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Analisi matematica. — Asymptotic behaviour in planar vortex theory. N o t a d i A N T O 

N I O A M B R O S E T T I e Y A N G J I A N F U , p resen ta ta (*) da l Cor r i sp . A. A M B R O S E T T I . 

ABSTRACT. — The asymptotic behaviour of solutions of a class of free-boundary problems arising in 
vortex theory is discussed. 

KEY WORDS: Free boundary problems; Vortex theory; Nonlinear desingularization. 

RIASSUNTO. — Comportamento asintotico nella teoria dei vortici. Viene discusso il comportamento asin
totico delle soluzioni di certi problemi di frontiera libera che intervengono nella teoria dei vortici. 

1. INTRODUCTION 

Consider an inviscid fluid with uniform density, confined in a bounded subset Q of 
R2. The existence of a «vortex» in such a fluid can be formulated as a free boundary 
problem, seeking an open «vortex core» A c Q and a stream function 
YeC1 (Q) n C2 (Q\dA) satisfying 

'-A¥=Xf(¥) in A 

-A¥=0 inQ/J 
< ¥\dA=0 and ¥>0 in A 

¥=-¥0<0 onSQ 

where ¥0 and the vorticity function / are given. The corresponding solution pair of 
(1A) will be denoted by {Yx,Ax). 

Under the assumption tha t / i s «superlinear» at infinity we will study the limiting 
behaviour as A—» °° of the vortex core Ax and the stream function Wx. We will show 
that the diameter of the vortex core tends to 0 as A —» o° ; moreover, Yx converges to a 
function with an isolated singularity. 

Our results are related to those of [4] which, actually, deal with a different prob
lem because the parameter A is not prescribed but arises as a Lagrange multipli
er. 

In section 2 we recall an existence result for (1A). The limiting behaviour of the so
lution pair (YX,AX) as A—> °° is studied in section 4. Our proof relies on some esti
mates of the H1 norm of ¥x and of the diam {Ax), given in section 3. 

(1A) 

2. EXISTENCE RESULTS 

Existence results in vortex theory are well known: see, for example [1-3,6-8] 
dealing with vortex rings in a cylindrically simmetrie fluid filling all of I?3, and [9] 

(*) Nella seduta del 14 giugno 1990. 



2 8 6 A. AMBROSETTT - Y. JIANFU 

for planar vortex pairs. Similar arguments apply in the case of (1A). In particular 
we will refer to the method developed in [1, §2] to get the following result. 

THEOREM 1. Let Wo>0 on dû be smooth and suppose f satisfies: 

(/ l) feC2(R+,Rl /(0) = 0 / / M > 0 \/s>0, and f{s)^cl + c2s
p

) for some 

cuc2,p>0; 

(/2) 30e(O,l/2) such that F(s)^6sf(s) V J ^ O where F(s) := j /(a) d<j; 

(f3)f is strictly convex and increasing. ° 

Then for all A>0, (1À) has a solution (YX,AX). Furthermore, Ax = 

= {¥x(x)eQ:¥x (x) > 0} is connected. 

Although the proof of Theorem 1 is similar to that in[ l ,§2] , it is convenient to 

give an outline for future references. Let q(x) be the solution of 

-Aq = 0 onQ 

q = ¥0 on dû . 

By the maximum principle K0 : = min{q(x) :xeQ}>0. Let us extend f(s) to all 
R by setting/(i") = 0 for s<0 (in the sequel we will use the same symbol/to denote 
such an extension), and let us look for positive solutions ^ = <p(x) of 

'-A<p = Xf(<p-q) inQ 

<p = 0 on dû . 

If <p is such a solution then Y = <p — q solves (1A). 

For $ e Ho1 (Û) let ||</f = j \V<p\2 dx and Ix (<p) = l/2||^|p - A | F(<£ - q) dx. 
Q Q 

Critical points of Ix correspond to positive solutions <£A of (Px). In order to find crit
ical points of Ix suitable for the limiting procedure, one seeks the minimum of Ix con
strained on 

M(A) = {<P 6 Ho1 (O)\{0} : g(<P) = \\f\f - A J # ty - q) dx = 0} . 
Q 

Under our assumptions one shows that: (i) for all <f> eHQ (Q)y <p>0 the function 
y(t) : =t~1g(t$) is strictly decreasing and the ray {t(p}t>0 meets transversally M(A) in ex
actly one point; (//) hence M(A) is a smooth submanifold of HQ1 (Û); (Hi) if ^ e M(A), 
t-^Ix(t<p) is increasing for te [0,1]; (iv) lx achieves the minimum at some <px eM(A); 
and (v) gradIx (<px) = 0. Moreover, using the fact that <px is the minimum of Ix on M(A), 
one shows that the vortex core Ax = {<px > q) is connected, see theorem 4 
of[l] . 

