Rendiconti Lincei

 Matematica E Applicazioni
Edoardo Vesentini

Holomorphic isometries of Cartan domains of type one

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 2 (1991), n.1, p. 65-72.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1991_9_2_1_65_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1991.

Geometria. - Holomorphic isometries of Cartan domains of type one. Nota (*) del Socio Edoardo Vesentini.

Abstract. - Holomorphic isometries for the Kobayashi metric of a class of Cartan domains are characterized.

Key words: Cartan domain; Kobayashi metric; Holomorphic isometry.

Ruassunto. - Isometrie olomorfe di domini di Cartan di tipo uno. Si caratterizzano le isometrie olomorfe per la metrica di Kobayashi di una classe di domini di Cartan.

Let \mathscr{C} and \mathscr{X} be two complex Hilbert spaces and let B be the open unit ball of the complex Banach space $\mathcal{L}(\mathcal{K}, \mathscr{\mathcal { G }})$ of all bounded linear mappings from \mathcal{K} to \mathcal{H}. Extending to infinite dimensions a classical terminology, B has been given the name of a. Car\tan domain of type one. This domain is homogeneous, i.e., the group Aut B of all holomorphic automorphisms of B acts transitively. Since B is an open, bounded, circular neighborhood of 0 , a theorem by H . Cartan [2] implies that the stability group $(\text { Aut } B)_{0}$ of 0 in Aut B is linear, or, more exactly, every element of $(\operatorname{Aut} B)_{0}$ is the restriction to B of a linear isometric isomorphism of $\mathcal{L}(\mathcal{X}, \mathcal{C})$. This fact, coupled with the explicit knowledge of a transitive subgroup of $\operatorname{Aut} B$, leads to a complete description of the latter group. This description was carried out by H . Klingen [4,5] when both \mathcal{H} and \mathcal{X} have finite dimension, and by T. Franzoni [1] in the general case. The elements of $A u t B$ turn out to be invertible rational functions which are the operatorvalued analogues of the Moebius transformations acting on the unit disc of C.

Let Iso B be the semigroup of all holomorphic maps of B into B which are isometries for the (Carathéodory-) Kobayashi metric of B [2]. Since this metric is invariant under all holomorphic automorphisms, then $\operatorname{Aut} B$ is a subgroup (actually the maximum subgroup) of Iso B. It coincides with Iso B when both \mathcal{H} and \mathcal{K} have finite dimension, and is properly contained in Iso B otherwise. Thus, if at least one of the two spaces \mathcal{H} and \mathcal{K} has infinite dimension, the question naturally arises to describe Iso B. An example constructed in [7] in the case in which B is the open unit ball of the C^{*} algebra $\mathcal{L}(\mathscr{H})=\mathscr{L}(\mathcal{H}, \mathscr{H})\left(\operatorname{dim}_{C} \mathcal{H}=\infty\right)$ exhibits a non-linear element of Iso B fixing 0 , showing thereby that H . Cartan's theorem fails for Iso B and leaving completely open the characterization of this semigroup in the infinite dimensional case.

The main purpose of this Note is to show that H. Cartan's theorem holds for Iso B when one of the two Hilbert spaces \mathcal{X} and \mathcal{X} has finite dimension, and to characterize the stability semigroup (Iso $B)_{0}$ of 0 in Iso B within the semigroup of all linear operators acting on $\mathfrak{L}(\mathcal{K}, \mathcal{H})$. This characterization yields a description
(*) Pervenuta all'Accademia l'8 ottobre 1990.
of Iso B in terms of non-invertible, operator-valued «Moebius transformations» which have been investigated in [8].

1. A J^{*}-algebra [3] is a closed linear subspace $\boldsymbol{\mathcal { E }}$ of $\mathcal{L}(\mathcal{X}, \mathcal{H})$ such that, if $X \in \boldsymbol{\mathcal { E }}$, $X X * X \in \boldsymbol{\mathcal { E }}$. Here X^{*} denotes the adjoint operator of X. The space $\mathcal{L}(\mathcal{X}, \mathscr{C})$ itself is a J^{*}-algebra. If $\boldsymbol{\mathcal { B }}$ and \mathscr{F} are J^{*}-algebras, a continuous linear map $L: \boldsymbol{\mathcal { G }} \rightarrow \mathscr{F}$ is called a J^{*}-homomorphism if

