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Calcolo delle variazioni. —• T-convergence of discrete approximations to interfaces 

with prescribed mean curvature. N o t a d i G I O V A N N I B E L L E T T I N I , M A U R I Z I O P A O L I N I e 

C L A U D I O V E R D I , p resen ta ta (*) dal Socio E . D E G I O R G I . 

ABSTRACT. — The numerical approximation of the minimum problem: min<^04), is considered, where 
A QÛ 

if (A) = PQ (A) + cos(6)Xtt~1 (dA n dû) - Jx. The solution to this problem is a set A cQcRn with pre-
A . # . ~ . . 

scribed mean curvature x and contact angle 6 at the intersection of dA with dû. The functional & is first 
relaxed with a sequence of nonconvex functionals defined in H1 (Q) which, in turn, are discretized by fi
nite elements. The T-convergence of the discrete functionals to & as well as the compactness of any se
quence of discrete absolute minimizers are proven. 

KEY WORDS: Calculus of variations; Surfaces with prescribed mean curvature; Finite elements; Con
vergence of discrete approximations. 

RIASSUNTO. — T-convergenza di approssimazioni discrete di interfacce con curvatura media prescritta. Si 
studia l'approssimazione numerica del seguente problema di minimo: m i n ^ 4 ) , ove &(A) = PQ {A) + 

+ Còè{B)DCH~ 1 {dA n dû) — Ix, teso alla ricerca di un insieme A ç Û e Rn con curvatura media x e angolo di 
A ~ 

contatto 6 all'intersezione di dA con dû. Il funzionale $ viene preliminarmente rilassato mediante una 
successione di funzionali non convessi definiti in H1 (Û), che sono successivamente discretizzati con ele
menti finiti. Si dimostrano la T-convergenza dei funzionali discreti al funzionale tf e la compattezza di 
qualunque successione di minimi assoluti dei funzionali discreti. 

0. INTRODUCTION 

Recently, E. De Giorgi has drawn attention to the numerical approximation of 
problems in the calculus of variations that fall within the general setting given by him 
during the last few years [8-10]. The discretization of such problems is very difficult, 
because of the lack of convexity and regularity properties of the functionals involved. 
This paper addresses the questions formulated by De Giorgi for a particular function
al relevant in a number of different contexts involving surface tension, such as fluid 
phase transition theory, capillarity theory, and image segmentation in computer vision 
theory [1,2,7,14,16]. 

We present here a numerical approximation to a functional whose minimizers 
give rise to interfaces with prescribed mean curvature. Such a functional is first 
regularized following an idea of L. Modica and S. Mortola [15], who proved 
convergence of the relaxed functionals; see also [3,14,17]. It is next discretized 
by means of piecewise linear finite elements with numerical quadrature [4], thus 
allowing the actual implementation on a computer. We demonstrate the convergence 
of the discrete minimizers to a solution of the continuous problem. Numerical 
experiments are in progress at the I.A.N, of C.N.R. in Pavia and implementation 

(*) Pervenuta all'Accademia il 10 luglio 1990. 
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details on the numerical algorithm as well as several experiments will appear 
in [4,5]. 

More specifically, given an open bounded convex setQcRn{n^2) with piecewise 
C boundary, a function x e Lœ (Q), and 9 e R, we consider the minimum prob
lem 

(0.1) mmtf{A), where &(A): = PQ(A) + cos(d)Xn~1 (3A n dû) - \xdx. 
AçQ J 

A 

Here PQ (A) denotes the perimeter of A in Û [18] and Xn~l the (n — 1)-dimensional 
Hausdorff measure[12]. The solution to this problem is a measurable set AcQ 
whose boundary has mean curvature x and contact angle 6 at the intersection of 3̂ 4 
with dQ [13]. 

