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Geometria. — Holomorphic isometries of Cartari domains of type one. Nota(*) del 
Socio E D O A R D O V E S E N T I N I . 

ABSTRACT. — Holomorphic isometries for the Kobayashi metric of a class of Cartari domains are 
characterized. 

KEY WORDS: Cartari domain; Kobayashi metric; Holomorphic isometry. 

RIASSUNTO. — Isometrie olomorfe di domini di Cartari di tipo uno. Si caratterizzano le isometrie olo
morfe per la metrica di Kobayashi di una classe di domini di Cartan. 

Let X and X be two complex Hilbert spaces and let B be the open unit ball of the 
complex Banach space £(X, X) of all bounded linear mappings from X to X. Extend
ing to infinite dimensions a classical terminology, B has been given the name of a. Car-
tan domain of type one. This domain is homogeneous, i.e., the group AutB of all 
holomorphic automorphisms of B acts transitively. Since B is an open, bounded, cir
cular neighborhood of 0, a theorem by H. Cartan [2] implies that the stability group 
(AutB)o of 0 in AutB is linear, or, more exactly, every element of (AutB)0 is the re
striction to B of a linear isometric isomorphism of £(X, X). This fact, coupled with 
the explicit knowledge of a transitive subgroup of AutB, leads to a complete descrip
tion of the latter group. This description was carried out by H. Klingen[4,5] when 
both X and X have finite dimension, and by T. Franzoni [1] in the general case. The 
elements of AutB turn out to be invertible rational functions which are the operator-
valued analogues of the Moebius transformations acting on the unit disc of C. 

Let Iso B be the semigroup of all holomorphic maps of B into B which are isome
tries for the (Carathéodory-) Kobayashi metric of B [2]. Since this metric is invariant 
under all holomorphic automorphisms, then AutB is a subgroup (actually the maxi
mum subgroup) of IsoB. It coincides with IsoB when both X and X have finite di
mension, and is properly contained in Iso B otherwise. Thus, if at least one of the two 
spaces X and X has infinite dimension, the question naturally arises to describe IsoB. 
An example constructed in [7] in the case in which B is the open unit ball of the C*-
algebra £{X) = £{XyX) (dimc3C= °°) exhibits a non-linear element of IsoB fixing 0, 
showing thereby that H. Cartan's theorem fails for IsoB and leaving completely open 
the characterization of this semigroup in the infinite dimensional case. 

The main purpose of this Note is to show that H. Cartan's theorem holds 
for IsoB when one of the two Hilbert spaces X and X has finite dimension, 
and to characterize the stability semigroup (IsoB)0 of 0 in IsoB within the semigroup 
of all linear operators acting on £(X,X). This characterization yields a description 

(*) Pervenuta all'Accademia 1'8 ottobre 1990. 
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of Iso E in terms of non-invertible, operator-valued «Moebius transformations» 
which have been investigated in [8]. 

1. A /*-algebra [3] is a closed linear subspace 8 of £(X, X) such that, if X e 8, 
XX*Xe 8. Here X* denotes the adjoint operator of X. The space £(X,X) itself is a 
/*-algebra. If 8 and £F are /*-algebras, a continuous linear map L: <§—> Miscalled 
a /*-homomorphism if 

(1.1) L(XX*X) = L(X) L(X)* L(X) 

for all X e 8. A simple polarization argument yields then 

(1.2) L(XY*X) = L(X) L(Y)* L(X) 

for a l l X , 7 i n <£. Since XY*Z + ZY*X= (X + Z) 7*(X + Z) - X 7 * X - Z 7 * Z , (1.2) 
yields 

(1.3) L(Xy*Z + ZY*X) = L(X) L(Y)* L(Z) + L(Z) L(Y)* L(X) 

for all X,Y,Z in 8. 
The unit ball B of <§ is a bounded homogeneous domain. 
In [3] L. A. Harris proved that every /*-homomorphism of 8 into £^"is a linear 

isometry, and furthermore [3, Theorem 4] that if L: <§—» £F" is a linear surjective 
isometry, then L is a /*-homomorphism. Actually, a direct inspection of Harris' argu
ment shows that he proved slightly more, namely the following. Let Bg and Bgr be the 
open unit balls of 8 and £F, and let Iso (BgBgr ) be the set of all holomorphic maps 
of Bg into Bgr which are isometries for the respective Kobayashi metrics. The follow
ing proposition holds. 

PROPOSITION 1. If every L e Iso (Bg ,Bgr) such that L(0) = 0, is the restriction to 
Bg of a linear mapping of 8 into &, then every such L is the restriction to Bg of a 
Y'-homomorphism. 

