ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Edoardo Vesentini

Holomorphic isometries of Cartan domains of type one

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **2** (1991), n.1, p. 65–72.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1991_9_2_1_65_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1991.

Geometria. — Holomorphic isometries of Cartan domains of type one. Nota (*) del Socio Edoardo Vesentini.

ABSTRACT. — Holomorphic isometries for the Kobayashi metric of a class of Cartan domains are characterized.

KEY WORDS: Cartan domain; Kobayashi metric; Holomorphic isometry.

RIASSUNTO. — Isometrie olomorfe di domini di Cartan di tipo uno. Si caratterizzano le isometrie olomorfe per la metrica di Kobayashi di una classe di domini di Cartan.

Let \mathcal{X} and \mathcal{X} be two complex Hilbert spaces and let *B* be the open unit ball of the complex Banach space $\mathcal{L}(\mathcal{X}, \mathcal{H})$ of all bounded linear mappings from \mathcal{X} to \mathcal{H} . Extending to infinite dimensions a classical terminology, *B* has been given the name of a Cartan domain of type one. This domain is homogeneous, *i.e.*, the group Aut *B* of all holomorphic automorphisms of *B* acts transitively. Since *B* is an open, bounded, circular neighborhood of 0, a theorem by H. Cartan [2] implies that the stability group (Aut B)₀ of 0 in Aut *B* is linear, or, more exactly, every element of (Aut B)₀ is the restriction to *B* of a linear isometric isomorphism of $\mathcal{L}(\mathcal{X}, \mathcal{H})$. This fact, coupled with the explicit knowledge of a transitive subgroup of Aut *B*, leads to a complete description of the latter group. This description was carried out by H. Klingen [4,5] when both \mathcal{H} and \mathcal{R} have finite dimension, and by T. Franzoni [1] in the general case. The elements of Aut *B* turn out to be invertible rational functions which are the operator-valued analogues of the Moebius transformations acting on the unit disc of *C*.

Let Iso *B* be the semigroup of all holomorphic maps of *B* into *B* which are isometries for the (Carathéodory-) Kobayashi metric of *B*[2]. Since this metric is invariant under all holomorphic automorphisms, then Aut *B* is a subgroup (actually the maximum subgroup) of Iso *B*. It coincides with Iso *B* when both \mathcal{H} and \mathcal{H} have finite dimension, and is properly contained in Iso *B* otherwise. Thus, if at least one of the two spaces \mathcal{H} and \mathcal{H} has infinite dimension, the question naturally arises to describe Iso *B*. An example constructed in [7] in the case in which *B* is the open unit ball of the *C**-algebra $\mathcal{L}(\mathcal{H}) = \mathcal{L}(\mathcal{H}, \mathcal{H})$ (dim_{*C*} $\mathcal{H} = \infty$) exhibits a non-linear element of Iso *B* fixing 0, showing thereby that H. Cartan's theorem fails for Iso *B* and leaving completely open the characterization of this semigroup in the infinite dimensional case.

The main purpose of this *Note* is to show that H. Cartan's theorem holds for Iso *B* when one of the two Hilbert spaces \mathcal{H} and \mathcal{H} has finite dimension, and to characterize the stability semigroup (Iso *B*)₀ of 0 in Iso *B* within the semigroup of all linear operators acting on $\mathcal{L}(\mathcal{H}, \mathcal{H})$. This characterization yields a description

^(*) Pervenuta all'Accademia l'8 ottobre 1990.

of Iso B in terms of non-invertible, operator-valued «Moebius transformations» which have been investigated in [8].

1. A J*-algebra [3] is a closed linear subspace \mathscr{E} of $\mathscr{L}(\mathscr{X}, \mathscr{H})$ such that, if $X \in \mathscr{E}$, $XX * X \in \mathscr{E}$. Here X* denotes the adjoint operator of X. The space $\mathscr{L}(\mathscr{X}, \mathscr{H})$ itself is a J*-algebra. If \mathscr{E} and \mathscr{F} are J*-algebras, a continuous linear map L: $\mathscr{E} \to \mathscr{F}$ is called a J*-homomorphism if

(1.1) $L(XX^*X) = L(X)L(X)^*L(X)$

for all $X \in \mathcal{B}$. A simple polarization argument yields then

(1.2) $L(XY^*X) = L(X) L(Y)^* L(X)$

for all X, Y in \mathscr{C} . Since $XY^*Z + ZY^*X = (X + Z) Y^*(X + Z) - XY^*X - ZY^*Z$, (1.2) yields

(1.3)
$$L(XY^*Z + ZY^*X) = L(X)L(Y)^*L(Z) + L(Z)L(Y)^*L(X)$$

for all X, Y, Z in \mathcal{E} .

