ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

Antonio Ambrosetti, Jian Fu Yang

Asymptotic behaviour in planar vortex theory

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.4, p. 285–291.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_4_285_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Rend. Mat. Acc. Lincei s. 9, v. 1:285-291 (1990)

Analisi matematica. — Asymptotic behaviour in planar vortex theory. Nota di Anto-NIO AMBROSETTI e YANG JIANFU, presentata (*) dal Corrisp. A. AMBROSETTI.

ABSTRACT. — The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.

KEY WORDS: Free boundary problems; Vortex theory; Nonlinear desingularization.

RIASSUNTO. — Comportamento asintotico nella teoria dei vortici. Viene discusso il comportamento asintotico delle soluzioni di certi problemi di frontiera libera che intervengono nella teoria dei vortici.

1. INTRODUCTION

Consider an inviscid fluid with uniform density, confined in a bounded subset Ω of \mathbb{R}^2 . The existence of a «vortex» in such a fluid can be formulated as a free boundary problem, seeking an open «vortex core» $A \subset \Omega$ and a stream function $\Psi \in C^1(\Omega) \cap C^2(\Omega \setminus \partial A)$ satisfying

(1
$$\lambda$$
)
$$\begin{cases} -\Delta \Psi = \lambda f(\Psi) \text{ in } A \\ -\Delta \Psi = 0 \text{ in } \Omega/\overline{A} \\ \Psi_{|\partial A} = 0 \text{ and } \Psi > 0 \text{ in } A \\ \Psi = -\Psi_0 < 0 \text{ on } \partial\Omega \end{cases}$$

where Ψ_0 and the vorticity function f are given. The corresponding solution pair of (1λ) will be denoted by $(\Psi_{\lambda}, A_{\lambda})$.

Under the assumption that f is «superlinear» at infinity we will study the limiting behaviour as $\lambda \to \infty$ of the vortex core A_{λ} and the stream function Ψ_{λ} . We will show that the diameter of the vortex core tends to 0 as $\lambda \to \infty$; moreover, Ψ_{λ} converges to a function with an isolated singularity.

Our results are related to those of [4] which, actually, deal with a different problem because the parameter λ is not prescribed but arises as a Lagrange multiplier.

In section 2 we recall an existence result for (1λ) . The limiting behaviour of the solution pair $(\Psi_{\lambda}, A_{\lambda})$ as $\lambda \to \infty$ is studied in section 4. Our proof relies on some estimates of the H^1 norm of Ψ_{λ} and of the diam (A_{λ}) , given in section 3.

2. Existence results

Existence results in vortex theory are well known: see, for example [1-3, 6-8] dealing with vortex rings in a cylindrically simmetric fluid filling all of R^3 , and [9]

(*) Nella seduta del 14 giugno 1990.

for planar vortex pairs. Similar arguments apply in the case of (1λ) . In particular we will refer to the method developed in [1, §2] to get the following result.

THEOREM 1. Let $\Psi_0 > 0$ on $\partial \Omega$ be smooth and suppose f satisfies:

 $(f1) f \in C^2(\mathbb{R}^+, \mathbb{R}), f(0) = 0, f(s) > 0 \quad \forall s > 0, and f(s) \le c_1 + c_2 s^p, for some c_1, c_2, p > 0;$

(f2) $\exists \theta \in (0, 1/2) \text{ such that } F(s) \leq \theta s f(s) \forall s \geq 0 \text{ where } F(s) := \int f(\sigma) d\sigma;$

(f3) f is strictly convex and increasing.

Then for all $\lambda > 0$, (1λ) has a solution $(\Psi_{\lambda}, A_{\lambda})$. Furthermore, $A_{\lambda} = \{\Psi_{\lambda}(x) \in \Omega : \Psi_{\lambda}(x) > 0\}$ is connected.