2. The closed subspace £0 (X, X) c £(X, X) of all compact operators from X to X 
is a /'"-algebra. Since £0 (X, X) and £0 (X, X) are /"-isomorphic, it will be assumed 
henceforth that dimc X ^ dimc X. Every Xe£0(X,X) is expressed by 

(2.1) X = 2av/V(x)e* 

where: ax ^ a2 ^ ... > 0 are the singular values of X, i.e., o?h a | , . . . are the non-vanish
ing eigenvalues of X*X counted with their (finite) multiplicities; ev is an eigenvector of 
X*X corresponding to the eigenvalue o?v\ {ei,e29...} is an orthonormal system in X; 
f = av

-1X<?v, and (f \f^)K = $V(l; (f ® e*)(x) = (x\ev)x f for all x e X. The operator X is 
a partial isometry if, and only if, X*X is an orthogonal projector. Since 

(2.2) X*X=E*5*v®*vV 

and (X*X)2 =Sa!^ v ®£*> that happens if, and only if, av = 1 for all v. As a conse
quence, the set of all av appearing in (2.1) is finite. Denoting by N its cardinality, every 



HOLOMORPHIC ISOMETRIES OF CARTAN DOMAINS OF TYPE ONE 67 

partial isometry in £0(XyX) is given by 

N 

i 

Let X be the partial isometry in £0 (X, X) represented by this latter formula. De
noting by IK and Ix the identity operators in X and in X, and by X0 and X0 the closed 
subspaces of X and X spanned by {ex,..., eN} and by {f,..., fN}, Ix — X*X and Ix ~ 
— XX* are the orthogonal projectors onto XQ and onto XQ . If, and only if, either X = X0 

or X = XQ, then (IDC-XX*)Y(Ix^.X*X) = 0 for all Ye£0(X,X). By the Kadison-
Harris theorem [3, Theorem 11] that proves 

PROPOSITION 2. If both X and X have infinite dimension, the closed unit ball B of 
£0{X,X) has no extreme points. If X has finite dimension, and dimc3i^dimc2C, the 
extreme points of B are all the linear isometries of X into X. 

3. Let d imc^ = ^ < ° ° , dimc3C = » . Every Xe £0(X,X)\{0} is expressed by 
(2.1) where the summation runs over all v= 1,...,N, with l^N^n. Then 

detaa-X*X) = ri(l-*?). 
l 

Since ||X|| = max{av: v= 1,...,N}, then XeSB if, and only if, det (Ix - X*X) = 
= 0. 

Let F e (Iso B)0 and let L = </F(0) e £(£(X, X)). 
Denoting by x: B X £(X, X)^> R+ the Kobayashi infinitesimal metric on B[2], 

then x(0; L(X)) = x(0; X) for aU X e £{X, X). Since x(0; •) = || • ||, then ||L(X)|| = ||X|| for 
all Xe£(X,X) i.e., L is a linear isometry of £(X,X) into itself. 

It will be shown now that F(X) = L(X) for all X e B. This result will be established 
by using an argument first devised by C. L. Siegel in [6] in the case of the Siegel disc 
in Cn{n + l)/2. For X given by (2.1), 

L(X) = S a v L ( / v ® ^ ) . 
l 

The set of all X e £{X, X) such that N = n and OLX ,..., <x„ are distinct is a non-empty 
dense open set S c £(X, X). For all X, det {Ix - L(X)* L(X)) is a polynomial of degree 
2n in ai,...,<z„, whose constant term equals 1. As before L(X) edB if, and only if, 
det (Ix - L(X)*L(X)) = 0. On the other hand, since L is an isometry, L(X) e dB if, and 
only if, 

Il(i-«J) = o. 

Hence 

N 

ria-«;) 
i 
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divides det(I% — L(X)* L(X)) for all XeS, and in conclusion 

det (Ix - L(X)* L(X)) = det (I* - X*X) 

for all X e S and therefore for all Xe£(X,X). 
Thus 

(3.1) L(X) = 2 « v ( / ; ® a 
v = l 

for suitable choices of the orthonormal systems {e[, ...,e^}, and {/{, . . . , / N } in 3i and 
X respectively. If, in particular, X is a linear isometry, then also L(X) is a linear isome-
try. Thus, by Proposition 2, L maps the set of all extreme points of B into itself. By the 
Schwarz lemma [3, Theorem 10], F = L\B. Proposition 1 yelds then 

PROPOSITION 3. Let dimc3( — n<™, dimc3C= &.IfFe IsoB fixes 0, there exists 
a J'k-homomorphism L of £{X, X) into itself whose restriction to B is F. 