The unit ball B of \mathcal{B} is a bounded homogeneous domain.

In [3] L. A. Harris proved that every J*-homomorphism of \mathscr{E} into \mathscr{F} is a linear isometry, and furthermore [3, Theorem 4] that if $L: \mathscr{E} \to \mathscr{F}$ is a linear surjective isometry, then L is a J*-homomorphism. Actually, a direct inspection of Harris' argument shows that he proved slightly more, namely the following. Let $B_{\mathscr{E}}$ and $B_{\mathscr{F}}$ be the open unit balls of \mathscr{E} and \mathscr{F} , and let Iso $(B_{\mathscr{E}}, B_{\mathscr{F}})$ be the set of all holomorphic maps of $B_{\mathscr{E}}$ into $B_{\mathscr{F}}$ which are isometries for the respective Kobayashi metrics. The following proposition holds.

PROPOSITION 1. If every $L \in Iso(B_{\mathcal{B}}, B_{\mathcal{F}})$ such that L(0) = 0, is the restriction to $B_{\mathcal{B}}$ of a linear mapping of \mathcal{B} into \mathcal{F} , then every such L is the restriction to $B_{\mathcal{B}}$ of a J^* -homomorphism.

2. The closed subspace $\mathcal{L}_0(\mathcal{H}, \mathcal{H}) \subset \mathcal{L}(\mathcal{H}, \mathcal{H})$ of all compact operators from \mathcal{H} to \mathcal{H} is a *J**-algebra. Since $\mathcal{L}_0(\mathcal{H}, \mathcal{H})$ and $\mathcal{L}_0(\mathcal{H}, \mathcal{H})$ are *J**-isomorphic, it will be assumed henceforth that dim_C $\mathcal{H} \leq \dim_C \mathcal{H}$. Every $X \in \mathcal{L}_0(\mathcal{H}, \mathcal{H})$ is expressed by

(2.1)
$$X = \sum \alpha_{\nu} f_{\nu} \otimes e_{\nu}^{*}$$

where: $\alpha_1 \ge \alpha_2 \ge \ldots > 0$ are the singular values of X, *i.e.*, α_1^2 , α_2^2 , ... are the non-vanishing eigenvalues of X^*X counted with their (finite) multiplicities; e_v is an eigenvector of X^*X corresponding to the eigenvalue α_v^2 : $\{e_1, e_2, \ldots\}$ is an orthonormal system in \mathcal{X} ; $f_v = \alpha_v^{-1} X e_v$, and $(f_v | f_{\mu})_{\mathcal{K}} = \delta_{v\mu}$; $(f_v \otimes e_v^*)(x) = (x | e_v)_{\mathcal{K}} f_v$ for all $x \in \mathcal{X}$. The operator X is a partial isometry if, and only if, X^*X is an orthogonal projector. Since

(2.2)
$$X^*X = \sum \alpha_v^2 e_v \otimes e_v^*,$$

and $(X^*X)^2 = \sum \alpha_{\nu}^4 e_{\nu} \otimes e_{\nu}^*$, that happens if, and only if, $\alpha_{\nu} = 1$ for all ν . As a consequence, the set of all α_{ν} appearing in (2.1) is finite. Denoting by N its cardinality, every

partial isometry in $\mathcal{L}_0(\mathcal{R}, \mathcal{H})$ is given by

$$X = \sum_{1}^{N} f_{\nu} \otimes e_{\nu}^{\star} .$$

Let X be the partial isometry in $\mathcal{L}_0(\mathcal{R}, \mathcal{H})$ represented by this latter formula. Denoting by $I_{\mathcal{H}}$ and $I_{\mathcal{R}}$ the identity operators in \mathcal{H} and in \mathcal{R} , and by \mathcal{R}_0 and \mathcal{H}_0 the closed subspaces of \mathcal{R} and \mathcal{H} spanned by $\{e_1, \ldots, e_N\}$ and by $\{f_1, \ldots, f_N\}$, $I_{\mathcal{R}} - X^*X$ and $I_{\mathcal{H}} - XX^*$ are the orthogonal projectors onto \mathcal{R}_0^{\perp} and onto \mathcal{H}_0^{\perp} . If, and only if, either $\mathcal{H} = \mathcal{H}_0$ or $\mathcal{R} = \mathcal{R}_0$, then $(I_{\mathcal{H}} - XX^*)Y(I_{\mathcal{R}} - X^*X) = 0$ for all $Y \in \mathcal{L}_0(\mathcal{R}, \mathcal{H})$. By the Kadison-Harris theorem [3, Theorem 11] that proves