Although the proof of Theorem 1 is similar to that in $[1, \S 2]$, it is convenient to give an outline for future references. Let q(x) be the solution of

$$\begin{cases} -\Delta q = 0 \text{ on } \Omega\\ q = \Psi_0 \text{ on } \partial\Omega. \end{cases}$$

By the maximum principle $K_0 := \min\{q(x) : x \in \overline{\Omega}\} > 0$. Let us extend f(s) to all R by setting $f(s) \equiv 0$ for s < 0 (in the sequel we will use the same symbol f to denote such an extension), and let us look for positive solutions $\psi = \psi(x)$ of

$$(P\lambda) \qquad \begin{cases} -\Delta \psi = \lambda f(\psi - q) & \text{in } \Omega \\ \psi = 0 & \text{on } \partial \Omega . \end{cases}$$

If
$$\psi$$
 is such a solution then $\Psi = \psi - q$ solves (1λ) .
For $\psi \in H_0^1(\Omega)$ let $\|\psi\|^2 = \int |\nabla \psi|^2 dx$ and $I_{\lambda}(\psi) = 1/2 \|\psi\|^2 - \lambda \int F(\psi - q) dx$.

Critical points of I_{λ} correspond to positive solutions ψ_{λ} of (P_{λ}) . In order to find critical points of I_{λ} suitable for the limiting procedure, one seeks the minimum of I_{λ} constrained on

$$M(\lambda) = \{ \psi \in H_0^1(\Omega) \setminus \{0\} : g(\psi) = \|\psi\|^2 - \lambda \int_{\Omega} \psi f(\psi - q) \, dx = 0 \}.$$

Under our assumptions one shows that: (*i*) for all $\phi \in H_0^1(\Omega)$, $\phi > 0$ the function $\gamma(t) := t^{-1}g(t\phi)$ is strictly decreasing and the ray $\{t\phi\}_{t>0}$ meets transversally $M(\lambda)$ in exactly one point; (*ii*) hence $M(\lambda)$ is a smooth submanifold of $H_0^1(\Omega)$; (*iii*) if $\psi \in M(\lambda)$, $t \to I_\lambda(t\psi)$ is increasing for $t \in [0, 1]$; (*iv*) I_λ achieves the minimum at some $\psi_\lambda \in M(\lambda)$; and (*v*) grad $I_\lambda(\psi_\lambda) = 0$. Moreover, using the fact that ψ_λ is the minimum of I_λ on $M(\lambda)$, one shows that the vortex core $A_\lambda = \{\psi_\lambda > q\}$ is connected, see theorem 4 of [1].

3. PRELIMINARY LEMMAS

In the sequel we shall need to compare (P_{λ}) with similar problems involving suitable subsets D of Ω , as well as the boundary value q_0 and a «model» nonlinearity like t^m . To point out such a dependence, we will set

$$M(\lambda, D, f, q) = \left\{ \psi \in H^1_0(D) : \int_D |\nabla \psi|^2 \, dx = \lambda \int_D \psi f(\psi - q) \, dx \right\}.$$

Similarly, we indicate by $I_{\lambda,D,f,q}$ the functional corresponding to I_{λ} , $P(\lambda,D,f,q)$ the variational problem $\min \{I_{\lambda,D,f,q}(\psi) : \psi \in M(\lambda,D,f,q)\}$ and $C(\lambda,D,f,q) = \min \{I_{\lambda,D,f,q}(u) : u \in M(\lambda,D,f,q)\}$. By (f1-3) there exists a constant $c_0 > 0$ such that, letting $m = (1-\theta)/\theta \ge 1$ and $f_1(t) = c_0 t^m$, one has $f(t) \ge f_1(t)$, for all $t \ge 0$.

We start showing:

LEMMA 2. Let B be a fixed ball contained in Ω and let $q_0 = max \{q(x) : x \in \overline{\Omega}\}$. Then one bas: $C(\lambda, \Omega, f, q) \leq C(\lambda, B, f_1, q_0)$.