In order to introduce a rigorous formulation of (0.1) we need further notations. 
Let BV(Q; { — 1,1}) be the space of the functions of bounded variation with values in 
{ — 1,1} and denote by Sv and tt{v) the jump set and the trace on dû, respectively, of 
the BV function #[18]. Set [x: = cos(6) and define the following energy functional in 
Ll{0): 

&(v): = 
2Xn-1 (Sv ) 4- j | tt(v) +ix\dXn-l{x)-\ y-vdx, Uve D(3), 

dQ 

+ 00? if veLHQÎKDiS), 

where D{3): = BV(Q; { — 1,1}). It is well known [13] that ^admits at least a minimiz-
er u so that the set Âu : = {x eQ: u(x) = +1} is a solution to problem (0.1). In addition, 

we have ff{v) = 2&{AV) + (1 - ix)Xn~l (SQ) + \ x, for ell ve D{3). As a generalization, 
Q 

from now on we will consider pi to be a piecewise constant function (xeBV(dQ; 
[-1,1]). 

We first approximate <^with a family {&e}e>o of regular nonconvex functionals 
defined in HX(D) which, in turn, will be discretized by finite elements: e is the 
relaxation parameter and h is the meshsize. In order to define the relaxed functionals <̂ £ 

we need some preparations. Let co.R —>R+ u { + 00} be defined by 

(0.2) '('): = 
if | / | ^ 1 , ' 

if' j / | > 1; 

different choices for co are discussed in Remark 2.1. In addition, set 

l - / 2 

+ 00, 

(0.3) 

(0.4) 

<p(t): = jy/co(s)ds, V/.e [-!,'• 1], 

${tut2 J \tùlj)dt \?{h)-?(h)l V / ! , ^ € [ - l , l ] , 
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1 

(0.5) c0:= | y/^)di = ${-l,l)=2<p(l) = -2<p(-lj=7u/2. 
- l 

Since 9 is an (odd) strictly increasing function, the following piecewise constant func
tion g e BV(dO; [-1,1]) is well defined 

(0.6) g{xy = 9-
l{-2-l

Cc)lx{x)), Vxe30 . 

Let {gly ...,gm} be the values of g and set ! / : = {x e dO:g(x) = &•}, for all l^i^m. 
Note that Xn~2 (Sg)< + 00. For any s > 0 , let & e C0'1 (30; [-1,1]) approximate g in 
the sense that 

(0.7) &(*) = «(*), if dist(x,Sj)|^e,' L i p ( & ) ^ 4 / e , 

where Lg is a constant independent of e. It is obvious that g£—>g in L1 (30), as 
e->0. 

We are now in a position to define the relaxed functionals as 

&M:=\ 
J[£|V^|2 + £ 1(o(v) -c0xv]dx, i£veD(&e), 

Q if veLHtyXDi^), 
+ 00, 

where D(ffe ): = {f e H1 (O; [— 1,1]): v = g£ on 30}. The existence of a solution ue to 
the minimum problem for ffE can be proven by direct methods. We have that tf£^> cQtf, 
as £ ^ 0 (we refer to [11] for basic issues about I7-convergence). In fact, it is 
known [17] that 

ìf£ - i if, where &{v): = 2c0X
n~1 (Sv) + 2 f S(tï(v)(x),g(x))dXn-l (x) - c0 \xvdx, 

3D Q 

which, on using (0.4), (0.5), and (0.6), yields the asserted r~convergence result 
because 

(0.8) S(tr(v),g) = \9(tr(v))-9(g)\=2-1c0\ttW VveD(3). 

At this stage, we can introduce a discretization of the relaxed functional ïf£ by 
piecewise linear finite elements. Let us denote by {S/,}/,>o a regular family of parti
tions of O into simplices [6, p. 132]. For the sake of simplicity we shall assume that O 
is a polyhedron, so that 0 = 0/,:= u sesh$> f° r all Â > 0. This, as well as the convexity 
of the domain, is just assumed to avoid technical difficulties. Set daO: = 
{x e 30: 30 $ C2 in x} and note that Xn~2 (daO) < +00. Let Vh c H1 (O) indicate the 
usual piecewise linear finite element space over Sh and IIh : C0(O)^> Vh the Lagrange 
interpolation operator. 