PROPOSITION 2. If both \mathcal{H} and \mathcal{R} have infinite dimension, the closed unit ball \overline{B} of $\mathcal{L}_0(\mathcal{R}, \mathcal{H})$ has no extreme points. If \mathcal{R} has finite dimension, and $\dim_C \mathcal{R} \leq \dim_C \mathcal{H}$, the extreme points of \overline{B} are all the linear isometries of \mathcal{R} into \mathcal{H} .

3. Let dim_C $\mathcal{X} = n < \infty$, dim_C $\mathcal{X} = \infty$. Every $X \in \mathcal{L}_0(\mathcal{X}, \mathcal{H}) \setminus \{0\}$ is expressed by (2.1) where the summation runs over all $\nu = 1, ..., N$, with $1 \le N \le n$. Then

$$\det (I_{\mathfrak{X}} - X^* X) = \prod_{1}^{N} (1 - \alpha_{\nu}^2).$$

Since $||X|| = \max\{\alpha_v : v = 1, ..., N\}$, then $X \in \partial B$ if, and only if, det $(I_{\mathcal{R}} - X^*X) = 0$.

Let $F \in (\text{Iso } B)_0$ and let $L = dF(0) \in \mathcal{L}(\mathcal{L}(\mathcal{K}, \mathcal{H}))$.

Denoting by $\kappa: B \times \mathcal{L}(\mathcal{H}, \mathcal{H}) \to \mathbf{R}_+$ the Kobayashi infinitesimal metric on B[2], then $\kappa(0; L(X)) = \kappa(0; X)$ for all $X \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Since $\kappa(0; \cdot) = \|\cdot\|$, then $\|L(X)\| = \|X\|$ for all $X \in \mathcal{L}(\mathcal{H}, \mathcal{H})$ *i.e.*, L is a linear isometry of $\mathcal{L}(\mathcal{H}, \mathcal{H})$ into itself.

It will be shown now that F(X) = L(X) for all $X \in B$. This result will be established by using an argument first devised by C. L. Siegel in [6] in the case of the Siegel disc in $C^{n(n+1)/2}$. For X given by (2.1),

$$L(X) = \sum_{1}^{N} \alpha_{\nu} L(f_{\nu} \otimes e_{\nu}^{\star}).$$

The set of all $X \in \mathcal{L}(\mathcal{X}, \mathcal{H})$ such that N = n and $\alpha_1, ..., \alpha_n$ are distinct is a non-empty dense open set $S \subset \mathcal{L}(\mathcal{X}, \mathcal{H})$. For all X, det $(I_{\mathcal{X}} - L(X) * L(X))$ is a polynomial of degree 2n in $\alpha_1, ..., \alpha_n$, whose constant term equals 1. As before $L(X) \in \partial B$ if, and only if, det $(I_{\mathcal{X}} - L(X) * L(X)) = 0$. On the other hand, since L is an isometry, $L(X) \in \partial B$ if, and only if,

$$\prod_{1}^{N}(1-\alpha_{\nu}^{2})=0.$$

Hence

67

$$\prod_{1}^{N}(1-\alpha_{\nu}^{2})$$

divides det $(I_{\mathcal{X}} - L(X) * L(X))$ for all $X \in S$, and in conclusion det $(I_{\mathcal{X}} - L(X) * L(X)) = det (I_{\mathcal{X}} - X * X)$

for all $X \in S$ and therefore for all $X \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. Thus

(3.1)
$$L(X) = \sum_{\nu=1}^{N} \alpha_{\nu} \left(f_{\nu}' \otimes e_{\nu}'^{*} \right)$$

for suitable choices of the orthonormal systems $\{e'_1, ..., e'_N\}$, and $\{f'_1, ..., f'_N\}$ in \mathcal{X} and \mathcal{H} respectively. If, in particular, X is a linear isometry, then also L(X) is a linear isometry. Thus, by Proposition 2, L maps the set of all extreme points of \overline{B} into itself. By the Schwarz lemma [3, Theorem 10], $F = L_{|B|}$. Proposition 1 yelds then

PROPOSITION 3. Let $\dim_C \mathfrak{K} = n < \infty$, $\dim_C \mathfrak{K} = \infty$. If $F \in \text{Iso } B$ fixes 0, there exists a J^* -homomorphism L of $\mathfrak{L}(\mathfrak{K}, \mathfrak{K})$ into itself whose restriction to B is F.

