

K 

y\ 

y[ 

(»-D 

(»-D 

,0.-1) 

M=(G3-G4G21Gi: 

Vi 

y\ 

y[ 

(n-l) 

y n 

y'n 

where M is a suitable constant matrix and Gi,..., G4 are blocks of the matrix A (A, /x) of 
the same size as above. The required characteristic polynomial is detMT, which can be 
seen to coincide with R (L, B) by setting x = 0 in the formula. 

2. BURCHNALL-CHAUNDY-KRICHEVER DICTIONARY 

Here we only recall how to set up a conversion between meromorphic functions 
on a Riemann surface, regular outside one fixed point P», say, and differential 
operators. 

1. CONSTRUCTION (Krichever, cf. [6]). Let S be a Riemann surface of genus g with 
a fixed point Pœ and a local parameter z~l centered at P^; let D be a fixed divisor of 
degree g on S with h° (D) = 1, D = Xx + ... + Xg; there exists a unique function <p(x, P), 
depending on a (small) parameter xe C and point PeS such that <p is meromorphic on 
S\Poo with poles at most on D, and near ?«, the expansion </> = exz(l + 0 (z - 1 )) holds. 
For any meromorphic function / on S with a pole of order n at P<» and regular else
where, there exists a unique differential operator L/ = dn + un-2 (x) dn~2 4-... + UQ (X) 
such that Lfip = f(P) <£. 

2. LEMMA. With the notation of the above construction, if £ g are two functions 

with pole of order n} m at Pœ resp. and regular elsewhere, and if their expansion in z~l 

begins with zn, zm, resp., then 
m n 

n/(A-)=(-ir ligia,) 
where the a/s, fi/s are the zeroes offg, counted with multiplicity. 
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PROOF. We set up R (Lf,Lg) as in 1.3, using the operators that correspond to/ ,g as 
in 2.1. Viewed as a polynomial in X,R has leading coefficient (—i)mn(—\)m\m

 anc[ 
constant term 

(-ir n A,-; 

viewed as a polynomial in /x, it has leading coefficient (—l)n(xn and constant 
term 

(-ir n &. 
Notice that the normalization assumption comes in when one computes the leading 
coefficient of the operators Lf,Lg> which in turn appears in the unipotent matrix G2; a 
different normalization would cause an explicitly computable constant to appear. No
tice also that because of this normalization the poles of À and [x «cancel out» so that 
the statement of the lemma is really Weil's reciprocity. 

3. WEIL'S RECIPROCITY 

1. OBSERVATION. Weil's reciprocity for P 1 is the formula for the resul
tant 1.2. 

PROOF. Le t / g be any two functions on P1 , with disjoint divisors. We can express 
them as rational functions in one parameter z and normalize them so that 

(z-ai)...(z-an) _ (z-c1)...(z-cm) 
f~ (z-bx)...(z-bn) ' g~ ( z - ^ ) . . . ( z - 4 ) 

(after possibly dividing g by a constant); now l e t / , / and gly & be the polynomials 
that appear as numerator, denominator, resp. of/ g, resp. Write the resultant formula 
1.2 for the pairs ( / , &) and ( / , & ) , multiply side by side, write the formula for 
( />&)>(/> gi)> multiply side by side, divide the results side by side. 

2. PROPOSITION. The Krichever dictionary and the resultant formula prove Weil's 
reciprocity on any Riemann surface S. 

PROF. Le t / g be meromorphic functions on S with disjoint divisors, and P^ a fixed 
(disjoint) point on S. Let (/) = (Px 4-... + P,) — (Qx + ... + Q,), P{ being the zeroes of/ 
and Q/the poles. For n large enough, nPœ — (Pi + ... + Pr) is linearly equivalent to an 
effective divisor and if n is the smallest such number, the dimension of H° (n Pœ — 
- (Px + ... + Pr)) cannot be larger than 1. The dimension of H° (n Pœ - {Qx + ... + Q)) 
must be the same, for the divisors 2 P/ and 2 Q are linearly equivalent. Let / , / be 
the essentially unique functions that have a pole of order n at Pœ and zeroes on 2 P/, 
2 Q/ resp. and notice t h a t / / / - 1 must be a constant, for it has neither zeroes nor 
poles. By choosing a local parameter z~l around Pœ and normalizing all functions so 
that their Laurent expansions near P^ is monic in z, we can wri te/= / / / , g = g\/gz by 
the same procedure, apply Lemma 2.2 in the same manner as in the observation 3.1 
and conclude. 
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3. COMMENT. The main advantage I see in this proof is that Weil's reciprocity ap
pears as the consequence of an action by multiplication: indeed, the matrix of the ac
tion by Lg say, expressed by using A and p as in 1.3, can be viewed as the matrix of 
multiplication by pt, which is a twisted endomorphism of the vector bundle n* (£), 
where n is the projection to P1 given by the function A = / a n d £ is the line bundle of 
the divisor D of the Baker Akhiezer function: 

,fc* 
£-X 7z*£® 0{[m/n\+ <*), 

where oo corresponds to A = oo on P 1 and by [m/n]+ we denote the smallest integer 
greater than or equal to m/n. This point of view brings the spirit of the formula very 
close to the multiplication argument in 1.1; it should generalize to two interesting sit
uations: (a) 7z: Si~^S2 a morphism of Riemann surfaces where S2 has genus greater 
than zero (an elliptic situation is surveyed in [8]) and (b) a multipoint Krichever 
map, where Poo is replaced by P^i, ...,Pooj and the Baker function has more than one 
parameter Zi,...,Zj, (cf. [2]); finally, it suggests that letting the divisor D of the 
Krichever map vary, one may get an interpretation of Weil's reciprocity on the Jaco-
bian of S. 
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