Finally, for any s > 0 , let x£ e C0,1 (O) approximate the curvature function x so 
that 

(0.9) | k ||L» {Q) ̂  C, Lip(x£ ) ̂  Lje, x—> x in L1 (O), 

where C and Lx are constants independent of e. 
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We are now in a position to introduce the discrete functionals 

f[s\Vv\2 + e^n^iv) - c0nh(x£v)]dx, if veD(&ttb), 
(0.10) ^h(v): = LJ 

where D(&e^ ): = {f 6 VJ, : |^| ^ 1 in Q, v = IIj0g£ on 3D}. The existence of a solution 
#e>£ to the minimum problem for # ^ is trivial. The integrals in (0.10) can be evaluated 
via the vertex quadrature rule, which is exact for piecewise linear functions. On the 
other hand, the interpolation operator U^ in (0.10) will introduce extra difficulties in 
proving the main T-convergence result in our paper, which read as follows: 

THEOREM 0.1. Let h = o(e). Then the sequence {&£,h}s,h T-converges to c0^ as 
-e—>0. Moreover, any family {u£>h}£,h of absolute minimizers of {&£>h}s,h *s relatively 
compact in L1 (Q), and any limit point u minimizes &. 

The proof of this Theorem will be given in full detail in §2 whereas, in §1, we 
study the functional &s in a one dimensional domain with x = 0. 

1. ONE DIMENSIONAL MINIMIZERS 

Our present purpose is to calculate an absolute minimizer u£ of the functional Sf£ in 
the one dimensional domain Q:= ( — 1,1) with curvature x = 0 and boundary conditions 
g(-l) = -l,g(l) = 1, namely, 

/ 

(1.1) g » := J W 2 + e-loj{v)-]dx, ii ve W2>œ (Q):v(-l) = -l,v(l) = 1. 
-/ 

It is easy to check that any absolute minimizer of g£ has to be a monotone function. 
Since the following inequality holds for any nondecreasing function v such that 
v( — l) = — 1 and v(l) = 1 (use the Young inequality and (0.5)), 

/ l 

§£(v)^2Jvf (x)^oj(v(x))dx = 2 J yfw(t)dt = 2c0 = TT, 
- / - l 

then any monotone function u£ satisfying the imposed boundary conditions and the 
equality 

(1.2) e2ue
,(x)2 =co(u£(x)), VxeQ, 

is an absolute minimizer of g£. In addition, the minimal energy is 

(1.3) S.(*.)=2<b=7T. 
Thus, for all s sufficiently small and a such that (a — STT/2, a + en/2) cQ, we have 

• 1, if x e [—/, a — £7r/2], 

(1.4) u£ (x) = \ sin [s - 1 (x - a)], if x e {a - STZ/2, a + STT/2), 

1, if xe [a + S7v/2,li. 
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2. PROOF OF THE MAIN RESULT 

Our goal in this section is to demonstrate Theorem 0.1 by proving first the T-con-
vergence of the functionals, and next the L1 (Q)-compactness of any sequence of 
minimizers. 

THEOREM 2.1. If h = o(e), then F — lim xf^ = CQ&. More specifically, the two follow
ing properties hold: 

i) For any v0 e L1 (Q) and any sequence {v£>h}£yh e L 1 ^ ) converging to v0 in 
L1 (Q), we have CQ ${V0 ) ̂  lim inf 3r£ h (v£ u ). 

£-*0 

it) For any v0 e L1 (Û), there exists a sequence {v£yb }£yh e L1 (Q) converging to v0 in 
L1 (Q) such that c0 tf(v0 ) ̂  lim sup tf^ {v£>b ). 

PROOF. Let us split the functionals & and &e>h, with obvious notation, as 
follows: 

3{v) 2Xn~l (Sv) + | |tr(t;j + p\dXn~1 - jxv = :^{v) + 3*(v)9 Vv e D(3), 

^h{v) = \b\Vv\2 + z-l^v)]-cQ\nh{xev) + \ 
Q Q Q • 

= :3*b (*) + c0^yh (v) + &>tb (v), Vv e D(< A ). 

PROOF OF (i). Let v0 e L1 (Q) and v£yb —> v§ in L1 (Q), as e—» 0. We can suppose, pos
sibly taking a subsequence, that vs /, e D(&e h) and lim &e h (v£ h ) < + °° > otherwise (/) is 

obvious. Then, by virtue of the properties | ^ | ̂  1 and (0.9), we have that 

I FIh (x£ v£y h)dx\ is equibounded with respect to e; hence, both J £ lnho){v£yh)dx 

and \ I e\Vveth\2 dx are equibounded. In particular, the latter property reads as 

(2.D pvjyia)^cs-^. 
Now we deal with each functional ^\h, &ì,h a n d &l,h> separately. 

