Rendiconti Lincei Matematica e Applicazioni

Antonio Ambrosetti, Jian Fu Yang

Asymptotic behaviour in planar vortex theory

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.4, p. 285-291.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1990_9_1_4_285_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Analisi matematica. - Asymptotic behaviour in planar vortex theory. Nota di Antonio Ambrosetti e Yang Jianfu, presentata(*) dal Corrisp. A. Ambrosetti.

Abstract. - The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.

Key words: Free boundary problems; Vortex theory; Nonlinear desingularization.

Riassunto. - Comportamento asintotico nella teoria dei vortici. Viene discusso il comportamento asintotico delle soluzioni di certi problemi di frontiera libera che intervengono nella teoria dei vortici.

1. Introduction

Consider an inviscid fluid with uniform density, confined in a bounded subset Ω of R^{2}. The existence of a «vortex» in such a fluid can be formulated as a free boundary problem, seeking an open «vortex core» $A \subset \Omega$ and a stream function $\Psi \in C^{1}(\Omega) \cap C^{2}(\Omega \backslash \partial A)$ satisfying

$$
\left\{\begin{array}{l}
-\Delta \Psi=\lambda f(\Psi) \text { in } A \\
-\Delta \Psi=0 \text { in } \Omega / \bar{A} \\
\Psi_{\mid \partial A}=0 \text { and } \Psi>0 \text { in } A \\
\Psi=-\Psi_{0}<0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ψ_{0} and the vorticity function f are given. The corresponding solution pair of (1 λ) will be denoted by $\left(\Psi_{\lambda}, A_{\lambda}\right)$.

Under the assumption that f is «superlinear» at infinity we will study the limiting behaviour as $\lambda \rightarrow \infty$ of the vortex core A_{λ} and the stream function Ψ_{λ}. We will show that the diameter of the vortex core tends to 0 as $\lambda \rightarrow \infty$; moreover, Ψ_{λ} converges to a function with an isolated singularity.

Our results are related to those of [4] which, actually, deal with a different problem because the parameter λ is not prescribed but arises as a Lagrange multiplier.

In section 2 we recall an existence result for (1 λ). The limiting behaviour of the solution pair $\left(\Psi_{\lambda}^{*}, A_{\lambda}\right)$ as $\lambda \rightarrow \infty$ is studied in section 4 . Our proof relies on some estimates of the H^{1} norm of Ψ_{λ} and of the diam $\left(A_{\lambda}\right)$, given in section 3 .

2. Existence results

Existence results in vortex theory are well known: see, for example [1-3, 6-8] dealing with vortex rings in a cylindrically simmetric fluid filling all of R^{3}, and [9]
(*) Nella seduta del 14 giugno 1990.
for planar vortex pairs. Similar arguments apply in the case of (1 λ). In particular we will refer to the method developed in $[1, \S 2]$ to get the following result.

Theorem 1. Let $\Psi_{0}>0$ on $\partial \Omega$ be smooth and suppose f satisfies:
$(f 1) f \in C^{2}\left(\boldsymbol{R}^{+}, \boldsymbol{R}\right), \quad f(0)=0, \quad f(s)>0 \quad \forall s>0$, and $f(s) \leqslant c_{1}+c_{2} s^{p}$, for some $c_{1}, c_{2}, p>0$;
($f 2$) $\exists \theta \in(0,1 / 2)$ such that $F(s) \leqslant \theta s f(s) \forall s \geqslant 0$ where $F(s):=\int_{0}^{s} f(\sigma) d \sigma$;
(f3) f is strictly convex and increasing.
Then for all $\lambda>0$, (1 λ) bas a solution $\left(\Psi_{\lambda}, A_{\lambda}\right)$. Furthermore, $A_{\lambda}=$ $=\left\{\Psi_{\lambda}(x) \in \Omega: \Psi_{\lambda}(x)>0\right\}$ is connected.