$$
\begin{equation*}
L(X X * X)=L(X) L(X) * L(X) \tag{1.1}
\end{equation*}
$$

for all $X \in \mathcal{E}$. A simple polarization argument yields then

$$
\begin{equation*}
L(X Y * X)=L(X) L(Y) * L(X) \tag{1.2}
\end{equation*}
$$

for all X, Y in \mathcal{E}. Since $X Y^{*} Z+Z Y^{*} X=(X+Z) Y^{*}(X+Z)-X Y^{*} X-Z Y^{*} Z$, (1.2) yields

$$
\begin{equation*}
L(X Y * Z+Z Y * X)=L(X) L(Y) * L(Z)+L(Z) L(Y) * L(X) \tag{1.3}
\end{equation*}
$$

for all X, Y, Z in \mathcal{E}.
The unit ball B of \boldsymbol{E} is a bounded homogeneous domain.
In [3] L. A. Harris proved that every $J *$-homomorphism of \mathcal{E} into \mathscr{F} is a linear isometry, and furthermore [3, Theorem 4] that if $L: \mathcal{B} \rightarrow \mathscr{F}$ is a linear surjective isometry, then L is a J^{*}-homomorphism. Actually, a direct inspection of Harris' argument shows that he proved slightly more, namely the following. Let $B_{\mathcal{E}}$ and $B_{\mathscr{F}}$ be the open unit balls of \mathcal{E} and \mathscr{F}, and let Iso $\left(B_{\mathscr{E}}, B_{\mathscr{F}}\right)$ be the set of all holomorphic maps of $B_{\mathcal{B}}$ into $B_{\mathscr{F}}$ which are isometries for the respective Kobayashi metrics. The following proposition holds.

Proposition 1. If every $L \in \operatorname{Iso}\left(B_{\mathcal{B}}, B_{\mathscr{F}}\right)$ such that $L(0)=0$, is the restriction to $B_{\mathcal{E}}$ of a linear mapping of $\boldsymbol{\mathcal { B }}$ into \mathfrak{F}, then every such L is the restriction to $B_{\mathcal{E}}$ of a J^{*}-homomorphism.
2. The closed subspace $\mathfrak{L}_{0}(\mathcal{K}, \mathscr{H}) \subset \mathscr{L}(\mathcal{X}, \mathscr{\mathcal { C }})$ of all compact operators from \mathcal{X} to \mathcal{H} is a J^{*}-algebra. Since $\mathscr{L}_{0}(\mathcal{K}, \mathcal{H})$ and $\mathscr{L}_{0}(\mathscr{C}, \mathscr{K})$ are J^{*}-isomorphic, it will be assumed henceforth that $\operatorname{dim}_{C} \mathscr{X} \leqslant \operatorname{dim}_{C} \mathscr{H}$. Every $X \in \mathscr{L}_{0}(\mathscr{K}, \mathscr{C})$ is expressed by

$$
\begin{equation*}
X=\sum \alpha_{\nu} f_{\nu} \otimes e_{v}^{*} \tag{2.1}
\end{equation*}
$$

where: $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots>0$ are the singular values of X, i.e., $\alpha_{1}^{2}, \alpha_{2}^{2}, \ldots$ are the non-vanishing eigenvalues of $X^{*} X$ counted with their (finite) multiplicities; e_{ν} is an eigenvector of $X * X$ corresponding to the eigenvalue $\alpha_{\nu}^{2}:\left\{e_{1}, e_{2}, \ldots\right\}$ is an orthonormal system in \mathcal{K}; $f_{\nu}=\alpha_{\nu}^{-1} X e_{\nu}$, and $\left(f_{\nu} \mid f_{\mu}\right)_{\mathcal{H}}=\delta_{\nu \mu} ;\left(f_{\nu} \otimes e_{\nu}^{*}\right)(x)=\left(x \mid e_{\nu}\right)_{\mathcal{K}} f_{\nu}$ for all $x \in \mathcal{K}$. The operator X is a partial isometry if, and only if, $X * X$ is an orthogonal projector. Since

$$
\begin{equation*}
X^{*} X=\sum \alpha_{\nu}^{2} e_{\nu} \otimes e_{v}^{*} \tag{2.2}
\end{equation*}
$$

and $\left(X^{*} X\right)^{2}=\sum \alpha_{\nu}^{4} e_{\nu} \otimes e_{\nu}^{*}$, that happens if, and only if, $\alpha_{\nu}=1$ for all ν. As a consequence, the set of all α_{ν} appearing in (2.1) is finite. Denoting by N its cardinality, every
partial isometry in $\mathscr{L}_{0}(\mathcal{K}, \mathcal{H})$ is given by

