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Analisi matematica. — Multivalued non-positone problems. Nota di DAVID ARCOYA 

e MARCO CALAHORRANO, presentata (*) dal Corrisp. A. AMBROSETTI. 

ABSTRACT. — In this note, the existence of non-negative solutions for some multivalued non-positone 
elliptic problems is studied. 

KEY WORDS: Elliptic multivalued problem; Discontinuous nonlinearities; Sub-linear and superlinear. 

RIASSUNTO. — Problemi di tipo «non-positone» a multivalori. In questa nota si studia la esistenza di 
soluzioni non negative di certi problemi a multivalori ellittici non lineari. 

0. INTRODUCTION 

In this paper, we will consider the boundary value problem, 

(0.1) -Au=f(u) in Q, u = 0 on SQ 

where Q is a bounded domain in RN and/: [0, + oo)—> R is a C^function with/(0) < 0 
(non-positone). 

Recently, Brown et al. [4] have proved a result of non-existence of non-negative 
radial solutions of (0.1), when Q is a ball and / i s a superlinear and increasing function. 
In concrete, it is proved there that, if / = Xg with X e R, then there exists A0> 0 such 
that (0.1) has no such solutions for all X^X0. For existence of at least one positive 
solution for X sufficiently small, see [5]. 

Motivated by this result, we will study here the existence of non-negative solutions 
of the multivalued problem 

(0.2) -Au(x)ef(u(x)) a.e. Qy u = 0 on dû , u^0 in Q 

where / is the multivalued function defined by 

7 , , f [ / (0) ,0] , • if / = 0; 
/ M = | /M, i f />o. 

In contrast with [4], we will prove the existence of i) one non-zero C ̂ solution of 
(0.2) i f / i s superlinear (with no further restrictions); ii) two non-zero and distinct 
solutions of (0.2) if / is asymptotically linear (not at resonance) verifying some 
additional condition. 

There have been some works on elliptic problems with discontinuous nonlinearities 
where a suitable direct variational approach is used ([1], [6] and [10]). However, here 
we find more convenient (at least, in the superlinear case) to work on the 
approximating problems 

(0.3) -Au=fn(u) in Qy u = 0 on 3D 

(*) Nella seduta del 9 dicembre 1989. 
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where fn is a sequence of functions which «converges» in some sense to/and/„(0) = 0. 
A convenient choice of f„ permits us to prove the existence of solutions of (0.3), which 
are necessarily positive. A simple limiting procedure allows us to obtain solutions 
of (0.2). 

1. T H E SUB-LINEAR CASE 

Let Q be a bounded domain in RN with smooth boundary and/: [0, + °°)—» R be a 
C^function with /(0) < 0. To study the problem (0.2) we consider the existence of 
non-zero solutions of the boundary value problem, 

(1.1) — Au{x) ef(u(x)) a.e. xeQ, u = 0 on dû, 

where / is the multivalued function defined by: 

' 0 , if / < 0 ; 
/(/) = J [/(0),0], if t = 0; 

fit), tf'>o. 

By a solution of (1.1) we mean a function u e Cl{Q) n C2(Q*) with Q* = {x e Q/u(x) ¥= 
^ 0 } and verifying (1.1). (Observe that Au{x) is well-defined in Q*v{Q-Q*)). 

Notice that all solutions u of (1.1) are non-negative by the maximum principle; so 
they are solutions of (0.2). However, in contrast with [2] (where the case/(0) ^ 0 is 
studied) we cannot deduce that u>0 in Q. 

In this section we will assume: 

(/i) /(0) < 0 and there exists 6 > 0 such that /(0) = 0, with / increasing in [0,0]. 

ifi) f(s) ^ a s + /3, with /3eR, 0 ^ a < A 1 ? where Ai denotes the first eigenvalue of 
— A on Q with zero Dirichlet boundary conditions. 

We will take a positive eigenfunction $x associated to Ai such that: ||$I||L2(D) = 1. 
Let <r = |M» |M|1/2. (We denote \Q\=mzzsQ). 

(/3) There exists s0, siy y e R such that 

i) 6 < So < Ver, r > [Ai J?-2/ (0) 6 a2](s\- s2
0 <J2rl = f; 

ii) f(s) S 0 V J é ( 8 , j0) and f(s) ^ r j V j e (s0 ,st). 