Although the proof of Theorem 1 is similar to that in $[1, \S 2]$, it is convenient to give an outline for future references. Let $q(x)$ be the solution of

$$
\left\{\begin{array}{l}
-\Delta q=0 \text { on } \Omega \\
q=\Psi_{0} \text { on } \partial \Omega
\end{array}\right.
$$

By the maximum principle $K_{0}:=\min \{q(x): x \in \bar{\Omega}\}>0$. Let us extend $f(s)$ to all R by setting $f(s) \equiv 0$ for $s<0$ (in the sequel we will use the same symbol f to denote such an extension), and let us look for positive solutions $\psi=\psi(x)$ of

$$
\left\{\begin{array}{l}
-\Delta \psi=\lambda f(\psi-q) \text { in } \Omega \\
\psi=0 \text { on } \partial \Omega .
\end{array}\right.
$$

If ψ is such a solution then $\Psi=\psi-q$ solves (1 λ).
For $\psi \in H_{0}^{1}(\Omega)$ let $\|\psi\|^{2}=\int_{\Omega}|\nabla \psi|^{2} d x$ and $I_{\lambda}(\psi)=1 / 2\|\psi\|^{2}-\lambda \int_{\Omega} F(\psi-q) d x$.
Critical points of I_{λ} correspond to positive solutions ψ_{λ} of $\left(P_{\lambda}^{\Omega}\right)$. In order to find critical points of I_{λ} suitable for the limiting procedure, one seeks the minimum of I_{λ} constrained on

$$
M(\lambda)=\left\{\psi \in H_{0}^{1}(\Omega) \backslash\{0\}: g(\psi)=\|\psi\|^{2}-\lambda \int_{\Omega} \psi f(\psi-q) d x=0\right\}
$$

Under our assumptions one shows that: (i) for all $\phi \in H_{0}^{1}(\Omega), \phi>0$ the function $\gamma(t):=t^{-1} g(t \phi)$ is strictly decreasing and the ray $\{t \phi\}_{t>0}$ meets transversally $M(\lambda)$ in exactly one point; (ii) hence $M(\lambda)$ is a smooth submanifold of $H_{0}^{1}(\Omega)$; (iii) if $\psi \in M(\lambda)$, $t \rightarrow I_{\lambda}(t \psi)$ is increasing for $t \in[0,1] ;(i v) I_{\lambda}$ achieves the minimum at some $\psi_{\lambda} \in M(\lambda)$; and $(v) \operatorname{grad} I_{\lambda}\left(\psi_{\lambda}\right)=0$. Moreover, using the fact that ψ_{λ} is the minimum of I_{λ} on $M(\lambda)$, one shows that the vortex core $A_{\lambda}=\left\{\psi_{\lambda}>q\right\}$ is connected, see theorem 4 of [1].

3. Preliminary lemmas

In the sequel we shall need to compare $\left(P_{\lambda}\right)$ with similar problems involving suitable subsets D of Ω, as well as the boundary value q_{0} and a «model» nonlinearity like
t^{m}. To point out such a dependence, we will set

$$
M(\lambda, D, f, q)=\left\{\psi \in H_{0}^{1}(D): \int_{D}|\nabla \psi|^{2} d x=\lambda \int_{D} \psi f(\psi-q) d x\right\} .
$$

Similarly, we indicate by $I_{\lambda, D, f, q}$ the functional corresponding to $I_{\lambda}, P(\lambda, D, f, q)$ the variational problem $\min \left\{I_{\lambda, D, f, q}(\psi): \psi \in M(\lambda, D, f, q)\right\} \quad$ and $\quad C(\lambda, D, f, q)=$ $=\min \left\{I_{\lambda, D, f, q}(u): u \in M(\lambda, D, f, q)\right\}$. By $(f 1-3)$ there exists a constant $c_{0}>0$ such that, letting $m=(1-\theta) / \theta \geqslant 1$ and $f_{1}(t)=c_{0} t^{m}$, one has $f(t) \geqslant f_{1}(t)$, for all $t \geq 0$.

We start showing:
Lemma 2. Let B be a fixed ball contained in Ω and let $q_{0}=\max \{q(x): x \in \bar{\Omega}\}$. Then one has: $C(\lambda, \Omega, f, q) \leqslant C\left(\lambda, B, f_{1}, q_{0}\right)$.