PROOF. First we claim that:

(2) $C(\lambda,\Omega,f,q) \leq C(\lambda,\Omega,f,q_0)$

To prove (2), let ψ_0 be a solution of $P(\lambda, \Omega, f, q_0)$. Since f is strictly increasing, then

$$0 = \|\psi_0\|^2 - \lambda \int_{\Omega} \psi_0 f(\psi_0 - q_0) \, dx \ge \|\psi_0\|^2 - \lambda \int_{\Omega} \psi_0 f(\psi_0 - q) \, dx \, .$$

Since $\gamma(t)$ is strictly decreasing, there exists $t_0 \in (0, 1)$ such that $t_0 \psi_0 \in M(\lambda, \Omega, f, q)$ and this yields $C(\lambda, \Omega, f, q) \leq I_{\lambda, \Omega, f, q}(t_0 \psi_0)$. Since $I_{\lambda, \Omega, f, q}$ is increasing with respect to q, then $C(\lambda, \Omega, f, q) \leq I_{\lambda, \Omega, f, q_0}(t_0 \psi_0)$. In addition, since $t \to I_{\lambda, \Omega, f, q}(t\phi)$ is increasing for $t \in [0, 1]$, then $I_{\lambda, \Omega, f, q_0}(t_0 \psi_0) < I_{\lambda, \Omega, f, q_0}(\psi_0)$ and (2) follows.

Next, we show:

(3)
$$C(\lambda, \Omega, f, q_0) \leq C(\lambda, B, f, q_0)$$

To see this, first let φ be a solution of the problem $P(\lambda, B, f, q_0)$. Extend φ to ψ_B in $H_0^1(\Omega)$ by setting $\psi_B = 0$ outside B; then $\psi_B \in M(\lambda, \Omega, f, q_0)$ and $C(\lambda, \Omega, f, q_0) \leq I_{\lambda, \Omega, f, q_0}(\psi_B) \leq I_{\lambda, B, f, q_0}(\varphi) = C(\lambda, B, f, q_0)$.

Lastly, let ψ_1 be a solution of $P(\lambda, B, f_1, q_0)$. Since $f \ge f_1$, we have

$$\int |\nabla \psi_1|^2 \, dx - \lambda \int_B \psi_1 f(\psi_1 - q_0) \, dx \leq 0 \, .$$

So, there exists $t_1 \in (0, 1)$ such that $t_1 \psi_1 \in M(\lambda, B, f, q_0)$ and as before one has $C(\lambda, B, f, q_0) \leq C(\lambda, B, f_1, q_0)$. This, jointly with (2) and (3) proves the lemma. Q.E.D.

To estimate $C(\lambda, B, f_1, q_0)$ we consider a ball $B \subset \Omega$ centered in x_0 with radius b and set $r = |x - x_0|$.

LEMMA 3. If B is as before, then $C(\lambda, B, f_1, q_0) \rightarrow 0$ as $\lambda \rightarrow \infty$.

PROOF. Setting $K = 5(m + 1)/c_0$, it is easy to check (recall that $m \ge 1$) that, for λ large enough there exists, in a deleted neighbourhood of a = 0, an unique $a = a_{\lambda}$

satisfying

(4)
$$a^{2} [q_{0} (2 \log (b/a))^{-1}]^{m-1} = K \lambda^{-1}$$

We put $\sigma_{\lambda} = 1/\log(b/a_{\lambda})$, $\alpha_{\lambda} = q_0 \sigma_{\lambda}/2$ and

$$\phi_{\lambda}(r) = \begin{cases} \alpha_{\lambda} (1 - (r/a_{\lambda})^2) & \text{for } 0 \le r \le a_{\lambda} \\ -q_0 \sigma_{\lambda} \log (r/a_{\lambda}) & \text{for } a_{\lambda} \le r \le b \end{cases}$$

Let us note explicitly that ϕ' is continuous at $r = a_{\lambda}$. Moreover, we remark that a_{λ} , σ_{λ} and $\alpha_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$.