$$
X=\sum_{1}^{N} f_{\nu} \otimes e_{\nu}^{*}
$$

Let X be the partial isometry in $\mathscr{L}_{0}(\mathcal{K}, \mathscr{H})$ represented by this latter formula. Denoting by $I_{\mathscr{C}}$ and $I_{\mathcal{X}}$ the identity operators in \mathcal{H} and in \mathcal{K}, and by \mathcal{K}_{0} and \mathcal{K}_{0} the closed subspaces of \mathcal{K} and \mathscr{H} spanned by $\left\{e_{1}, \ldots, e_{N}\right\}$ and by $\left\{f_{1}, \ldots, f_{N}\right\}, I_{\mathcal{K}}-X * X$ and $I_{\mathscr{C}}-$ $-X X^{*}$ are the orthogonal projectors onto \mathcal{X}_{0}^{\perp} and onto \mathcal{H}_{0}^{\perp}. If, and only if, either $\mathcal{H}=\mathcal{H}_{0}$ or $\mathcal{K}=\mathscr{K}_{0}$, then $\left(I_{\mathscr{C}}-X X^{*}\right) Y\left(I_{\mathcal{K}}-X^{*} X\right)=0$ for all $Y \in \mathscr{L}_{0}(\mathscr{X}, \mathscr{C})$. By the KadisonHarris theorem [3, Theorem 11] that proves

Proposition 2. If both \mathcal{H} and \mathcal{X} bave infinite dimension, the closed unit ball \bar{B} of $\mathfrak{L}_{0}(\mathcal{K}, \mathcal{H})$ bas no extreme points. If \mathcal{X} bas finite dimension, and $\operatorname{dim}_{C} \mathcal{X} \leqslant \operatorname{dim}_{C} \mathcal{H}$, the extreme points of \bar{B} are all the linear isometries of \mathcal{X} into \mathcal{H}.
3. Let $\operatorname{dim}_{C} \mathcal{X}=n<\infty, \operatorname{dim}_{C} \mathscr{H}=\infty$. Every $X \in \mathfrak{L}_{0}(\mathscr{K}, \mathscr{H}) \backslash\{0\}$ is expressed by (2.1) where the summation runs over all $\nu=1, \ldots, N$, with $1 \leqslant N \leqslant n$. Then

$$
\operatorname{det}\left(I_{\mathcal{K}}-X^{*} X\right)=\prod_{1}^{N}\left(1-\alpha_{\nu}^{2}\right) .
$$

Since $\|X\|=\max \left\{\alpha_{\nu}: \nu=1, \ldots, N\right\}$, then $X \in \partial B$ if, and only if, $\operatorname{det}\left(I_{\mathcal{X}}-X * X\right)=$ $=0$.

Let $F \in(\text { Iso } B)_{0}$ and let $L=d F(0) \in \mathscr{L}(\mathscr{L}(\mathcal{X}, \mathcal{C}))$.
Denoting by $x: B \times \mathscr{L}(\mathcal{X}, \mathcal{H}) \rightarrow \boldsymbol{R}_{+}$the Kobayashi infinitesimal metric on $B[2]$, then $x(0 ; L(X))=x(0 ; X)$ for all $X \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. Since $x(0 ; \cdot)=\|\cdot\|$, then $\|L(X)\|=\|X\|$ for all $X \in \mathscr{L}(\mathscr{X}, \mathscr{H})$ i.e., L is a linear isometry of $\mathscr{L}(\mathscr{K}, \mathscr{H})$ into itself.

It will be shown now that $F(X)=L(X)$ for all $X \in B$. This result will be established by using an argument first devised by C. L. Siegel in [6] in the case of the Siegel disc in $C^{n(n+1) / 2}$. For X given by (2.1),