Proof. First we claim that:

$$
\begin{equation*}
C(\lambda, \Omega, f, q) \leqslant C\left(\lambda, \Omega, f, q_{0}\right) \tag{2}
\end{equation*}
$$

To prove (2), let ψ_{0} be a solution of $P\left(\lambda, \Omega, f, q_{0}\right)$. Since f is strictly increasing, then

$$
0=\left\|\psi_{0}\right\|^{2}-\lambda \int_{\Omega} \psi_{0} f\left(\psi_{0}-q_{0}\right) d x \geqslant\left\|\psi_{0}\right\|^{2}-\lambda \int_{\Omega} \psi_{0} f\left(\psi_{0}-q\right) d x .
$$

Since $\gamma(t)$ is strictly decreasing, there exists $t_{0} \in(0,1)$ such that $t_{0} \psi_{0} \in M(\lambda, \Omega, f, q)$ and this yields $C(\lambda, \Omega, f, q) \leqslant I_{\lambda, \Omega, \Omega, q}\left(t_{0} \psi_{0}\right)$. Since $I_{\lambda, \Omega, \Omega, q}$ is increasing with respect to q, then $C(\lambda, \Omega, f, q) \leqslant I_{\lambda, \Omega, f, q_{0}}\left(t_{0} \psi_{0}\right)$. In addition, since $t \rightarrow I_{\lambda, \Omega, \Omega, q}(t \phi)$ is increasing for $t \in[0,1]$, then $I_{\lambda, \Omega,, q_{0}}\left(t_{0} \psi_{0}\right)<I_{\lambda, \Omega, f, q_{0}}\left(\psi_{0}\right)$ and (2) follows.

Next, we show:

$$
\begin{equation*}
C\left(\lambda, \Omega, f, q_{0}\right) \leqslant C\left(\lambda, B, f, q_{0}\right) . \tag{3}
\end{equation*}
$$

To see this, first let φ be a solution of the problem $P\left(\lambda, B, f, q_{0}\right)$. Extend φ to ψ_{B} in $H_{0}^{1}(\Omega)$ by setting $\psi_{B}=0$ outside B; then $\psi_{B} \in M\left(\lambda, \Omega, f, q_{0}\right)$ and $C\left(\lambda, \Omega, f, q_{0}\right) \leqslant I_{\lambda, \Omega, f, q_{0}}\left(\psi_{B}\right) \leqslant I_{\lambda, B, f, q_{0}}(\varphi)=C\left(\lambda, B, f, q_{0}\right)$.

Lastly, let ψ_{1} be a solution of $P\left(\lambda, B, f_{1}, q_{0}\right)$. Since $f \geqslant f_{1}$, we have

$$
\int_{B}\left|\nabla \psi_{1}\right|^{2} d x-\lambda \int_{B} \psi_{1} f\left(\psi_{1}-q_{0}\right) d x \leqslant 0 .
$$

So, there exists $t_{1} \in(0,1)$ such that $t_{1} \psi_{1} \in M\left(\lambda, B, f, q_{0}\right)$ and as before one has $C\left(\lambda, B, f, q_{0}\right) \leqslant C\left(\lambda, B, f_{1}, q_{0}\right)$. This, jointly with (2) and (3) proves the lemma. Q.E.D.

To estimate $C\left(\lambda, B, f_{1}, q_{0}\right)$ we consider a ball $B \subset \Omega$ centered in x_{0} with radius b and set $r=\left|x-x_{0}\right|$.

Lemma 3. If B is as before, then $C\left(\lambda, B, f_{1}, q_{0}\right) \rightarrow 0$ as $\lambda \rightarrow \infty$.
Proof. Setting $K=5(m+1) / c_{0}$, it is easy to check (recall that $m \geq 1$) that, for λ large enough there exists, in a deleted neighbourhood of $a=0$, an unique $a=a_{\lambda}$
satisfying

$$
\begin{equation*}
a^{2}\left[q_{0}(2 \log (b / a))^{-1}\right]^{m-1}=K \lambda^{-1} \tag{4}
\end{equation*}
$$

We put $\sigma_{\lambda}=1 / \log \left(b / a_{\lambda}\right), \alpha_{\lambda}=q_{0} \sigma_{\lambda} / 2$ and

$$
\phi_{\lambda}(r)= \begin{cases}\alpha_{\lambda}\left(1-\left(r / a_{\lambda}\right)^{2}\right) & \text { for } 0 \leqslant r \leqslant a_{\lambda} \\ -q_{0} \sigma_{\lambda} \log \left(r / a_{\lambda}\right) & \text { for } a_{\lambda} \leqslant r \leqslant b\end{cases}
$$

Let us note explicitely that ϕ^{\prime} is continuous at $r=a_{\lambda}$. Moreover, we remark that $a_{\lambda}, \sigma_{\lambda}$ and $\alpha_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$.