Set $u_{\lambda}(x) = \phi_{\lambda}(|x|) + q_0$. With direct calculations one finds:

$$\int_{B} |\nabla u_{\lambda}|^{2} dx = 2\pi (\alpha_{\lambda}^{2} + q_{0}^{2} \sigma_{\lambda}) = 2\pi (\alpha_{\lambda}^{2} + 2q_{0} \alpha_{\lambda});$$

$$\lambda c_0 \int_{\{u_{\lambda} \ge q_0\}} (u_{\lambda} - q_0)^m u_{\lambda} dx = 2\pi \lambda c_0 \int_0^{\infty} \phi \lambda^m (\phi_{\lambda} + q_0) r dr =$$

 $= \pi \lambda c_0 a_\lambda^2 \alpha_\lambda^m (\alpha_\lambda (m+2)^{-1} + q_0 (m+1)^{-1}) = \pi c_0 K \alpha_\lambda (\alpha_\lambda (m+2)^{-1} + q_0 (m+1)^{-1}).$ As a consequence, as $\lambda \to \infty$ one has that

(5)
$$\frac{1}{\alpha_{\lambda}} \int_{B} |\nabla u_{\lambda}|^2 \, dx \to 4\pi q_0$$

(6)
$$\frac{\lambda c_0}{\alpha_{\lambda}} \int_{\{u_{\lambda} \ge q_0\}} (u_{\lambda} - q_0)^m u_{\lambda} dx \to \pi c_0 K q_0 (m+1)^{-1} = 5\pi q_0.$$

From (5) and (6) it follows that for λ large enough there results:

$$\int_{B} |\nabla u_{\lambda}|^2 \, dx < \lambda c_0 \int_{\{u_{\lambda} \ge q_0\}} (u_{\lambda} - q_0)^m \, u_{\lambda} \, dx.$$

Then there exists $t_{\lambda} < 1$ such that $t_{\lambda} u_{\lambda} \in M_{\lambda, B, f_1, q_0}$ and hence

(7)
$$C(\lambda, B, f_1, q_0) \leq I_{\lambda, B, f_1, q_0}(t_\lambda u_\lambda) < I_{\lambda, B, f_1, q_0}(u_\lambda) \leq \frac{1}{2} \int_{B} |\nabla u_\lambda|^2 dx = \pi(\alpha_\lambda^2 + 2q_0 \alpha_\lambda).$$

Since, as remarked before, $\alpha_{\lambda} \to 0$ as $\lambda \to \infty$, then $C(\lambda, B, f_1, q_0) \to \infty$ as $\lambda \to \infty$, as required. Q.E.D.

We can now prove the main result of this section:

LEMMA 4. Let $C(\lambda) = Min \{I_{\lambda}(u) : u \in M_{\lambda}\}$ and let ψ_{λ} be a solution of (P_{λ}) . Then:

(i) $C(\lambda) \to 0$ as $\lambda \to \infty$; (ii) $\|\psi_{\lambda}\| \to 0$ as $\lambda \to \infty$.

PROOF. (1) follows directly from lemmas 2 and 3.

288

ASYMPTOTIC BEHAVIOUR IN PLANAR VORTEX THEORY

(*ii*) From (f2) it follows that

(8)
$$C(\lambda) = 1/2 \|\psi_{\lambda}\|^{2} - \lambda \int_{\Omega} F(\psi_{\lambda} - q) \, dx \ge 1/2 \|\psi_{\lambda}\|^{2} - \theta \lambda \int_{\Omega} f(\psi_{\lambda} - q) \, \psi_{\lambda} \, dx$$

Since $\psi_{\lambda} \in M_{\lambda}$ then one finds $C(\lambda) \ge (1/2 - \theta) \|\psi_{\lambda}\|^2$ and the result follows from (*i*). Q.E.D.