Step 1: Behaviour of dflh. Using well known properties of the interpolation opera
tor FIh and (2.1), we get 

KhK^l^e-1 S \\nho){vs,h)-o>{vE,h)\dx^Ch2z-1 E \\D2u{v£,h)\\LHs) ^ 
SeS SeSh 

^CPe^Upico') E \\VvJ\2
L2{S) =Ch2e-lUpW)pvSyhfL2{Q) ^Ch2/e2 

SeSh 

Thus, enforcing the relation h = o(e), we obtain 
(22) lim^lh(v£yh) = 0. 

Step 2: Behaviour of $\b. We closely follow [17, Lemma 1]. Step 1 guarantees that 
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both {&lyh (ve,h)}e,h a n d " I £ _ 1 u>{yZih)dx\ are equibounded with respect to e. In par-
P )e,h 

ticular, the latter property implies \v0\ = la. e. in D. Note that step 2 is actually inde
pendent of step 1 because, at this stage, the equiboundedness of {&]tb (v£>h )}£ ^ could 
be assumed; otherwise the assertion (2.3) is obvious. As we shall see, here both param
eters e and h could go to 0 independently. Since D is a convex set, for any xeRn \ D , 
there exists a unique point r(x) e 3D so that dist(x, r(x)) = dist(x, 3D). For any <J > 0, let 
Eff : = {x e Rn\D: dist(x, 3D) < cr} and Sa : = {x e Ea : r(x).e 3,D n Sg}. We extend the 
functions ^0 and ^ on Qa: = Q U Ea as follows: 

't>o(x), if xef l , f 

K * w> if x e D , 
, , xx ' ' -r c ( i l ^ J W x ) ) , if x e E f . 

Note that, for all x e Sg, g£ (x) can be supposed independent of e; hence v0 does not de
pend on e. Since Xn~2 (Sg u 3^D) < +oo? it is easy to check that v0 e L1 (ûff ; [-1,1]) 
and t)e^ e H1 (Qa ; [— 1,1]). In addition, using (0.7), we have that ££^ —> z)0 in L1 (Da ), as 
e—» 0, because z)0 M

 = ^ W > for all x e Ea\Ea>£, where E^ £ : = 
= {xeE a : dist(Ktf),^) < s} \^> andXn(Ea>£ ) = 0(zcr). Now, since v£>h eD{tf£>h)y using 
the Young inequality and definition (0.3), we get 

\$lh KA ) ^ / |V*.,j | V ^ K 7 ) ^ = / \V9(v£>h)\dx- j\V9(i}h)\dx=:I2 +II2. 

Since £e>£. is locally constant on EŒ\Ea£, using (0.7) we get \II2 | ̂  Go-. For any 

veBV(Q), let |Df| denote the total variation of the Radon measure Dv on D. Since 

A A Q 

9(^£,^)_>9(^o) m ^{Qc), as e—>0, the equiboundedness of {&l}h(ve,b)}e,b a n d t n e 

semicontinuity of the total variation [18] give <p(v0) eBV(Qa) (hence v0 eD(3)) and 

lim inf I2 ^ |Dp(i>o)L respectively. Now, (0.5) yields <p(v0) =2~l c0v0; hence, using 
£—>0 J 

(0.8) we have 

j\D9(vo)\ = jj\Dv0\+ \ \D9(v0)\ + l\9(tT(v0))-9(g)\dXn-1^^1(v0). 
o, a Q,\Q ao • 

Thus, letting a—» 0, we conclude that 

(2.3) . ^ f o X l i m i n f S ^ i d ; , , * ) . 
£—>0 

Step 3: Behaviour of Sr\h. We first split <^2£ ( ^ ) - $2 {v0 ) as follows: 

&l,h Kb ) - &2 fro ) = J [xe0e,a - ^ (*£*U )]<& + J [xv0 - x£v£>h ]dx=:P + IP . 

Then, using well known properties of the interpolation operator 77^, \v£^ | ^ 1, (0.9), 
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and (2.1), we can estimate I3 as follows: 

\P | s£ Ch[pveJLHQ) + ||V*JLI(Û)] sï Ch/e. 