4. Let L be a /*-homomorphism of £0{X,X) into itself. If e e X, fé X are such 
that |H| = 11/11 = 1, and if X =f® e*, then XX*X = X. Setting Y=L(X), then by (1.1) 
YY*Y= L(XX*X) = L(X) = 7, whence Y*YY*Y= Y*Y, YY*YY* = YY*9 i.e., Y*Y 
and YY* are orthogonal projectors in X and in X. 

If ex e X,f e X are such that ||^ || = \\f \\ = 1, e ± ehf±fh and if Xx =f ® e{% Yx = 
= L(X1), then X*XX = (.\e1)xX*f1 = (-\e1)3L(f1\f)xe = 0, X2X* = ( - | / k X ^ = 
= (-|/)x(^ki)* /i = 0, so that, by (1.3), YY*YX + Y1 Y*Y= L(XX*Xl + XXX*X) = 0, 
which is readily seen [3] to be equivalent to Yl Y* = 0, Y* Yx = 0. That proves 

LEMMA 4. The orthogonal projectors Y*Y and YfYx in X are orthogonal to each 
other. Similarly, the orthogonal projectors YY* and Yx Y* in X are orthogonal to each 
other. 

It will be assumed henceforth that n = d i m c ^ < °°, dimc3C= <». For X given by 
(2.1) with v= 1, . . . , N ^ # , Y=L(X) is expressed by (3.1) and therefore 

N 

(4.i) y*y=Ea?te:®*v'*). 
v = l 

If V is a unitary operator in X such that V ev = e'v for v = 1, ...,N, (2.2) and (4.1) 
yield 

N 

y*y= S«? v ev ® (y*ev)* = v'*x*xv'. 
v = l 

If U7 is a linear isometry of 2C such that U'f=f' for v = 1, ...,N, then 

Y= Ea v U7v ® (V*^)* = U'XV'. 
v = l 

Note that the choices of V and U' depend only on {e1>...)eN}> {e{,..., <?N}? and 
{/i > • • -JN}> {/i> • • -J/N }> respectively. Fix now an orthonormal base {^,..., e„} in X 
and an orthonormal base {f^ : fieM} in X For v= 1,,..,», and / / eM, let X^ = 

=/,®c, r,v=L(x,v). 



HOLOMORPHIC ISOMETRIES OF CARTAN DOMAINS OF TYPE ONE 69 

There exist a unitary operator Vv in X and a linear isometry U^ in X, depending 
only on v and on p respectively, such that Y^ = UMX̂ V Vv = U^f^ ® (V*ev)*. 

Hence the orthogonal projector Y* Y^ = V* ev ® (V* ev)* maps X onto the com
plex line generated by V* ev and does not depend on (x: Y* Y^ = Y*>v Y^v for all p, (xf in 
M. Setting Pv = 1^; Y^, Lemma 4 implies that the orthogonal projectors Pv and P/ are 
orthogonal to each other, i.e., that V* ev is orthogonal to V* ev> whenever v =£ v'. A simi
lar argument shows that Ŷ v Y* — Y^> Y*> for all v, v' = 1,..., n. Hence the orthogonal 
projector Q^ = Y^Y* = U[JLflx ®;(U^^),V maps X onto the complex line generated by 
Upfp, and Qp and Q^ are orthogonal to each other, i.e., U ^ is orthogonal to U^f^ 
whenever/^ ^fc. In conclusion, there exists an orthonormal base {e[,..., e'n } in X and 
orthonormal system {/^}^6M in X such that 

(4.2) y , v = / ; ® < * . 

If V is a unitary operator in X such that Vev = e'v for v = 1,..., n and if U is a linear 
isometry in X such that U£ = / ; for all p eM, (4.2) yields L(X^V) = UX^V (v = 
= 1,...,«; fx eM). 

5. Every Ze£(X,X) is expressed by 

A = l 

where: O^N^n; fa ^ ... ^/3# > 0 are the singular values of Z; A,..., 4/ and gi, • • -,£N 
are suitably chosen orthonormal systems in X and X respectively. Since 

& = 2(&k)a,*v, 4 = 2 (4l.£Mo 
eM 

then 

whence 

v=lp t eM\A=l 

(5.1) Z = 2 2(Ze v | / , ) x X, v . 
v = 1/xeM 

LEMMA 5. TZ>£ rzg/tf A#«J side of (5.1) converges to Z in the Banach space 
Jt(X, X). 