4. Limiting behaviour of A_{λ} and Ψ_{λ}

We are now in position to study the asymptotic behaviour of the solution pair $(A_{\lambda}, \Psi_{\lambda})$. Our main results are:

THEOREM 5. Let $\Psi_0 > 0$ on $\partial \Omega$ be smooth and suppose f satisfies (f1-2-3). Then:

(i) diam $A_{\lambda} \to 0$ as $\lambda \to \infty$.

THEOREM 6. Let $\Psi_0 > 0$ on $\partial \Omega$ be smooth and suppose f satisfies (f1-2-3). Let Ψ_{λ} be the solution of (P_{λ}) obtained in Theorem 1, and define

$$b(\lambda) = \lambda \int_{A_{\lambda}} f(\psi_{\lambda} - q) \, dx \, .$$

Then, for any point $\xi(\lambda) \in A_{\lambda}$, we have $\psi_{\lambda}(\cdot)/h(\lambda) - G(\cdot, \xi(\lambda)) \to 0$ in $H_0^{1,p}(\Omega)$ $1 \le p < 2$, as $\lambda \to \infty$, where G is the Green function of $-\Delta$ in Ω .

The proofs of the preceding theorems rely on some arguments of [4, 5] which can be carried out in the present situation because of Lemma 4 before. To make the paper as selfcontained as possible we will outline the proofs.

PROOF OF THEOREM 5. The argument is similar to that of Lemma 3.1 of [5]. Let $P, Q \in \overline{A}_{\lambda}$ be such that $|P - Q| = \text{diam}(A_{\lambda})$ and consider a family of straight lines l_X passing through the point $X \in [P, Q]$ and orthogonal to [P, Q]. Denote by $L_X = [Y_X, Z_X]$ a segment in l_X such that $Y_X \in \partial \Omega$, $Z_X \in \partial A_{\lambda}$ and int $(L_X) \subset \Omega \setminus \overline{A}_{\lambda}$. Then one has

$$\psi_{\lambda}(Y_X) - \psi_{\lambda}(Z_X) = \int_{L_X} \frac{\partial \psi_{\lambda}}{\partial L_X} dL_X.$$

Note that $\psi_{\lambda}(Y_X) = 0$ while $\psi_{\lambda}(Z_X) = q(Z_X) \ge K_0 > 0$. Then we infer:

$$K_0 \leq \left| \int\limits_{L_X} \frac{\partial \psi_{\lambda}}{\partial L_X} dL_X \right| \leq c_1 \int\limits_{L_X} |\nabla \psi_{\lambda}| \, dL_X \, .$$

Integrating with respect to X in [P, Q] and using the Hölder inequality, we find readily:

$$K_0 |P-Q| \leq c_1 \int_{PQ} dX \int_{L_X} |\nabla \psi_\lambda| \, dL_X \leq c_2 |P-Q|^{1/2} \|\psi_\lambda\|.$$

The proof now follows from Lemma 4-(ii).

PROOF OF THEOREM 6. We follow the arguments of Theorem 5.2 of [4]. We know that

$$\psi_{\lambda}(z) = \lambda \int_{A_{\lambda}} G(z, x) f(\psi_{\lambda} - q) \, dx \, ; \qquad \frac{\lambda}{b(\lambda)} \int_{A_{\lambda}} f(\psi_{\lambda} - q) \, dx = 1 \, .$$

Then for $\xi(\lambda) \in A_{\lambda}$ one has:

$$\psi_{\lambda}(z)/b(\lambda) - G(z,\xi(\lambda)) = \frac{\lambda}{b(\lambda)} \int_{A_{\lambda}} \{G(z,x) - G(z,\xi(\lambda))\} f(\psi_{\lambda} - q) \, dx.$$

By the Minkowski inequality there results

$$(9) \quad \left\|\psi_{\lambda}(\cdot)/b(\lambda) - G(\cdot,\xi(\lambda))\right\|_{1,p,\Omega} \leq \frac{\lambda}{b(\lambda)} \int_{A_{\lambda}} f(\psi_{\lambda} - q) \, dx \left| \int_{\Omega} \left|\nabla_{Z} \left\{ G(z,x) - G(z,\xi(\lambda))\right|^{p} dz \right]^{1/p} \right|_{L^{p}}$$