$$
L(X)=\sum_{1}^{N} \alpha_{\nu} L\left(f_{v} \otimes e_{\nu}^{*}\right)
$$

The set of all $X \in \mathscr{L}(\mathcal{X}, \mathscr{\mathcal { C }})$ such that $N=n$ and $\alpha_{1}, \ldots, \alpha_{n}$ are distinct is a non-empty dense open set $S \subset \mathscr{L}(\mathcal{K}, \mathscr{H})$. For all X, $\operatorname{det}\left(I_{\mathcal{X}}-L(X)^{*} L(X)\right)$ is a polynomial of degree $2 n$ in $\alpha_{1}, \ldots, \alpha_{n}$, whose constant term equals 1 . As before $L(X) \in \partial B$ if, and only if, $\operatorname{det}\left(I_{\mathcal{R}}-L(X)^{*} L(X)\right)=0$. On the other hand, since L is an isometry, $L(X) \in \partial B$ if, and only if,

$$
\prod_{1}^{N}\left(1-\alpha_{\nu}^{2}\right)=0 .
$$

Hence

$$
\prod_{1}^{N}\left(1-\alpha_{v}^{2}\right)
$$

divides $\operatorname{det}\left(I_{\mathscr{R}}-L(X) * L(X)\right)$ for all $X \in S$, and in conclusion

$$
\operatorname{det}\left(I_{\mathscr{K}}-L(X)^{*} L(X)\right)=\operatorname{det}\left(I_{\mathscr{K}}-X * X\right)
$$

for all $X \in S$ and therefore for all $X \in \mathscr{L}(\mathcal{K}, \mathcal{H})$.
Thus

$$
\begin{equation*}
L(X)=\sum_{\nu=1}^{N} \alpha_{\nu}\left(f_{\nu}^{\prime} \otimes e_{\nu}^{\prime *}\right) \tag{3.1}
\end{equation*}
$$

for suitable choices of the orthonormal systems $\left\{e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right\}$, and $\left\{f_{1}^{\prime}, \ldots, f_{N}^{\prime}\right\}$ in \mathcal{K} and \mathscr{H} respectively. If, in particular, X is a linear isometry, then also $L(X)$ is a linear isometry. Thus, by Proposition $2, L$ maps the set of all extreme points of \bar{B} into itself. By the Schwarz lemma [3, Theorem 10], $F=L_{\mid B}$. Proposition 1 yelds then

Proposition 3. Let $\operatorname{dim}_{C} \mathcal{K}=n<\infty, \operatorname{dim}_{C} \mathcal{H}=\infty$. If $F \in \operatorname{Iso} B$ fixes 0 , there exists a J^{*}-bomomorphism L of $\mathcal{L}(\mathcal{X}, \mathscr{A})$ into itself whose restriction to B is F.
4. Let L be a J^{*}-homomorphism of $\mathscr{L}_{0}(\mathcal{K}, \mathscr{C})$ into itself. If $e \in \mathcal{K}, f \in \mathscr{H}$ are such that $\|e\|=\|f\|=1$, and if $X=f \otimes e^{*}$, then $X X^{*} X=X$. Setting $Y=L(X)$, then by (1.1) $Y Y^{*} Y=L\left(X X^{*} X\right)=L(X)=Y$, whence $Y^{*} Y Y^{*} Y=Y^{*} Y, Y Y^{*} Y Y^{*}=Y Y^{*}$, i.e., $Y^{*} Y$ and $Y Y^{*}$ are orthogonal projectors in \mathcal{X} and in \mathcal{H}.

If $e_{1} \in \mathcal{X}, f_{1} \in \mathcal{H}$ are such that $\left\|e_{1}\right\|=\left\|f_{1}\right\|=1, e \perp e_{1}, f \perp f_{1}$, and if $X_{1}=f_{1} \otimes e_{1}^{*}, Y_{1}=$ $=L\left(X_{1}\right)$, then $X^{*} X_{1}=\left(\cdot \mid e_{1}\right)_{\mathcal{H}} X^{*} f_{1}=\left(\cdot \mid e_{1}\right)_{\mathcal{H}}\left(f_{1} \mid f\right)_{\mathcal{H}} e=0, \quad X_{1} X^{*}=(\cdot \mid f)_{\mathcal{H}} X_{1} e=$ $=(\cdot \mid f)_{\mathcal{H}}\left(e \mid e_{1}\right)_{\mathcal{H}} f_{1}=0$, so that, by (1.3), $Y Y^{*} Y_{1}+Y_{1} Y * Y=L\left(X X * X_{1}+X_{1} X^{*} X\right)=0$, which is readily seen [3] to be equivalent to $Y_{1} Y^{*}=0, Y^{*} Y_{1}=0$. That proves

Lemma 4. The orthogonal projectors $Y^{*} Y$ and $Y_{1}^{*} Y_{1}$ in \mathcal{X} are orthogonal to each other. Similarly, the orthogonal projectors $Y Y^{*}$ and $Y_{1} Y_{1}^{*}$ in \mathcal{H} are orthogonal to each other.