PROOF. Since 

\\ZeJ=2 \{ZeM)x\
2, 

there exists a (finite or) countable set M 0 c M such that (Zev \ f^x = 0 whenever p f M0 

and v= 1,...,«. For any s > 0 there is a finite set Mx cM0 such that 

(5.2) E | ( Z e v | / v y 2 < £
2 . 

MA*! 
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Let 

K = E ±(ZeM) 5C^Vv 

Then 

K2=sup E ìiZe^f^X^ (?) : IHU *E 1 .= 

: sup i 2 2 (Z*v|/,)**;,«) 
U«M,v=l /x '^M l V '= l / x 

= SUP{E E ((Z^|/,)3c^.(0|(Ze,.|/,.)x^,'(§))Jc:||«lk^l 

fsup E 
2 L#M! 

E |(Zev|/,)x|
2 \)&M%+ E |(Zey|/^|2 HX^̂ Igc > 1 = 

= «suP E 2 | (^ )*NMBc: | tó l*« l 
j«^M1v=l 

E S|(zd/,)x|2||x„v|p = 
lx$MlV=l 

= » E EKz^l/,^!2, 

and (5.2) yields K<\fn~s. Q.E.D. 

As a consequence 

L(Z)= E E(zev|/,)XL(X,V)= E E(Zev|/,)xux„vv= 
iaeMv=l jxeMv=l 

= uil Ì(Zev\fll)xX^)v=UZV, 
\(l€Mv=l J 

proving thereby 

THEOREM I. If dimc X < oo, /o^ any J*-homomorphism L of £(X, X) into itself 
there exist a unitary operator V in X and a linear isometry U in X such that L(Z) = 
= UZV for all Ze£(X,X). 

COROLLARY. If dimcX < oo, for any F e (Iso B)0 there are a unitary operator V in X 
and a linear isometry U in X such that F is the restriction to B of the linear map 
Z-+UZV (Ze£(X,X)). 

6. Let / be the operator on the Hilbert space direct sum X © X defined by the 
matrix 

fix 0 \ 
J- o - / * ' 
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and let A be the semigroup of all A e £(X® X) such that 

(6.1) A*JA=J. 

Let r be the maximum subgroup of A consisting of all A e A which are continu
ously invertible in £{X®X). Any As£{X®X) is represented by a matrix 

An A12\ 
A = \A A 

\ / l 2 i /Ì22 

where An e £{X)y A22 e £(X)9 A12 e £(X, X),A21e £(X, X). Condition (6.1) is equiva
lent to 

(6.2) A11 An ~~ A2\A2i —Ixi 

(6.3 ) A22 A22 — A '{2 Ai2 = 1%, 

(6.4) AÙAU-A&A21=0. 

It has been shown in [8] that: if d im c 3t< °°: A2iZ + A22 is continuously invert
ible in £(%) for any ZeB; the holomorphic function A:B^> £(X,K) defined by 

(6.5) A(Z) = (AnZ + A12)(A21Z + A22y
1 

maps JB into B and is an element of IsoB; the function A —> A defines a homomorphism 
of A into IsoB, mapping r onto AutB. 

By (6.5), if A(0) = 0, Au = 0; (6.3) implies then that A22 is a linear isometry of X, 
i.e., since dim c3(< °°, is a unitary operator in X. Thus (6.4) yields A2i = 0, and, by 
(6.2), An is a linear isometry in X By Theorem I, that proves that, if F e (IsoB)0, then 
FeA, the image of A by the map A-^A. Since A contains AutB [1] which acts tran
sitively on B, a standard argument shows that A = Iso B, proving thereby 

THEOREM II. If dimcX<°°, the map A-^> A is a surjective homomorphism of A 
onto IsoB. 

As a consequence, the results established in [8] for A hold for the entire semi
group ISOJB. For example, by Propositions 3.7 and 3.8 of [8], every F e IsoB is the 
restriction to B of a weakly continuous map F:B-^B. The Schauder-Tychonoff theo
rem implies then that F has some fixed point in B. 

Furthermore the strongly continuous linear semigroups in A constructed in [8] 
yield all the one-parameter semigroups in IsoB which are continuous for the strong 
topology in £{X,DQ. 

Proposition 4.2 of [8] yields 

PROPOSITION 6. Let D be a domain in C. If dimcX< o°, every holomorphic map 
f.DxB^B for which g(z, •) e IsoB for all zeD, is independent of z. 

Questa Nota è dedicata alla memoria di Edoardo Arnaldi. 
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