Rendiconti Lincei Matematica e Applicazioni

SAAD ADNAN

On factorisable soluble groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.2, p. 97-99.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1990_9_1_2_97_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Teoria dei gruppi. - On factorisable soluble groups. Nota di Sadd Adnan, presentata (*) dal Socio G. Zappa.

Abstract

The intention of this paper is to provide an elementary proof of the following known results: Let G be a finite group of the form $G=A B$. If A is abelian and B has a nilpotent subgroup of index at most 2 , then G is soluble.

Key words: Finite group; Soluble group; Factorisable group.

Riassunto. - Semigruppi risolubili fattorizzabili. Lo scopo di questa nota è di fornire una dimostrazione elementare del seguente teorema: Sia G un gruppo finito nella forma $G=A B$. Se A è abeliano e B ha un sottogruppo nilpotente di indice al più 2 , allora G è risolubile.

Introduction

In [1] the following theorem has been proved:
Theorem. Suppose $G=A B$ where G is a finite group. If A is abelian and B has a nilpotent subgroup of index at most 2 , then G is soluble.

However, in proving the above theorem, the author uses the deep results of Gorenstein and Walter [2]. In this short note we provide a very elementary proof of the above theorem, using only results fully proved in [3] and [4]. The notation used is standard and may be found in [3] or [4].

The case where A has even order has been proved in [1] without employing [2]. Thus in proving the above theorem, we shall assume that A has odd order.

Proof. The proof shall be broken in several lemmas. If N is a normal subgroup of $G=A B,(|A|,|B|)=1$, then a simple induction on $|G|$ shows that N is factorisable (in $A N$) in G. Let G be a minimal counterexample to the above theorem. If M is a proper subgroup of G containing B, then $H=(M \cap A)^{G} \subseteq M$. Since M is soluble (by the minimality of G), H is soluble. Hence $H=1, B$ is a maximal subgroup of G and $(|A|$, $|B|)=1$. Thus G is simple. Since $1 \neq Z(S) \cap O_{2}(B) \subseteq Z(B), S \in$ Syl $_{2}(B)$, by means of a theorem by Burnside [4, p. 334], A is not primary. We have thus proved all parts of the following lemma.

Lemma 1. $(|A|,|B|)=1, G$ is simple and B is a maximal subgroup of G. Further, A is not primary.

Lemma 2. A is a T.I. subgroup.
Proof. If $D=A \cap A^{g} \neq 1$, then $K=N_{G}(D) \supseteq\left\langle A, A^{g}\right\rangle$. Since K is soluble and G is simple $F(K) \subseteq A$. Thus $C_{K}(F(K)) \subseteq F(K)$ gives $A=F(K)=A^{g}$.

Lemma 3.
i) If $1 \neq C \subseteq A, 1 \neq D \in \operatorname{Syl}_{p}(O(B))$, then $\langle C, D\rangle=G$.
(*) Nella seduta del 18 novembre 1989.
ii) If $1 \neq H \triangleleft F(B)$, then $N_{G}(H) \subseteq B$.

Proof. We may assume that C is a q-group for some prime q. If $\langle C, D\rangle \subset G$, then $N=N_{G}\langle C, D\rangle$ is factorisable and so is soluble. Thus $D Q^{g}$, with $Q \in \operatorname{Syl}_{q}(N)$, is a proper subgroup of G for all $g \in G$. By a theorem of Kegel [4, p. 382] G is not simple, contrary to lemma 1. This proves (i).

If $1 \neq H \triangleleft F(B)$, then $F(B) \subseteq N_{G}(H)$. Applying (i), $N_{G}(H)$ is a $\pi(B)$-group. Thus $\left[N_{G}(H): F(B)\right] \leqslant 2$ and so $N_{G}(H) \subseteq N_{G}(F(B))=B$.

Lemma 4: $O_{2}(B)$ is a T.I. subgroup.
Proof. Deny and choose $a \in A^{\#}$ such that $D=O_{2}(B) \cap O_{2}\left(B^{a}\right)$ has maximal order. Set $N=N_{G}(D)$. Since $O(B) \subseteq N$, lemma 3 implies N is a $\pi(B)$-group. Since $[\mathrm{N}: O(B)]$ is a power of $2, N$ is soluble by a theorem of Wielandt [4, p. 379].