It will be assumed henceforth that $n=\operatorname{dim}_{C} \mathcal{X}<\infty, \operatorname{dim}_{C} \mathcal{H}=\infty$. For X given by (2.1) with $\nu=1, \ldots, N \leqslant n, Y=L(X)$ is expressed by (3.1) and therefore

$$
\begin{equation*}
Y^{*} Y=\sum_{v=1}^{N} \alpha_{\nu}^{2}\left(e_{v}^{\prime} \otimes e_{v}^{\prime *}\right) . \tag{4.1}
\end{equation*}
$$

If V^{\prime} is a unitary operator in \mathcal{K} such that $V^{\prime} e_{\nu}=e_{\nu}^{\prime}$ for $\nu=1, \ldots, N,(2.2)$ and (4.1) yield

$$
Y^{*} Y=\sum_{\nu=1}^{N} \alpha_{\nu}^{2} V^{\prime} e_{\nu} \otimes\left(V^{\prime *} e_{\nu}\right)^{*}=V^{\prime *} X^{*} X V^{\prime}
$$

If U^{\prime} is a linear isometry of \mathcal{H} such that $U^{\prime} f_{\nu}=f_{\nu}^{\prime}$ for $\nu=1, \ldots, N$, then

$$
Y=\sum_{\nu=1}^{N} \alpha_{\nu} U^{\prime} f_{\nu} \otimes\left(V^{\prime *} e_{\nu}\right)^{*}=U^{\prime} X V^{\prime}
$$

Note that the choices of V^{\prime} and U^{\prime} depend only on $\left\{e_{1}, \ldots, e_{N}\right\},\left\{e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right\}$, and $\left\{f_{1}, \ldots, f_{N}\right\},\left\{f_{1}^{\prime}, \ldots, f_{N}^{\prime}\right\}$, respectively. Fix now an orthonormal base $\left\{e_{1}, \ldots, e_{n}\right\}$ in \mathcal{X} and an orthonormal base $\left\{f_{\mu}: \mu \in M\right\}$ in \mathscr{H}. For $\nu=1, \ldots, n$, and $\mu \in M$, let $X_{\mu \nu}=$ $=f_{\mu} \otimes e_{\nu}^{*}, Y_{\mu \nu}=L\left(X_{\mu \nu}\right)$.

There exist a unitary operator V_{ν} in \mathcal{K} and a linear isometry U_{μ} in \mathscr{X}, depending only on ν and on μ respectively, such that $Y_{\mu \nu}=U_{\mu} X_{\mu \nu} V_{\nu}=U_{\mu} f_{\mu} \otimes\left(V_{\nu}^{*} \cdot e_{\nu}\right)^{*}$.

Hence the orthogonal projector $Y_{\mu \nu}^{*} Y_{\mu \nu}=V_{\nu}^{*} e_{\nu} \otimes\left(V_{\nu}^{*} e_{\nu}\right)^{*}$ maps \mathcal{K} onto the complex line generated by $V_{\nu}^{*} e_{\nu}$ and does not depend on $\mu: Y_{\mu \nu}^{*} Y_{\mu \nu}=Y_{\mu^{*}{ }_{\nu}} Y_{\mu^{\prime} \nu}$ for all μ, μ^{\prime} in M. Setting $P_{\nu}=Y_{\mu \nu}^{*} Y_{\mu \nu}$, Lemma 4 implies that the orthogonal projectors P_{ν} and $P_{\nu^{\prime}}$ are orthogonal to each other, i.e., that $V_{\nu}^{*} e_{\nu}$ is orthogonal to $V_{\nu^{*}}^{*} e_{\nu^{\prime}}$ whenever $\nu \neq \nu^{\prime}$. A similar argument shows that $Y_{\mu \nu} Y_{\mu \nu}^{*}=Y_{\mu \nu^{\prime}} Y_{\mu \nu^{\prime}}^{*}$ for all $\nu, \nu^{\prime}=1, \ldots, n$. Hence the orthogonal projector $Q_{\mu}=Y_{\mu \nu} Y_{\mu \nu}^{*}=U_{\mu} f_{\mu} \otimes\left(U_{\mu} f_{\mu}\right)^{*}$ maps \mathcal{H} onto the complex line generated by $U_{\mu} f_{\mu}$, and Q_{μ} and $Q_{\mu^{\prime}}$ are orthogonal to each other, i.e., $U_{\mu} f_{\mu}$ is orthogonal to $U_{\mu^{\prime}} f_{\mu^{\prime}}$ whenever $f_{\mu} \neq f_{\mu^{\prime}}$. In conclusion, there exists an orthonormal base $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ in \mathcal{K} and orthonormal system $\left\{f_{\mu}^{\prime}\right\}_{\mu \in M}$ in \mathcal{H} such that