4. Let *L* be a *J**-homomorphism of $\mathcal{L}_0(\mathcal{X}, \mathcal{H})$ into itself. If $e \in \mathcal{H}$, $f \in \mathcal{H}$ are such that ||e|| = ||f|| = 1, and if $X = f \otimes e^*$, then $XX^*X = X$. Setting Y = L(X), then by (1.1) $YY^*Y = L(XX^*X) = L(X) = Y$, whence $Y^*YY^*Y = Y^*Y$, $YY^*YY^* = YY^*$, *i.e.*, Y^*Y and YY^* are orthogonal projectors in \mathcal{H} and in \mathcal{H} .

If $e_1 \in \mathcal{X}, f_1 \in \mathcal{H}$ are such that $||e_1|| = ||f_1|| = 1$, $e \perp e_1, f \perp f_1$, and if $X_1 = f_1 \otimes e_1^*, Y_1 = L(X_1)$, then $X^*X_1 = (\cdot|e_1)_{\mathcal{X}} X^*f_1 = (\cdot|e_1)_{\mathcal{X}} (f_1|f)_{\mathcal{H}} e = 0$, $X_1 X^* = (\cdot|f)_{\mathcal{X}} X_1 e = (\cdot|f)_{\mathcal{H}} (e|e_1)_{\mathcal{X}} f_1 = 0$, so that, by (1.3), $YY^*Y_1 + Y_1Y^*Y = L(XX^*X_1 + X_1X^*X) = 0$, which is readily seen [3] to be equivalent to $Y_1Y^* = 0$, $Y^*Y_1 = 0$. That proves

LEMMA 4. The orthogonal projectors Y^*Y and $Y_1^*Y_1$ in \mathcal{R} are orthogonal to each other. Similarly, the orthogonal projectors YY^* and $Y_1Y_1^*$ in \mathcal{H} are orthogonal to each other.

It will be assumed henceforth that $n = \dim_C \mathcal{R} < \infty$, $\dim_C \mathcal{H} = \infty$. For X given by (2.1) with $\nu = 1, ..., N \le n$, Y = L(X) is expressed by (3.1) and therefore

(4.1)
$$Y^*Y = \sum_{\nu=1}^N \alpha_{\nu}^2 (e_{\nu}' \otimes e_{\nu}'^*).$$

If V' is a unitary operator in \mathcal{X} such that V' $e_{\nu} = e'_{\nu}$ for $\nu = 1, ..., N$, (2.2) and (4.1) yield

$$Y^*Y = \sum_{\nu=1}^N \alpha_{\nu}^2 V' e_{\nu} \otimes (V'^* e_{\nu})^* = V'^*X^*XV'$$

If U' is a linear isometry of \mathcal{H} such that $U'f_{\nu} = f'_{\nu}$ for $\nu = 1, ..., N$, then

$$Y = \sum_{\nu=1}^{N} \alpha_{\nu} U' f_{\nu} \otimes (V'^{\star} e_{\nu})^{\star} = U' X V' .$$

Note that the choices of V' and U' depend only on $\{e_1, ..., e_N\}$, $\{e'_1, ..., e'_N\}$, and $\{f_1, ..., f_N\}$, $\{f'_1, ..., f'_N\}$, respectively. Fix now an orthonormal base $\{e_1, ..., e_n\}$ in \mathfrak{R} and an orthonormal base $\{f_{\mu} : \mu \in M\}$ in \mathfrak{R} . For $\nu = 1, ..., n$, and $\mu \in M$, let $X_{\mu\nu} = -f_{\mu} \otimes e_{\nu}^{*}$, $Y_{\mu\nu} = L(X_{\mu\nu})$.

69

There exist a unitary operator V_{ν} in \mathcal{X} and a linear isometry U_{μ} in \mathcal{H} , depending only on ν and on μ respectively, such that $Y_{\mu\nu} = U_{\mu} X_{\mu\nu} V_{\nu} = U_{\mu} f_{\mu} \otimes (V_{\nu}^* e_{\nu})^*$.