3. PRELIMINARY LEMMAS 

In the sequel we shall need to compare (Px) with similar problems involving suit
able subsets D of Q> as well as the boundary value q0 and a «model» nonlinearity like 

(PA) 
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tm. To point out such a dependence, we will set 

M(XyDyfq) = UeH1
0(D) :\\^\2dx = x\m-q)dx\. 

Similarly, we indicate by Ix,Dj,q the functional corresponding to JA, P(X,Dyfq) 
the variational problem min {JAj Djt q(<p):<pe M(A, Dyf q)} and C(A, Dyf q) = 
= min{Ix,D,f,q(u): ueM(X,Dyfq)}. By (/I-3) there exists a constant c0 > 0 such that, 
letting m = (1 - 0)/0 ^ 1 and /i (/) = c^f1, one has /(/) ^f (/), for all / > 0. 

We start showing: 

LEMMA 2. Let B be a fixed ball contained in Q and let q0 = max {q{x) :x eQ}. Then 
one has: C(XyQyfq)^C(XyByflyq0). 

PROOF. First we claim that: 

(2) C(XyQyfq)^C(XyQyfq0) 

To prove (2), let ^0 be a solution of P(XyQyfyq0). Since / is strictly increasing, 
then 

0 = \\Po |P - A | ^ Mo ~ *>) ^ ^ \\Po IP - A J 0o M "*)<**. 

Since y{t) is strictly decreasing, there exists t0 e (0,1) such that /0^o €M(XyQ,fq) and 
this yields C{XyQyfyq) ^Ix^j^ikM- Since Ix,Qj,q is increasing with respect to #, then 
C(X,Qyfyq)^IX)Q>Âqo(t0<p0). In addition, since t->IX)Qj>q(t<p) is increasing for ^e [0,1], 
then Ix,o,/,qo % M < h,oj,qQ (&>) a n d (2) follows. 

Next, we show: 

(3) C(\,Q,f,q0)*kC{\,B,f,q0). 

To see this, first let 9 be a solution of the problem P(XyByfyq0). Extend 9 to <pB in 
H Q ( 0 ) by setting fe = 0 outside JB; then <pB eM(XyQyfq0) and 

C(A,Û,/^o)^/A,û,/ f f t(fe)^lA,B,/^(9) = C(A,B,/^0). 
Lastly, let 0j be a solution of P(XyByflyq0). Since / ^ / i , we have 

| | V 0 1 | 2 ^ - A | 0 1 / ( 0 1 - ^ O ) ^ ^ O . 

So, there exists ^ e (0,1) such that t1tp1 eM(XyByfq0) and as before one has 
C(XyByfq0)^C(XyByflyq0). This, jointly with (2) and (3) proves the lem
ma. Q.E.D. 

To estimate C{XyByf, q0) we consider a ball £ c Q centered in x0 with radius b and 
set r= \x — x0\. 

LEMMA 3. If B is as before, then C(XyByflyq0)^>0 as X^> °°. 

PROOF. Setting K = 5(m+ l)/c0y it is easy to check (recall that m> 1) that, for A 
large enough there exists, in a deleted neighbourhood of a = 0, an unique a = ax 
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satisfying 

(4) a2[qQ{2\og{b/a))-lr-1 =KX~l. 

We put <JX = l/log (b/ax), aA = q0dx/2 and 

1 ~4o°\log(r/ax) for ax^r^b. 

Let us note explicitely that $' is continuous at r = #A. Moreover, we remark that #A, crA 

and aA —> 0 as À —» <*>. 

Set «A(x) = <Mkl) + #o- With direct calculations one finds: 

J |V&A|2 Jx = 2 ^ + ^ <jA) = 2x((x2x + 2#0aA) ; 

*x 

^o J (ux^q0)
muxdx = 27uXcbj <pXm (fa + qo) rdr = 

K^o) o 

= 7rAco^2ar(aA(^ + 2 ) - 1 + ^ o ( ^ + l ) " 1 ) = ^ o ^ f e ( ^ + 2 ) - 1 + ^ ( ^ + l ) " 1 ) . 

As a consequence, as À—» °° one has that 

(5) -f f|V^A|2^^4^o 
C* A J 

B 

Xc C 
(6) - ^ J ( « A - ^ 0 r « A ^ - ^ ^ J ^ o ( w + l ) - 1

 =5TT^O. 

From (5) and (6) it follows that for À large enough there results: 

| Vux \
2 dx < XCQ (UX — qo)m ux dx. 