$$
\begin{equation*}
Y_{\mu \nu}=f_{\mu}^{\prime} \otimes e_{\nu}^{\prime *} \tag{4.2}
\end{equation*}
$$

If V is a unitary operator in \mathcal{K} such that $V e_{\nu}=e_{\nu}^{\prime}$ for $\nu=1, \ldots, n$ and if U is a linear isometry in \mathcal{H} such that $U f_{\mu}=f_{\mu}^{\prime}$ for all $\mu \in M$, (4.2) yields $L\left(X_{\mu \nu}\right)=U X_{\mu \nu} V \quad(\nu=$ $=1, \ldots, n ; \mu \in M)$.
5. Every $Z \in \mathscr{L}(\mathcal{K}, \mathscr{H})$ is expressed by

$$
Z=\sum_{\lambda=1}^{N} \beta_{\lambda} l_{\lambda} \otimes g_{\lambda}^{*}
$$

where: $0 \leqslant N \leqslant n ; \beta_{1} \geqslant \ldots \geqslant \beta_{N}>0$ are the singular values of $Z ; l_{1}, \ldots, l_{N}$ and g_{1}, \ldots, g_{N} are suitably chosen orthonormal systems in \mathcal{H} and \mathcal{X} respectively. Since

$$
g_{\lambda}=\sum_{\nu=1}^{n}\left(g_{\lambda} \mid e_{\nu}\right)_{\mathcal{H}} e_{\nu}, \quad l_{\lambda}=\sum_{\mu \in M}\left(l_{\lambda} \mid f_{\mu}\right)_{\mathscr{C}} f_{\mu},
$$

then

$$
Z=\sum_{\nu=1}^{n} \sum_{\mu \in M}\left(\sum_{\lambda=1}^{N} \beta_{\lambda}\left(e_{\nu} \mid g_{\lambda}\right)_{\mathcal{X}}\left(l_{\lambda} \mid f_{\mu}\right)_{\mathscr{H}}\right) X_{\mu \nu},
$$

whence

$$
\begin{equation*}
Z=\sum_{\nu=1}^{n} \sum_{\mu \in M}\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{r}} X_{\mu \nu} . \tag{5.1}
\end{equation*}
$$

Lemma 5. The right band side of (5.1) converges to Z in the Banach space $\mathcal{L}(\mathcal{K}, \mathscr{H})$.

Proof. Since

$$
\left\|Z e_{\nu}\right\|^{2}=\sum_{\mu \in M}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{x}\right|^{2},
$$

there exists a (finite or) countable set $M_{0} \subset M$ such that $\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}}=0$ whenever $\mu \notin M_{0}$ and $\nu=1, \ldots, n$. For any $\varepsilon>0$ there is a finite set $M_{1} \subset M_{0}$ such that

$$
\begin{equation*}
\sum_{\mu \notin M_{1}}\left|\left(Z e_{\nu} \mid f_{\nu}\right)_{\mathscr{}}\right|^{2}<\varepsilon^{2} \tag{5.2}
\end{equation*}
$$

Let

$$
K=\left\|\sum_{\mu \notin M_{1}} \sum_{v=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{x c} X_{\mu \nu}\right\|
$$