Hence the orthogonal projector $Y_{\mu\nu}^* Y_{\mu\nu} = V_{\nu}^* e_{\nu} \otimes (V_{\nu}^* e_{\nu})^*$ maps \mathcal{X} onto the complex line generated by $V_{\nu}^* e_{\nu}$ and does not depend on μ : $Y_{\mu\nu}^* Y_{\mu\nu} = Y_{\mu\nu}^* Y_{\mu\nu}$ for all μ, μ' in M. Setting $P_{\nu} = Y_{\mu\nu}^* Y_{\mu\nu}$, Lemma 4 implies that the orthogonal projectors P_{ν} and $P_{\nu'}$ are orthogonal to each other, *i.e.*, that $V_{\nu}^* e_{\nu}$ is orthogonal to $V_{\nu}^* e_{\nu'}$ whenever $\nu \neq \nu'$. A similar argument shows that $Y_{\mu\nu} Y_{\mu\nu}^* = Y_{\mu\nu'} Y_{\mu\nu'}^*$ for all $\nu, \nu' = 1, ..., n$. Hence the orthogonal projector $Q_{\mu} = Y_{\mu\nu} Y_{\mu\nu}^* = U_{\mu} f_{\mu} \otimes (U_{\mu} f_{\mu})^*$ maps \mathcal{H} onto the complex line generated by $U_{\mu} f_{\mu}$, and Q_{μ} and $Q_{\mu'}$ are orthogonal to each other, *i.e.*, $U_{\mu} f_{\mu}$ is orthogonal to $U_{\mu'} f_{\mu'}$ whenever $f_{\mu} \neq f_{\mu'}$. In conclusion, there exists an orthonormal base $\{e'_1, \ldots, e'_n\}$ in \mathcal{H} and orthonormal system $\{f'_{\mu'}\}_{\mu \in M}$ in \mathcal{H} such that

$$(4.2) Y_{\mu\nu} = f'_{\mu} \otimes e'_{\nu} * .$$

If V is a unitary operator in \mathcal{X} such that $Ve_{\nu} = e'_{\nu}$ for $\nu = 1, ..., n$ and if U is a linear isometry in \mathcal{X} such that $Uf_{\mu} = f'_{\mu}$ for all $\mu \in M$, (4.2) yields $L(X_{\mu\nu}) = UX_{\mu\nu}V$ ($\nu = 1, ..., n; \mu \in M$).

5. Every $Z \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ is expressed by

$$Z = \sum_{\lambda=1}^{N} \beta_{\lambda} l_{\lambda} \otimes g_{\lambda}^{*}$$

where: $0 \le N \le n$; $\beta_1 \ge ... \ge \beta_N > 0$ are the singular values of Z; $l_1, ..., l_N$ and $g_1, ..., g_N$ are suitably chosen orthonormal systems in \mathcal{H} and \mathcal{R} respectively. Since

$$g_{\lambda} = \sum_{\nu=1}^{n} (g_{\lambda} | e_{\nu})_{\mathcal{H}} e_{\nu}, \quad l_{\lambda} = \sum_{\mu \in M} (l_{\lambda} | f_{\mu})_{\mathcal{H}} f_{\mu},$$

3

$$Z = \sum_{\nu=1}^{n} \sum_{\mu \in \mathcal{M}} \left(\sum_{\lambda=1}^{N} \beta_{\lambda} \left(e_{\nu} \left| g_{\lambda} \right)_{\mathcal{K}} \left(l_{\lambda} \left| f_{\mu} \right)_{\mathcal{K}} \right) X_{\mu\nu} \right),$$

whence

(5.1)
$$Z = \sum_{\nu=1}^{n} \sum_{\mu \in M} (Ze_{\nu} \mid f_{\mu})_{\mathcal{H}} X_{\mu\nu}$$

LEMMA 5. The right hand side of (5.1) converges to Z in the Banach space $\mathcal{L}(\mathcal{K}, \mathcal{H})$.