On the other hand, we have lim IP — 0. Thus, imposing the relation h = o(e), we con
clude that 

(2.4) 

The assertion (i) is thus proven in view of (2.2)-(2.4). 

iim&2
b(vtth)=&2(v0). 

£->0 

PROOF OF (it). Let v0 e L1 (Q), We can suppose v0 e D(#), otherwise (it) is obvious. 
Hence, the approximating sequence {v£yh } z h has to satisfy v£>h e D(tf£>h ). First we con
struct v£ e D(&e), closely following the ideas of [14, Prop. 2]. We need some prepara
tions. Since VQ eD(5) =BV(Q; { — 1,1}), it is well known that v0 is the characteristic 
function of a set A of finite perimeter in Q, namely, for a. e. xeQ, 

+ 1, VxeA, 
(2.5) VO(X)=XA(X)- = 

- 1 , V x e O \ A 

Set daA: = {x e 3A n Q: BA $ C2 in x}. Using a diagonal argument ([2, Appendix]), 
we can suppose that A is a polyhedron; hence Kn~2 (BaA) < +°°. Let /3 be the mini
mum angle between the faces of BQ and those of 3̂ 4 n Q, and iq\ = cot(/3/2). Employing 
the symbol Q to denote either A or Û and symbol 3D for 3̂ 4 n 0 or 30, let us intro
duce the following notations: 

[dist(x,3Q), if* e g , 
dQ (x) : : 

rQ(x) 

a 
HTA 

•* £ 
J Û 

^ £ 

w 
Tg 
X £ 

1 e 

Lc,h 

-dist(x,3Q), i f x e û \ Q ; 

= {y e dQ:dist(y,x) = Jg(x)}, #. e. x e O ; 

= {x 6 0 : ^ Q (*) = /} , V/ei î; 

= {xeû : |̂ 4 WI < 2 _ 1 T C } ; 

= {x e Lf : dist(rA (x), daA) s=2"1
 THJS}; 

= {xeD:4(x)^7r £ }; 7? := {x e L? : dist(r0 (x), 9,Û) ^mjs}; 

= { x € L f \ I ? : ^ ( x ) 6 r , } , Vl*Sis£>»; 

= { x e L f \ 7 ? : d i s t f e M , ^ ) ^ £ } ; 

=lfnl°; L£: = L£^uLf; T£:= Tf U T? U TJ u 1? ; 

Note that, for all x e Lp \ 7 ^ , TQ (X) is a single valued function, that is TQ (X) = : { TQ (X) }. 
In addition, it is easy to check that 

|WQ(x)| = l, a.e. xeQ, lim X^HOt) = X"~1 (3Q), (2.6) 

(2.7) 

a. e. x € Û, 

9C«(A), X"(Le>h) = 0(S), X"(Z),X"(T€>h) = 0(s
2 
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Now we introduce the following function y:/?—> [—1,1]: 
r - l , i£ t<-n/2, 

(2.8) y(/):=Jsin(/), if * e [-TIT/2, TIT/2], 

! +1 , if / > TIT/2, 

and define y£{t)\ = y{t/e). As observed in (1.4), y£ is an absolute minimizer of the one 
dimensional functional g£ defined in (1.1). Obviously we have 

(2.9) InWh InWh - 2 a.e. teR. 

(2.10) £̂ (x) : = < 

Using y£ we can construct the approximating sequence {v£h}£,h- First, we define a 
function v£ on Q\T£ as follows: 

f*o(*), i f x e D \ L £ , 

r . ( 4 M ) , if * e L f \ T £ , 

y£ (e arcsin(&) + 4 M ) , if x e (Lf n i 4 ) \T e , 1 ^ / ̂  m, 

^ yE (e arcsin(&) - 4 (*)), if x e (Lf \ A ) \ T £ ,l*&i^m. 

Because of the particular shape of each connected component of T£, using a standard 
extension theorem, [12, Theorem 2.10.43], v£ can be extended on the whole Q as a 
Lipschitz continuous function (with Lipschitz constant C/e) so that v£ e D(&£). In ad
dition, v£ —>v0 in L1 (Q), as e—»0, because 

j \v£ - v0 \dx = \\v£- v0 \dx^2Xn (L£) = 0(e) 

(use (2.7)). Then, we define {^}£>£ as follows: 

v£,h'- = nhv£eVh. >v 

Obviously we have z>£̂  eD(&ej,) and 

(2.11) |VP, : |V^£ | ̂  C/e, *. <?. in Û. 