Then

$$
\begin{aligned}
& K^{2}=\sup \left\{\left\|\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}} X_{\mu \nu}(\xi)\right\|_{\mathscr{}}:\|\xi\|_{\mathcal{X}} \leqslant 1\right\}= \\
& \left.=\sup \left\{\left(\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}} X_{\mu \nu}(\xi)\left|\sum_{\mu^{\prime} \notin M_{1} \nu^{\prime}=1} \sum_{\left(Z e_{\nu^{\prime}}\right.}^{n}\right| f_{\mu^{\prime}}\right)_{\mathscr{X}} X_{\mu^{\prime} \nu^{\prime}}(\xi)\right)_{\mathscr{C}}:\|\xi\|_{\mathcal{X}} \leqslant 1\right\}= \\
& =\sup \left\{\sum_{\mu \notin M_{1} \nu, \nu^{\prime}=1}^{n}\left(\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}} X_{\mu \nu}(\xi) \mid\left(Z e_{\nu^{\prime}} \mid f_{\mu^{\prime}}\right)_{\mathscr{C}} X_{\mu \nu^{\prime}}(\xi)\right)_{\mathscr{C}}:\|\xi\|_{\mathscr{K}} \leqslant 1\right\} \leqslant \\
& \leqslant \frac{n}{2} \sup \left\{\sum_{\mu \notin M_{1}}\left[\sum_{\nu=1}^{n}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}}\right|^{2}\left\|X_{\mu \nu}(\xi)\right\|_{\mathscr{C}}^{2}+\sum_{\nu=1}^{n}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}}\right|^{2}\left\|X_{\mu \nu}(\xi)\right\|_{\mathscr{X}}\right]:\|\xi\|_{\mathscr{X}} \leqslant 1\right\}= \\
& =n \sup \left\{\sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}}\right|^{2}\left\|X_{\mu \nu}(\xi)\right\|_{\mathscr{C}}^{2}:\|\xi\|_{\mathcal{X}} \leqslant 1\right\}=n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{C}}\right|^{2}\left\|X_{\mu \nu}\right\|^{2}= \\
& =n \sum_{\mu \notin M_{1}} \sum_{\nu=1}^{n}\left|\left(Z e_{\nu} \mid f_{\mu}\right)_{\mathscr{H}}\right|^{2},
\end{aligned}
$$

and (5.2) yields $K<\sqrt{n}$. \quad Q.E.D.
As a consequence

$$
\begin{aligned}
& L(Z)=\sum_{\mu \in M} \sum_{\nu=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{x} L\left(X_{\mu \nu}\right)=\sum_{\mu \in M} \sum_{\nu=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{x} U X_{\mu \nu} V= \\
&=U\left(\sum_{\mu \in M} \sum_{\nu=1}^{n}\left(Z e_{\nu} \mid f_{\mu}\right)_{x x} X_{\mu \nu}\right) V=U Z V
\end{aligned}
$$

proving thereby
Theorem I. If $\operatorname{dim}_{C} \mathscr{X}<\infty$, for any J^{*}-homomorphism L of $\mathfrak{L}(\mathscr{X}, \mathcal{H})$ into itself, there exist a unitary operator V in \mathcal{X} and a linear isometry U in \mathcal{H} such that $L(Z)=$ $=U Z V$ for all $Z \in \mathscr{L}(\mathcal{X}, \mathcal{H})$.

Corollary. If $\operatorname{dim}_{C} \mathcal{X}<\infty$, for any $F \in(\operatorname{Iso} B)_{0}$ there are a unitary operator V in \mathcal{X} and a linear isometry U in \mathcal{H} such that F is the restriction to B of the linear map $Z \rightarrow U Z V(Z \in \mathscr{L}(\mathcal{X}, \mathscr{H}))$.
6. Let J be the operator on the Hilbert space direct sum $\mathcal{H} \oplus \mathcal{X}$ defined by the matrix

$$
J=\left(\begin{array}{cc}
I_{x} & 0 \\
0 & -I_{x}
\end{array}\right)
$$

and let Λ be the semigroup of all $A \in \mathscr{L}(\mathscr{H} \oplus \mathcal{K})$ such that

$$
\begin{equation*}
A^{*} J A=J . \tag{6.1}
\end{equation*}
$$

Let Γ be the maximum subgroup of Λ consisting of all $A \in \Lambda$ which are continuously invertible in $\mathfrak{L}(\mathscr{H} \oplus \mathcal{K})$. Any $A \in \mathscr{L}(\mathscr{H} \oplus \mathcal{K})$ is represented by a matrix

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where $A_{11} \in \mathscr{L}(\mathscr{H}), A_{22} \in \mathscr{L}(\mathcal{K}), A_{12} \in \mathscr{L}(\mathcal{X}, \mathscr{H}), A_{21} \in \mathscr{L}(\mathscr{C}, \mathscr{X})$. Condition (6.1) is equivalent to

$$
\begin{gather*}
A_{11}^{*} A_{11}-A_{21}^{*} A_{21}=I_{\mathscr{H}} \tag{6.2}\\
A_{22}^{*} A_{22}-A_{12}^{*} A_{12}=I_{\mathscr{H}}, \tag{6.3}\\
A_{12}^{*} A_{11}-A_{22}^{*} A_{21}=0 \tag{6.4}
\end{gather*}
$$