PROOF. Since

$$||Ze_{\nu}||^{2} = \sum_{\mu \in M} |(Ze_{\nu} | f_{\mu})_{\mathcal{H}}|^{2},$$

there exists a (finite or) countable set $M_0 \subset M$ such that $(Ze_{\nu} | f_{\mu})_{\mathcal{H}} = 0$ whenever $\mu \notin M_0$ and $\nu = 1, ..., n$. For any $\varepsilon > 0$ there is a finite set $M_1 \subset M_0$ such that

(5.2)
$$\sum_{\mu \notin M_1} |(Ze_{\nu} | f_{\nu})_{\mathcal{H}}|^2 < \varepsilon^2 .$$

Let

$$K = \left\| \sum_{\mu \notin M_1} \sum_{\nu=1}^n (Ze_\nu \mid f_\mu)_{\mathcal{H}} X_{\mu\nu} \right\|.$$

Then

$$\begin{split} K^{2} &= \sup\left\{\left\|\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} (Ze_{\nu} \mid f_{\mu})_{\mathcal{H}} X_{\mu\nu}(\xi)\right\|_{\mathcal{H}}^{2} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = \\ &= \sup\left\{\left(\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} (Ze_{\nu} \mid f_{\mu})_{\mathcal{H}} X_{\mu\nu}(\xi) \mid \sum_{\mu' \notin M_{1}} \sum_{\nu'=1}^{n} (Ze_{\nu'} \mid f_{\mu'})_{\mathcal{H}} X_{\mu'\nu'}(\xi)\right)_{\mathcal{H}} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = \\ &= \sup\left\{\sum_{\mu \notin M_{1}} \sum_{\nu,\nu'=1}^{n} ((Ze_{\nu} \mid f_{\mu})_{\mathcal{H}} X_{\mu\nu}(\xi)) |(Ze_{\nu'} \mid f_{\mu'})_{\mathcal{H}} X_{\mu\nu'}(\xi))_{\mathcal{H}} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = \\ &\leq \frac{n}{2} \sup\left\{\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}(\xi)\|_{\mathcal{H}}^{2} + \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}(\xi)\|_{\mathcal{H}}^{2} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = \\ &= n \sup\left\{\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}(\xi)\|_{\mathcal{H}}^{2} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = \\ &= n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}(\xi)\|_{\mathcal{H}}^{2} : \|\xi\|_{\mathcal{H}} \leq 1\right\} = n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = \\ &= n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = \\ &= n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = \\ &= n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} = \\ &= n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n} |(Ze_{\nu} \mid f_{\mu})_{\mathcal{H}}|^{2} \|X_{\mu\nu}\|^{2} \|X_{\mu\nu}\|^{2}$$

and (5.2) yields $K < \sqrt{n}\varepsilon$. Q.E.D.

As a consequence

$$L(Z) = \sum_{\mu \in M} \sum_{\nu=1}^{n} (Ze_{\nu} | f_{\mu})_{\mathcal{H}} L(X_{\mu\nu}) = \sum_{\mu \in M} \sum_{\nu=1}^{n} (Ze_{\nu} | f_{\mu})_{\mathcal{H}} UX_{\mu\nu} V =$$
$$= U \left(\sum_{\mu \in M} \sum_{\nu=1}^{n} (Ze_{\nu} | f_{\mu})_{\mathcal{H}} X_{\mu\nu} \right) V = UZV,$$

proving thereby

THEOREM I. If $\dim_C \mathfrak{R} < \infty$, for any J*-homomorphism L of $\mathfrak{L}(\mathfrak{R}, \mathfrak{K})$ into itself, there exist a unitary operator V in \mathfrak{R} and a linear isometry U in \mathfrak{K} such that L(Z) == UZV for all $Z \in \mathfrak{L}(\mathfrak{R}, \mathfrak{K})$.

COROLLARY. If $\dim_{\mathbb{C}} \mathfrak{R} < \infty$, for any $F \in (\operatorname{Iso} B)_0$ there are a unitary operator V in \mathfrak{R} and a linear isometry U in \mathfrak{R} such that F is the restriction to B of the linear map $Z \rightarrow UZV$ ($Z \in \mathfrak{L}(\mathfrak{R}, \mathfrak{R})$).