Set $u_{\lambda}(x)=\phi_{\lambda}(|x|)+q_{0}$. With direct calculations one finds:

$$
\begin{gathered}
\int_{B}\left|\nabla u_{\lambda}\right|^{2} d x=2 \pi\left(\alpha_{\lambda}^{2}+q_{0}^{2} \sigma_{\lambda}\right)=2 \pi\left(\alpha_{\lambda}^{2}+2 q_{0} \alpha_{\lambda}\right) ; \\
\lambda c_{0} \int_{\left\{u_{\lambda} \geqslant q_{0}\right\}}\left(u_{\lambda}-q_{0}\right)^{m} u_{\lambda} d x=2 \pi \lambda c_{0} \int_{0}^{a_{\lambda}} \phi \lambda^{m}\left(\phi_{\lambda}+q_{0}\right) r d r= \\
=\pi \lambda c_{0} a_{\lambda}^{2} \alpha_{\lambda}^{m}\left(\alpha_{\lambda}(m+2)^{-1}+q_{0}(m+1)^{-1}\right)=\pi c_{0} K \alpha_{\lambda}\left(\alpha_{\lambda}(m+2)^{-1}+q_{0}(m+1)^{-1}\right) .
\end{gathered}
$$

As a consequence, as $\lambda \rightarrow \infty$ one has that

$$
\begin{gather*}
\frac{1}{\alpha_{\lambda}} \int_{B}\left|\nabla u_{\lambda}\right|^{2} d x \rightarrow 4 \pi q_{0} \tag{5}\\
\frac{\lambda c_{0}}{\alpha_{\lambda}} \int_{\left\{u_{\lambda} \geqslant q_{0}\right\}}\left(u_{\lambda}-q_{0}\right)^{m} u_{\lambda} d x \rightarrow \pi c_{0} K q_{0}(m+1)^{-1}=5 \pi q_{0} \tag{6}
\end{gather*}
$$

From (5) and (6) it follows that for λ large enough there results:

$$
\int_{B}\left|\nabla u_{\lambda}\right|^{2} d x<\lambda c_{0} \int_{\left\{u_{\lambda} \geqslant q_{0}\right\}}\left(u_{\lambda}-q_{0}\right)^{m} u_{\lambda} d x .
$$

Then there exists $t_{\lambda}<1$ such that $t_{\lambda} u_{\lambda} \in M_{\lambda, B, f_{1}, q_{0}}$ and hence

$$
\begin{equation*}
C\left(\lambda, B, f_{1}, q_{0}\right) \leqslant I_{\lambda, B, f_{1}, q_{0}}\left(t_{\lambda} u_{\lambda}\right)<I_{\lambda, B, f_{1}, q_{0}}\left(u_{\lambda}\right) \leqslant \frac{1}{2} \int_{B}\left|\nabla u_{\lambda}\right|^{2} d x=\pi\left(\alpha_{\lambda}^{2}+2 q_{0} \alpha_{\lambda}\right) . \tag{7}
\end{equation*}
$$

Since, as remarked before, $\alpha_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$, then $C\left(\lambda, B, f_{1}, q_{0}\right) \rightarrow \infty$ as $\lambda \rightarrow \infty$, as required. Q.E.D.

We can now prove the main result of this section:

Lemma 4. Let $C(\lambda)=\operatorname{Min}\left\{I_{\lambda}(u): u \in M_{\lambda}\right\}$ and let ψ_{λ} be a solution of $\left(P_{\lambda}\right)$. Then:
(i) $C(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty ;(i i)\left\|\psi_{\lambda}\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$.

Proof. (i) follows directly from lemmas 2 and 3.
(ii) From (f2) it follows that

$$
\begin{equation*}
C(\lambda)=1 / 2\left\|\psi_{\lambda}\right\|^{2}-\lambda \int_{\Omega} F\left(\psi_{\lambda}-q\right) d x \geqslant 1 / 2\left\|\psi_{\lambda}\right\|^{2}-\theta \lambda \int_{\Omega} f\left(\psi_{\lambda}-q\right) \psi_{\lambda} d x \tag{8}
\end{equation*}
$$

Since $\psi_{\lambda} \in M_{\lambda}$ then one finds $C(\lambda) \geqslant(1 / 2-\theta)\left\|\psi_{\lambda}\right\|^{2}$ and the result follows from (i). Q.E.D.