If $O(N) \neq 1$, then $O(N) \triangleleft F(B)$ and so $N \subseteq B$ by lemma 3. Thus $O\left(B^{a}\right) \subseteq B$ giving $a \in B$, a contradiction. Thus $O(N)=1$. If $D^{*}=O_{2}(N)$, then $N \subseteq N_{G}\left(D^{*}\right)$ and it is clear that $C_{G}\left(D^{*}\right) \subseteq D^{*}$. In particular, if T_{1}, T_{2} are S_{2}-subgroups of G containing D^{*}, then T_{1} and T_{2} do not lie in the same conjugate of B.

Now if K is a Hall 2^{\prime}-subgroup of $O_{2,2^{\prime}}(N), K \subseteq O(B)$, then $L \subseteq C_{N}(K) \subseteq O_{2,2^{\prime}}(N)$ where $L=O_{2}(B) \cap N$ i.e. $L \subseteq D^{*}$.

If $D \triangleleft F(B)$, the lemma follows from lemma 3. Hence an S_{2}-subgroup of G is nonabelian. Now if D^{*} lies in a unique S_{2}-subgroup of G, T say, then $\left\langle O(B), O\left(B^{a}\right)\right\rangle \subseteq$ $\subseteq N_{G}(T) \subseteq N_{G}\left(T^{\prime}\right)=B^{e}$, for some $e \in A$. Again we have $a \in B$, a contradiction.

Thus $D^{*} \subseteq T_{1} \cap T_{2}$ where T_{1}, T_{2} are S_{2}-subgroups of G lying in distinct conjugates B_{1}, B_{2} of B. Since $\left[T_{1}: O_{2}\left(B_{1}\right)\right]=2$, we have $\left[T_{1} \cap T_{2}: O_{2}\left(B_{1}\right) \cap O_{2}\left(B_{2}\right)\right] \leqslant 4$ i.e. $\left[D^{*}: D\right] \leqslant 4$ and so $\left[D^{*}: L\right] \leqslant 2$. Since $O(B)$ centralises L and normalises D^{*}, it follows that $O(B)$ centralises D^{*} contrary to $C_{G}\left(D^{*}\right) \subseteq D^{*}$.

Lemma 5. If $1 \neq H \subseteq O(B)$, then $N_{G}(H)$ is a $\pi(B)$-group.
Proof. Deny. Since $O(B)$ is nilpotent, we may assume H is a p-subgroup of P, where $P \in \operatorname{Syl}_{p}(B)$. Choose an H of maximal order such that $A \cap N_{G}(H)$ contains a nontrivial S_{r}-subgroup R of $N_{G}(H)$. Then $\left\langle R, O_{2}(B)\right\rangle \subseteq N, N=N_{G}(H)$. Since $N_{G}\left\langle R, O_{2}(B)\right\rangle$ is soluble, $K=D S$ is a Hall $\{2, r\}$-subgroup of $N_{G}\left\langle R, O_{2}(B)\right\rangle, S \supseteq O_{2}(B)$. If $O_{r}(K) \neq 1$, then $N_{G}\left(O_{r}(K)\right) \supseteq\left\langle A, O_{2}(B)\right\rangle$ contrary to the simplicity of G. Thus $O_{r}(K)=1 \neq O_{2}(K)$. If $O_{2}(K) \subseteq O_{2}(B)$ then $N_{G}\left(O_{2}(K)\right) \supseteq\langle D, O(B)\rangle=G$ by lemma 3, another contradiction.
 $\left[O_{2}(K): O_{2}(K) \cap O_{2}\left(B^{x}\right)\right]=2$ for all $x \in D$. By lemma $4,\left|O_{2}(K)\right| \leqslant 4$. Since $C_{K}\left(O_{2}(K)\right) \subseteq$ $\subseteq O_{2}(K),\left|O_{2}(K)\right|=4$ and $|S| \leqslant 8$ is dihedral. Thus G has a unique class of involutions ([3, p. 262]) and hence $N_{G}(D)$ has odd order (otherwise $N_{G}(D) \supseteq\langle A, u\rangle$ where u is a central involution in B). It follows from a theorem by Burnside ([4, p. 137]) that $S \triangleleft K$. If $|S|=8$, then Aut (S) is a 2-group and so $K=S X D$ contrary to $N_{G}(D)$ has odd order. Thus $|S|=4$ and since $O_{r}(K)=1,|D|=3=|R|$ and $N=N_{G}(H)$ has a normal Hall subgroup of index 3. By the Frattini argument, a conjugate of R in N normalises P^{*}, where P^{*} is an $S_{P^{-}}$ subgroup of N containing $N_{P}(H)$. Maximality of H now forces $H=P$ giving $R \subseteq N_{G}(P)=$ $=B$, a contradiction.