It has been shown in [8] that: if $\operatorname{dim}_{C} \mathcal{K}<\infty: A_{21} Z+A_{22}$ is continuously invertible in $\mathcal{L}(\mathcal{X})$ for any $Z \in B$; the holomorphic function $\widetilde{A}: B \rightarrow \mathcal{L}(\mathscr{K}, \mathcal{C})$ defined by

$$
\begin{equation*}
\widetilde{A}(Z)=\left(A_{11} Z+A_{12}\right)\left(A_{21} Z+A_{22}\right)^{-1} \tag{6.5}
\end{equation*}
$$

maps B into B and is an element of Iso B; the function $A \rightarrow \widetilde{A}$ defines a homomorphism of Λ into Iso B, mapping Γ onto Aut B.

By (6.5), if $\widetilde{A}(0)=0, A_{12}=0$; (6.3) implies then that A_{22} is a linear isometry of \mathcal{X}, i.e., since $\operatorname{dim}_{C} \mathcal{K}<\infty$, is a unitary operator in \mathcal{K}. Thus (6.4) yields $A_{21}=0$, and, by (6.2), A_{11} is a linear isometry in \mathcal{H}. By Theorem I , that proves that, if $F \in(\operatorname{Iso} B)_{0}$, then $F \in \widetilde{\Lambda}$, the image of Λ by the map $A \rightarrow \widetilde{A}$. Since $\widetilde{\Lambda}$ contains Aut $B[1]$ which acts transitively on B, a standard argument shows that $\widetilde{\Lambda}=$ Iso B, proving thereby

Theorem II. If $\operatorname{dim}_{\mathrm{C}} \mathcal{X}<\infty$, the map $A \rightarrow \widetilde{A}$ is a surjective bomomorphism of Λ onto Iso B.

As a consequence, the results established in [8] for $\widetilde{\Lambda}$ hold for the entire semigroup Iso B. For example, by Propositions 3.7 and 3.8 of [8], every $F \in \operatorname{Iso} B$ is the restriction to B of a weakly continuous map $\hat{F}: \bar{B} \rightarrow \bar{B}$. The Schauder-Tychonoff theorem implies then that \hat{F} has some fixed point in \bar{B}.

Furthermore the strongly continuous linear semigroups in Λ constructed in [8] yield all the one-parameter semigroups in Iso B which are continuous for the strong topology in $\mathcal{L}(\mathcal{K}, \mathscr{H})$.

Proposition 4.2 of [8] yields
Proposition 6. Let D be a domain in C. If $\operatorname{dim}_{C} \mathcal{K}<\infty$, every bolomorphic map $f: D \times B \rightarrow B$ for which $g(z, \cdot) \in \operatorname{Iso} B$ for all $z \in D$, is independent of z.

Questa Nota è dedicata alla memoria di Edoardo Amaldi.

References

[1] T. Franzoni, The group of bolomorphic automorphisms in certain J*-algebras. Ann. Mat. Pura Appl., (4) 127, 1981, 51-66.
[2] T. Franzoni - E. Vesentini, Holomorphic maps and invariant distances. North Holland, Amsterdam - New York - Oxford 1980.
[3] L. A. Harris, Bounded symmetric bomogeneous domains in infinite dimensional spaces. Lecture notes in mathematics, n. 364, Springer Verlag, Berlin 1974, 13-40.
[4] H. Kilngen, Diskontinuierliche Gruppen in symmetrischen Räumen. I.II. Math. Ann., 129, 1955, 345-369; 130, 1955, 137-146.
[5] H. Klingen, Über die analytischen Abbildungen verallgemeinerter Einheitkreise auf sich. Math. Ann., 132, 1956, 134-144.
[6] C. L. Siegel, Symplectic geometry. Amer. J. Math., 65, 1943, 1-86.
[7] E. Vesentint, Holomorphic families of bolomorphic isometries. Lecture notes in mathematics, n . 1277, Springer Verlag, Berlin 1987, 291-302.
[8] E. Vesentini, Semigroups on Kreìn spaces. Mem. Mat. Acc. Lincei, s. 9, v. 1, 1990, 3-29.
Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PisA