4. Limiting behaviour of A_{λ} and Ψ_{λ}

We are now in position to study the asymptotic behaviour of the solution pair $\left(A_{\lambda}, \Psi_{\lambda}\right)$. Our main results are:

Theorem 5. Let $\Psi_{0}>0$ on $\partial \Omega$ be smooth and suppose f satisfies (f1-2-3). Then:
(i) $\operatorname{diam} A_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \infty$.

Theorem 6. Let $\Psi_{0}>0$ on $\partial \Omega$ be smooth and suppose f satisfies (f1-2-3). Let Ψ_{λ} be the solution of $\left(P_{\lambda}\right)$ obtained in Theorem 1, and define

$$
b(\lambda)=\lambda \int_{A_{\lambda}} f\left(\psi_{\lambda}-q\right) d x
$$

Then, for any point $\xi(\lambda) \in A_{\lambda}$, we have $\psi_{\lambda}(\cdot) / b(\lambda)-G(\cdot, \xi(\lambda)) \rightarrow 0$ in $H_{0}^{1, p}(\Omega) 1 \leqslant p<2$, as $\lambda \rightarrow \infty$, where G is the Green function of $-\Delta$ in Ω.

The proofs of the preceding theorems rely on some arguments of $[4,5]$ which can be carried out in the present situation because of Lemma 4 before. To make the paper as selfcontained as possible we will outline the proofs.

Proof of theorem 5. The argument is similar to that of Lemma 3.1 of [5]. Let $P, Q \in \bar{A}_{\lambda}$ be such that $|P-Q|=\operatorname{diam}\left(A_{\lambda}\right)$ and consider a family of straight lines l_{X} passing through the point $X \in[P, Q]$ and orthogonal to $[P, Q]$. Denote by $L_{X}=$ $=\left[Y_{X}, Z_{X}\right]$ a segment in l_{X} such that $Y_{X} \in \partial \Omega, Z_{X} \in \partial A_{\lambda}$ and int $\left(L_{X}\right) \subset \Omega \backslash \bar{A}_{\lambda}$. Then one has

$$
\psi_{\lambda}\left(Y_{X}\right)-\psi_{\lambda}\left(Z_{X}\right)=\int_{L_{X}} \frac{\partial \psi_{\lambda}}{\partial L_{X}} d L_{X} .
$$

Note that $\psi_{\lambda}\left(Y_{X}\right)=0$ while $\psi_{\lambda}\left(Z_{X}\right)=q\left(Z_{X}\right) \geqslant K_{0}>0$. Then we infer:

$$
K_{0} \leqslant\left|\int_{L_{X}} \frac{\partial \psi_{\lambda}}{\partial L_{X}} d L_{X}\right| \leqslant c_{L_{X}}\left|\nabla \psi_{\lambda}\right| d L_{X}
$$

Integrating with respect to X in $[P, Q]$ and using the Hölder inequality, we find readily:

$$
K_{0}|P-Q| \leqslant c_{1} \int_{Q} d X \int_{L_{X}}\left|\nabla \psi_{\lambda}\right| d L_{X} \leqslant c_{2}|P-Q|^{1 / 2}\left\|\psi_{\lambda}\right\| .
$$

The proof now follows from Lemma 4-(ii).
Proof of theorem 6. We follow the arguments of Theorem 5.2 of [4]. We know that

$$
\psi_{\lambda}(z)=\lambda \int_{A_{\lambda}} G(z, x) f\left(\psi_{\lambda}-q\right) d x ; \quad \frac{\lambda}{b(\lambda)} \int_{A_{\lambda}} f\left(\psi_{\lambda}-q\right) d x=1 .
$$

Then for $\xi(\lambda) \in A_{\lambda}$ one has:

$$
\psi_{\lambda}(z) / b(\lambda)-G(z, \xi(\lambda))=\frac{\lambda}{b(\lambda)} \int_{A_{\lambda}}\{G(z, x)-G(z, \xi(\lambda))\} f\left(\psi_{\lambda}-q\right) d x .
$$