Lemma 5.1 of [4] yields:

(10)
$$\int_{\Omega} |\nabla_Z \{ G(z,x) - G(z,\xi(\lambda))|^p \, dz \leq c_1 \, |x - \xi(\lambda)|^p \, (1 + \log \left(\operatorname{diam} \Omega/|x - \xi(\lambda)|\right))^2 \, .$$

Since x and $\xi(\lambda)$ are both in A_{λ} then $|x - \xi(\lambda)| \leq \text{diam}(A_{\lambda})$ and the conclusion follows from (9), (10) and Theorem 5. Q.E.D.

REMARKS. (*i*) For applications, it can be useful, to state explicitely an asymptotic estimate of $\|\psi_{\lambda}\|$. According to (7) and (8), $\|\psi_{\lambda}\| \leq c_1 (\alpha_{\lambda}^2 + \alpha_{\lambda})$, where $\alpha_{\lambda} \cong (\log (1/s))^{-1}$, and $s = a_{\lambda}/b$ solves (see [4]) $s[\log (1/s)]^{-(m-1)/2} = k\lambda^{-1/2}$ for a suitable positive constant k. It is easy to check (see Lemma C2 of [4]) that $1/s \geq \vartheta(\lambda) := \sqrt{\lambda} (\log \sqrt{\lambda})^{-(m-1)/2}$ and hence $\alpha_{\lambda} \cong (\log (1/s))^{-1} \leq 1/\log \vartheta(\lambda)$. This provides an upper bound for $\|\psi_{\lambda}\|$ in terms of λ as $\lambda \to \infty$. In a similar way one can find a lower bound for $\|\psi_{\lambda}\|$.

(ii) The same arguments apply to any free boundary problem like

$$\begin{cases} -Lu = \lambda f(u - q) \text{ in } \Omega\\ u = 0 \text{ on } \partial \Omega \end{cases}$$

where q > 0 in Ω and L is an uniformly elliptic variational second order operator with smooth coefficients.

Acknowledgements

The first author is supported by the Italian Ministry of Scientific Research. The second author is supported by the Scuola Normale Superiore, Pisa; he likes to thank the Scuola for the kindness and hospitality during his stay there.

References

- [1] A. AMBROSETTI G. MANCINI, On some free boundary problems. In: H. BERESTYCKI and H. BREZIS (eds.), Recent contributions to nonlinear partial differential equations. Pitman, 1981.
- [2] A. AMBROSETTI M. STRUWE, Existence of steady vortex rings in an ideal fluid. Arch. Rat. Mech. & Anal., 108-2, 1989, 97-109.
- [3] C. J. AMICK R. E. L. TURNER, A global branch of steady vortex rings. J. Rein. Angew. Math., 384, 1988, 1-23.
- [4] M. S. BERGER L. E. FRAENKEL, Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys., 77, 1980, 149-172.
- [5] L. A. CAFFARELLI A. FRIEDMAN, Asymptotic estimates for the Plasma Problem. Duke Kath. Journal, 47-3, 1980, 705-742.
- [6] L. E. FRAENKEL M. S. BERGER, A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, 13-51.
- [7] M. J. M. HILL, On a spherical vortex. Phil. Trans. Roy. Soc. London, 185, 1894, 213-245.
- [8] W. M. NI, On the existence of global vortex rings. J. d'Analyse Math., 37, 1980, 208-247.
- [9] J. NORBURY, Steady planar vortex pairs in an ideal fluid. Comm. Pure Appl. Math., 28, 1975, 679-700.

A. Ambrosetti: Scuola Normale Superiore Piazza dei Cavalieri, 7 - 56100 PISA

Y. Jianfu: Department of Mathematics Jiangxi University, Nanchang JIANGXI 330047 (Cina)