Lemma 6. $O(B)$ is a T.I. subgroup.
Proof. Deny. If $O(B)=P$ is an S_{p}-subgroup of G, then choose $g \in G-B$ such that $D=P \cap P^{g}$ has maximal order. Hence $R=N_{P}(D), U=N_{P^{g}}(D)$ are $S_{P^{\prime}}$-subgroups of $N_{G}(D)$. By lemma 5, $\left[N_{G}(D): O_{2}(B) R\right] \leqslant 2$. Since $O_{2}(B) R=O_{2}(B) X R, R=U$, a contradiction.

We may assume $\pi(O(B)) \supseteq\{p, q\}, p \neq q$. We first assert that if $\pi(K \cap Z(O(B)))=\pi_{0}$ for any subgroup K of G, then $K \cap O(B)$ contains a Hall π_{0}-subgroup of K. For if Q_{0} is a q-subgroup of G such that $Q_{0} \cap Z(Q) \neq 1, Q \in \operatorname{Syl}_{q}(B)$, then by lemma 3, $C_{G}\langle t\rangle \subseteq B$ where $t \in Q_{0}^{\#} \cap Z(Q)$. If P is an $S_{p^{\prime}}$-subgroup of B, P^{*} an S_{p}-subgroup of G centralised by Q_{0}, then $P, P^{*} \subseteq B$ and so $P=P^{*}$. Now $Q_{0} \subseteq N_{G}(P)=B$. The assertion follows.

Now assume $|\pi(B)| \geqslant 3$ and let $1 \neq D=O(B) \cap O\left(B^{g}\right)$ be of maximal order, $g \in G-B$. Then $Z(O(B)), O_{2}(B) \subseteq N_{G}(D)$ and so by lemma 5 and the assertion above $\left[N_{G}(D): B \cap N_{G}(D)\right] \leqslant 2$. Thus $O\left(N_{G}(D)\right)=O(B) \cap N_{G}(D)=O\left(B^{8}\right) \cap N_{G}(D)=D$, a contradiction.

Lemma 7. G does not exist.
Proof. Let $|A|=a,|F(B)|=b$ and $|N|=a r$ where $N=N_{G}(A)$. Let $U_{1}=G-B$, $U_{2}=G-N$ and $U_{3}=A^{x} N, A^{x} \neq A$. By lemmas 2,4 and 6 , both $F(B)$ and A are T.I. subgroups of G. Hence, on considering the double coset decomposition of G one time by $F(B)$ and $F(B)$ and another time by A and A we get: $\left|U_{1}\right|=k b^{2},\left|U_{2}\right|=l a^{2}, k, l \geqslant 1$. Further, $\left|U_{3}\right|=a^{2} r$.

If $a>b$, then $\left|U_{2}\right|<|G|$ implies $l a^{2}<2 a b<2 a^{2}$ i.e. $l=1$. Thus $|G|=2 a b=a(r+a)<$ $<a(a r)=\left|U_{3}\right|$, a contradiction.

If $b>a$, then $\left|U_{1}\right|<|G|$ gives $k=1$ and $|G|=2 a b=2 b+b^{2}$ i.e. $b=2(a-1)$. Also $\left|U_{3}\right|<|G|$ implies $r a<2 b<4 a$ and so $r \leqslant 3$. Similarly $\left|U_{2}\right|<|G|$ gives $l \leqslant 3$. We conclude: $2 a b=4 a(a-1)=|N|+\left|U_{2}\right|=r a+l a^{2} \leqslant 3 a(a+1)$ giving $a \leqslant 7$ i.e. A is primary, contrary to lemma 1 .

The author started writing this paper during a visit to Italy (July, 1987) as associate of the International Centre for Theoretical Physics, Trieste.

References

[1] J. G. Carr, A solubility criterion for factorised groups. Arch. Math., 27, 1976, 225-231.
[2] D. Gorenstein - J. H. W Alter, The characterisation of finite groups with dibedral Sylow 2-subgroups I, II, III. J. Algebra, 2, 1965, 85-151, 218-270, 334-393.
[3] D. Gorenstein, Finite Groups. New York 1968.
[4] W. R. Scott, Group theory. Englewood Cliffs 1964.