By the Minkowski inequality there results

$$
\begin{equation*}
\left\|\psi_{\lambda}(\cdot) / b(\lambda)-G(\cdot, \xi(\lambda))\right\|_{1, p, \Omega} \leqslant \frac{\lambda}{b(\lambda)} \int_{A_{2}} f\left(\psi_{\lambda}-q\right) d x\left[\int_{\Omega} \mid \nabla_{Z}\left\{G(z, x)-\left.G(z, \xi(\lambda))\right|^{p} d z\right]^{1 / p} .\right. \tag{9}
\end{equation*}
$$

Lemma 5.1 of [4] yields:

$$
\begin{equation*}
\int_{\Omega} \mid \nabla_{Z}\left\{G(z, x)-\left.G(z, \xi(\lambda))\right|^{p} d z \leqslant c_{1}|x-\xi(\lambda)|^{p}(1+\log (\operatorname{diam} \Omega /|x-\xi(\lambda)|))^{2} .\right. \tag{10}
\end{equation*}
$$

Since x and $\xi(\lambda)$ are both in A_{λ} then $|x-\xi(\lambda)| \leqslant \operatorname{diam}\left(A_{\lambda}\right)$ and the conclusion follows from (9), (10) and Theorem 5. Q.E.D.

Remarks. (i) For applications, it can be useful, to state explicitely an asymptotic estimate of $\left\|\psi_{\lambda}\right\|$. According to (7) and (8), $\left\|\psi_{\lambda}\right\| \leqslant c_{1}\left(\alpha_{\lambda}^{2}+\alpha_{\lambda}\right)$, where $\alpha_{\lambda} \cong(\log (1 / s))^{-1}$, and $s=a_{\lambda} / b$ solves (see [4]) $s[\log (1 / s)]^{-(m-1) / 2}=k \lambda^{-1 / 2}$ for a suitable positive constant k. It is easy to check (see Lemma C2 of [4]) that $1 / s \geqslant \vartheta(\lambda):=\sqrt{\lambda}(\log \sqrt{\lambda})^{-(m-1) / 2}$ and hence $\alpha_{\lambda} \cong(\log (1 / s))^{-1} \leqslant 1 / \log \vartheta(\lambda)$. This provides an upper bound for $\left\|\psi_{\lambda}\right\|$ in terms of λ as $\lambda \rightarrow \infty$. In a similar way one can find a lower bound for $\left\|\psi_{\lambda}\right\|$.
(ii) The same arguments apply to any free boundary problem like

$$
\left\{\begin{array}{l}
-L u=\lambda f(u-q) \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $q>0$ in Ω and L is an uniformly elliptic variational second order operator with smooth coefficients.

Acknowledgements

The first author is supported by the Italian Ministry of Scientific Research. The second author is supported by the Scuola Normale Superiore, Pisa; he likes to thank the Scuola for the kindness and hospitality during his stay there.

References

[1] A. Ambrosetti - G. Mancini, On some free boundary problems. In: H. Berestycki and H. Brezis (eds.), Recent contributions to nonlinear partial differential equations. Pitman, 1981.
[2] A. Ambrosetti - M. Struwe, Existence of steady vortex rings in an ideal fluid. Arch. Rat. Mech. \& Anal., 108-2, 1989, 97-109.
[3] C. J. Amick - R. E. L. Turner, A global branch of steady vortex rings. J. Rein. Angew. Math., 384, 1988, 1-23.
[4] M. S. Berger - L. E. Fraenkel, Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys., 77, 1980, 149-172.
[5] L. A. Caffarelli - A. Friedman, Asymptotic estimates for the Plasma Problem. Duke Kath. Journal, 47-3, 1980, 705-742.
[6] L. E. Fraenkel - M. S. Berger, A global theory of steady vortex rings in an ideal fluid. Acta Math., 132, 1974, 13-51.
[7] M. J. M. Hill, On a spherical vortex. Phil. Trans. Roy. Soc. London, 185, 1894, 213-245.
[8] W. M. NI, On the existence of global vortex rings. J. d'Analyse Math., 37, 1980, 208-247.
[9] J. Norbury, Steady planar vortex pairs in an ideal fluid. Comm. Pure Appl. Math., 28, 1975, 679-700.
A. Ambrosetti: Scuola Normale Superiore

Piazza dei Cavalieri, 7-56100 PISA
Y. Jianfu: Department of Mathematics

Jiangxi University, Nanchang JiAngxi 330047 (Cina)