In addition, by virtue of the assumption h = o(e), we have v£^-^v0 in Ll(Q), as 
e-*0. 

5/ep 4: Behaviour of $\h. Note that, by virtue of (2.5) and (0.8), ^F1 (z>0 ) can be rep
resented as follows: 

(2.12) &1(v0) = 2Xn-1(dAnQ) + 
^ m 

+ 7- 2 W - l . & ^ - ^ . X S ^ ) + *d.&)3C"-1(Tl- n 9,4)]. 

Since f,̂  e D ^ j ) , we can split 3^i,(vt,b) a s follows: 

^ , i ( ^A)= / ! s |V^ | 2 + 7 a ; f e ix + 

+ | e[ |V^i p - |Viz, |2]<** + / 7 M».,* ) - " f e )]<& =: J4 + II4 + WA • 
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First, using that ve e D(&£ ), we work to prove the limsup estimate for J4. This term will 
be further decomposed. Let Q be represented as 

Û = (Q\Lt ) u {Lj \T . ) u .̂U(Lf' n A)\ZJ u ^U(tf'X4)\r.J u T£. 

We deal with each term separately. Set [*]:= [s|V#e|
2 + s'1 (*>(ve)]. Since vE = v0 on 

Q\Le is locally constant and \v0 | = 1, we have 

(2.13) Jg:= | [*]Jx=0. 
C\L, 

In view of (2.10) and (2.6), the next term can be written in the form 

If:= f Mdx= \ 
L{\TS Li\T, 

Then, using the coarea formula [12] and (1.3), we have 

•k: (dA(x))\2 + K(rs(dA(x))hdA(x)\dx. 

i?=/[e|r;Wl2 + 7A)(r.W) x^HAtXTMf-

a/2 

^[X"-l{dA\Ts) + o(\)-] \ [e|ri(/)l
2 + 7«(r.W) 

- e r r / 2 

Hence 

dt = 2c0[Xn-1(dA\T£) + o(l)]. 

(2.14) lim sup It ^ 2c0 K
n ~1 (3,4 n Û). 

Similarly, for J2,/: = I [*]dx we have 
(L?nA)\Ts 

e\rf
e (* + £arcsin(&))|2 + yw(y, (*+ earcsin(&))) «,-j X"-1 ((Û, nL? nA)\Ts )dt s= 

Eir/2 

dt. ^[^- ' ( ( r . -n^XTj + od)] / [£|r:W|2 + 7^(nW) 
£ arcsinCg,-) 

With the following change of variables, ye(t)=z, using (2.8), (0.2), and (0.4), we 
obtain 

OT/2 1 

/ L|r;W|2 + 7^(r£W)]^/=2/V^^^ = 2^ , i ) , 
e arcsin(&; 

hence 

(2.15) lim sup II,^2$(1,&)X"-l (Ti n 3A). 
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Arguing on I4j'.= J [*]dx. as before, we obtain 
(L?\A)\TS 

(2.16) l i m s u p / 3
4

) / ^ 2 ^ ( - l , & ) X ; z - 1 ( r , \ ^ ) . 
£^0 

Finally, (2.11) and (2.7) easily lead to 

(2.17) / l4
4: = j[*]dx = 0(s). 

Collecting (2.13)-(2.17) and using (2.12) we thus obtain 

(2.18) lim sup I4 = lim sup(l0
4 + J4 + S (J2

4,- +#,,•) + It] ^ CQS* (v0 ). 
£^0 £-*0 \ 1=1 ' / 

Our next task is to prove that terms II4 and III4 vanish. Since v£^ = v£ on Q\L,hy using 
(2.11) we get 

\II4\^ \ s\V(v£ + v£,h)\\V(v£-v£,h)\dx^CJ \V(v£-v£}h)\dx. 