6. Let J be the operator on the Hilbert space direct sum $\mathcal{H} \oplus \mathcal{K}$ defined by the matrix

$$J = \begin{pmatrix} I_{\mathcal{H}} & 0\\ 0 & -I_{\mathcal{H}} \end{pmatrix},$$

and let Λ be the semigroup of all $A \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$ such that

1

Let Γ be the maximum subgroup of Λ consisting of all $A \in \Lambda$ which are continuously invertible in $\mathcal{L}(\mathcal{H} \oplus \mathcal{K})$. Any $A \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K})$ is represented by a matrix

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

where $A_{11} \in \mathcal{L}(\mathcal{H}), A_{22} \in \mathcal{L}(\mathcal{H}), A_{12} \in \mathcal{L}(\mathcal{H}, \mathcal{H}), A_{21} \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Condition (6.1) is equivalent to

(6.3)
$$A_{22}^*A_{22} - A_{12}^*A_{12} = I_{\mathfrak{R}},$$

It has been shown in [8] that: if $\dim_C \mathfrak{K} < \infty$: $A_{21}Z + A_{22}$ is continuously invertible in $\mathfrak{L}(\mathfrak{K})$ for any $Z \in B$; the holomorphic function $\widetilde{A}: B \to \mathfrak{L}(\mathfrak{K}, \mathfrak{K})$ defined by

(6.5)
$$\widetilde{A}(Z) = (A_{11}Z + A_{12})(A_{21}Z + A_{22})^{-1}$$

maps *B* into *B* and is an element of Iso *B*; the function $A \rightarrow \widetilde{A}$ defines a homomorphism of Λ into Iso *B*, mapping Γ onto Aut *B*.

By (6.5), if $\widetilde{A}(0) = 0$, $A_{12} = 0$; (6.3) implies then that A_{22} is a linear isometry of \mathfrak{R} , *i.e.*, since dim_C $\mathfrak{R} < \infty$, is a unitary operator in \mathfrak{R} . Thus (6.4) yields $A_{21} = 0$, and, by (6.2), A_{11} is a linear isometry in \mathfrak{R} . By Theorem I, that proves that, if $F \in (\operatorname{Iso} B)_0$, then $F \in \widetilde{A}$, the image of Λ by the map $A \to \widetilde{A}$. Since $\widetilde{\Lambda}$ contains Aut B[1] which acts transitively on B, a standard argument shows that $\widetilde{\Lambda} = \operatorname{Iso} B$, proving thereby

THEOREM II. If $\dim_C \mathfrak{R} < \infty$, the map $A \to \widetilde{A}$ is a surjective homomorphism of Λ onto Iso B.

As a consequence, the results established in [8] for Λ hold for the entire semigroup Iso *B*. For example, by Propositions 3.7 and 3.8 of [8], every $F \in \text{Iso } B$ is the restriction to *B* of a weakly continuous map $\hat{F}: \overline{B} \to \overline{B}$. The Schauder-Tychonoff theorem implies then that \hat{F} has some fixed point in \overline{B} .

Furthermore the strongly continuous linear semigroups in Λ constructed in [8] yield all the one-parameter semigroups in Iso *B* which are continuous for the strong topology in $\mathcal{L}(\mathcal{X}, \mathcal{H})$.

Proposition 4.2 of [8] yields

PROPOSITION 6. Let D be a domain in C. If $\dim_C \Re < \infty$, every holomorphic map $f: D \times B \to B$ for which $g(z, \cdot) \in Iso B$ for all $z \in D$, is independent of z.

Questa Nota è dedicata alla memoria di Edoardo Amaldi.

References

- T. FRANZONI, The group of holomorphic automorphisms in certain J*-algebras. Ann. Mat. Pura Appl., (4) 127, 1981, 51-66.
- [2] T. FRANZONI E. VESENTINI, Holomorphic maps and invariant distances. North Holland, Amsterdam - New York - Oxford 1980.
- [3] L. A. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture notes in mathematics, n. 364, Springer Verlag, Berlin 1974, 13-40.
- [4] H. KLINGEN, Diskontinuierliche Gruppen in symmetrischen Räumen. I.II. Math. Ann., 129, 1955, 345-369; 130, 1955, 137-146.
- [5] H. KLINGEN, Über die analytischen Abbildungen verallgemeinerter Einheitkreise auf sich. Math. Ann., 132, 1956, 134-144.
- [6] C. L. SIEGEL, Symplectic geometry. Amer. J. Math., 65, 1943, 1-86.
- [7] E. VESENTINI, Holomorphic families of holomorphic isometries. Lecture notes in mathematics, n. 1277, Springer Verlag, Berlin 1987, 291-302.
- [8] E. VESENTINI, Semigroups on Krein spaces. Mem. Mat. Acc. Lincei, s. 9, v. 1, 1990, 3-29.

Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56126 PISA