B {ux^qQ} 

Then there exists tx < 1 such that txux e M ^ >qo and hence 

(7) C{XyBJuq0)^Ix,BJuqShUx)<h,BjuqMx^ 
B 

Since, as remarked before^ a A ^ 0 as À—> <*>, then C{X,BJX ,qo)—» °° as À—> °°, as 
required. Q.E.D. 

We can now prove the main result of this section: 

LEMMA 4. Let C(X) = Min {Ix (u) : u e Mx} and let <px be a solution of (PA). 

Then: 

(/) C(A)-*0 as A->oo; (H) ||</,A||-*0 as *-><». 

PROOF. (/) follows directly from lemmas 2 and 3. 
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(it) From (f2) it follows that 

(8) C(X) = 1/2||&|P - A\F(h -q)dx^ l/2||fe|P - OX J M - q) ^dx. 
Q Q 

Since feeMA then one finds C(X) ^ (l/2 — 0)\\<px\\
2 and the result follows from 

(/). Q.E.D. 

4. LIMITING BEHAVIOUR OF AX and Yx 

We are now in position to study the asymptotic behaviour of the solution pair 
(AX,YX). Our main results are: 

THEOREM 5. Let F 0 > 0 on dû be smooth and suppose f satisfies ()1-2-3). 
Then: 

(i) diam AA—>0 as A-» oo. 

THEOREM 6.Let Y0 > 0 on SQ be smooth and suppose f satisfies (/1-2-3). Let Tx be 
the solution of (Px) obtained in Theorem 1, and define 

h(X) = xJMx-q)dx. 

Then, for any point £ (A) e Ax> we have <px (-)/&(A) - G(-, f (A)) -> 0 /« H0
1>p (Q) l^p<2, 

as A—» °°, where G is the Green function of — A in Q. 

The proofs of the preceding theorems rely on some arguments of [4,5] which can 
be carried out in the present situation because of Lemma 4 before. To make the paper 
as self contained as possible we will outline the proofs. 

PROOF OF THEOREM 5. The argument is similar to that of Lemma 3.1 of [5]. Let 
P, Q e Ax be such that \P — Q\ = diam (Ax) and consider a family of straight lines lx 

passing through the point XelP.Q] and orthogonal to [P,Q]. Denote by Lx = 
= [Yx, Zx] a segment in lx such that Yx e dû, Zx e dAx and int (Lx) c 0\AX. Then one 
has 

^ A ( 7 x ) - ^ ( Z x ) = / - f - J L x . 
/ dLx 

Note that <£A (Yx) = 0 while <£A (Zx) = q(Zx) >KQ>0. Then we infer: 

K0- i j |V^A|iLx :C] 

Lx 
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\ 

Integrating with respect to X in [P, Q] and using the Holder inequality, we find 
readily: 

Ko |P- Q| ^ J dx\ IVfel dLx^c2 \P-Q\1/2M • 
PQ Lx 

The proof now follows from Lemma 4-(ii). 

PROOF OF THEOREM 6. We follow the arguments of Theorem 52 of [4]. We know 
that 

Then for £(A) eAx one has: 

^ (z)/h(X) - Gfe Ç(A)) = - ^ \{G{z,x) - G(z, «A) )}M -*)<**. 

By the Minkowski inequality there results 

I/P 
(9) ||& (-)/A(A) - G(-, «A))||lfPïû ^ ^ - J M -q)dx \ |Vz{Gfex) - Gfe,«A))|>& 

^ |p 
Lemma 5.1 of [4] yields: 

(10) 11Vz{Gfcx) - Gfc Ç(A))|>& ^ <* |x - «A)|> (1 4- log (diamfl/l* " ?W|))2 • 
Q 

Since x and £(A) are both in Ax then \x - £(A)| ̂  diam (Ax) and the conclusion follows 
from (9), (10) and Theorem 5. Q.E.D. 

REMARKS. (/) For applications, it can be useful, to state explicitely an asymptotic 
estimate of \\px ||. According to (7) and (8), ||̂ A || ^ cx {o?x + aA), where aA = (log (l/r))"1, 
and s = ajb solves (see [4]) s\\og (l/y)]~(w-1)//2 = k\~^2 for a suitable positive constant 
k. It is easy to check (see Lemma C2 of [4]) that l / r ^ W : =V*(log VÂ)"(^"1)/2 and 
hence aA = (logU/r))-1 ^ l/log$(A). This provides an upper bound for ||^A|| in terms 
of A as A—» oo. In a similar way one can find a lower bound for ||̂ A||. 

{it) The same arguments apply to any free boundary problem like 

J—Lu = Xf(u — q) in Q 

[u = 0 on dû 

where q > 0 in O and L is an uniformly elliptic variational second order operator with 
smooth coefficients. 
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