Using again (2.11), in conjunction with (2.6), (2.7), (2.9), and well known properties 
of the interpolation operator 77 ,̂ we obtain 

(2.19) \II4\^ j \V(v£-v£,h)\dx+ j \V(v£-v£)h)\dx^ 

^ Ce~lXn (T£>h) + ChX* (L,h\T£J\D2
 ^.IIL-CXT.) ^ C[e + h/el 

becauseD2^ = tf (dA)\V dA\2 + y£ (dA)D2 dA = ft (dA ) on if\T£ and similarly on L?\T£. 
Finally, using (2.11) and (2.7), we get 

J j[ù)(v£)-oj(v£j))]dx 

Collecting (2.18)-(2.20) and enforcing the relation h = o(s), we conclude that 

(2.21) l i m s u p ^ ( z ^ ) ^ ^ o ) . 
£^0 

Since (2.21) guarantees that (2.1) holds, step 1 and step 3 are valid. This leads to 
the assertion (it) and concludes the proof of the theorem. • 

It is an easier task to obtain the following compactness result which, in turn, 
achieves the proof of Theorem 0.1, in view of basic properties of jP-conver~ 
gence. 

THEOREM 2.2. If h = o(e), then any family {u£y^}£>h of absolute minimizers of 
{&e,h}e,h is relatively compact in Ll{Q). 

PROOF. We follow a standard approach (see, e.g.., i.14, Prop. 3]). Given a family 
{ue>h}e,h of absolute minimizers of {&etb}e,h> it is sufficient to prove that {<p(u£>h)}£,h is 
relatively compact in L1 (Q), where 9 is defined in (0.3). We stick with the notation of 

(2.20) \IH4\ = :C^Up(<o)X"(L£J\Vv£\y{Q) ^Ch/e. 
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Theorem 2.1 and use (0.3) and the Young inequality to get 

(2.22) 2J\V9(u£>h)\dx = 2J^co(u£>h)\Vu£Jdx^ 

J £|Vz/a |2+ -jcoiu^h) dx^^h(u£>h)-c0^h{uSyh)-^lh(uS}h 

Now, let u e D(3) be a minimizer of & and {v£yh}£^ a sequence converging to u, as of 
assertion (it) of Theorem 2.1; then c0tf(u) ^ lim sup $£yh (v£}h) ^ lim sup « ^ (u£yh)y be-

£-»0 ' ' £ ^ 0 

cause u£>h minimizes &£yh. In addition, we have \&^£>h (u£}b)\ ^ C (use (0.9) and \u£>h\ ^ 1), 

and step 1 of Theorem 2.1 gives lim $\h (u£}b ) = 0 note that I e\Vu£}h\2dx is equi-

bounded with respect to £ . Hence, inserting these estimates in (2.22), leads to the equi-

boundedness of J \V?(u*,h)\dx , so that \\cp(u£fh )\\BV(Q) ^ C, constant independent of e. 

Hence the compacteness theorem in BV [18] gives the assertion. • 

REMARK 2.1. Theorems 2.1 and 2.2 still hold for any graph oo such that 
ct>ir_i i-iis a even positive C1,1 function with two isolated zeros in— 1,1, 

(2.23) IL ' J 

o>=+oo? i n i T \ [ - l , l ] . 
In particular, if the following property holds: 

as of (0.2), then the (new) absolute minimizer u£ of the one dimensional functional g£ in 
(1.1) ranges from — 1 to 1 in a finite interval O(e)-wide, whereas it is locally constant out
side. Hence, we can still define y£ = u£ in (2.8) and even the proof of Theorems 2.1 and 
2.2 remains unchanged. On the contrary, if w verifies (2.23), but 

dt 
= +oo, 

then there is unicontinuation, that is the solution of (1.2) cannot assume the values —1 
and 1 in R. As an example, consider the classical function co(t): = (1 — t2)2; then the so
lutions of (1.2) are v£(x) = tanh[(x — a)/e]. In order to prove the constructive part (it) of 
Theorem 2.1, we can define the IF2'00even function y£(t) in (2.8) as follows: y£(t) : = 
= tf,W,if*e[0,e|^ 
= — y£(-t), if / < 0 . It is easy to check that the property (2.9) still holds and that 
ëeiïs) ^ §eM + Ce4, where u£is an absolute minimizer of g£. Since the transition inter
val of y£has now size 4e|loge|, the definition of the sets Lf,Lf, and T£has to be modified, 



3 2 8 G. BELLETTINI ET AL. 

as well. Assertion (ti) of Theorem 2.1 then follows with the fairly stronger assumption 
h — o(£|log£|_1). 
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