REMARKS 1.1. a) A sufficient condition to assumption i) of ( / ) is 

i') 6 < s0 < (s\ - 1)1/2 a"1, r > Ai JÎ - 2/(0) OCT2 . 

b) Notice that y*>Xlt hence the meaning of ( / ) is, roughly, that/(5) » Ajs on a 
suitable interval (.fo,-?i)-

To study (1.1) we consider the sequence of problems: 

(1.2) - Au =/„(«) in Û, « = 0 on 8Q 

where / „ : R - » R is of class C1 and verifies / , ( / )=/( / ) V / > l / « , /,(/) = 0 V /<0 , 
/„(/) &/(/) W € (0, l/«], for all « e N. 
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Changing /3, if it is necessary, we can suppose the next uniform estimate for all/„: 

(1.3) f„(s)^as + P; V J - ^ 0 and 0</3. 

PROPOSITION 1.2. Let us assume (/i_3). For all n e N the problem (1.2) Zw *tf / ^ ^ 
two nontrivial classical solutions un =£ ^ verifying-. 

i) «,(*), i>*(x)>0, VxeQ. ii) ||tf„||«,,|W|«>0. 

PROOF. Let £ : = HJ(Û) be the usual Sobolev space, I with \\u\% = J \Vu(x)\2dx . 
We define the CJunctionals In:E—>R by setting: \ Q / 

L(u) = ~ J IV^|2 dx - J F„(«) i x , Vz/eE, 

where Fn(t) = J /w(j) à . 

It is well-known that the critical points of In are classical solutions of (1.2) and that 
(1.3) implies that I„ is coercive and verifies the Palais-Smale condition [3]. Because of 
this, ln attains its infimum on a function un. Moreover, since/^(0) = 0, ln has a local 
minimum at 0. 

On the other hand, let 0 = Ji&dlftll»)-1. 
By (/3), 

1) Uh(a)>e\Q\1/2; 

2) 0<s0<\\4L2{û)\û\-1/2 and 

r> *! | 4>2(x) dx - 2/(0) 0\Q\ j j f(x) dx - 4\Q\ 

3) f(s) ^ O f t e (0, ll^ll.) and f(s) &rsVse fo>, \ 

By 3), 

(1.4) F,(J) > / / ( / ) i f + | ( 5 2 - 5 § ) , V5 6(^o,| 

Let Q' = {xeQ/$(x)5zs0}. Notice that Q'J=0, otherwise, $(x)<s0 V x e û implies 
l|^lli2(o)<^ol^|1/2. in contradiction with 1). 

By (1.4), we have: 

Moreover, 

\ FM*)) tx^W W ~ *°)dx + ( / /M A\Q'\-

\ F„($(x))dx^ \ I j f(t)dt\dx»lj f(t)dt\\0 - Q'\. 
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Hence, 

<p2(x)dx— I F„(j>{x))dx-

^ \ $\x)dx-^ \ mx)- sîùdx-[\ f{t)dt\\Q\^ 
Q Q' \0 J 

*S M f(x) dx-J-\ (f(x) -s2
0)dx-lj fit) dt\ \Q\ = S0 • 

Q Q \0 J 

By 2), it follows that In($) ^S0<0. So, all hypotheses of Mountain Pass Theorem [3], 
are verified and In has another critical point vn. In addition, there results 

(1.5) In(un)^S0<0<In(vn) 

which implies that un=hvn, are non zero solutions of (1.2). Finally, simple applications 
of minimum and maximum principles imply i) and ii). • 

In order to obtain solutions of (1.1), we need the next lemma: 

LEMMA 1.3. Under the hypotheses (/1-3), the sequences {un}} {vn} have subsequences 
{un^> {vn} ^ch that {un}^>u0, {vnk}^v0 in.C1+v(Q), with 0 < v < l . 

PROOF. By (1.3), we obtain an a priori estimate ||^J|E,||^J|£^^|^|1/2[(1 — a/A^Aj - 1 ; 
V/2 e N, and using usual bootstrap arguments we obtain converging subsequences of 
{«.}, {«/„} in 0+\Q) M. 

From now on, we denote {unk} = {un} and {v„k} = {vn}. 

THEOREM 1.4. Let us assume (/1-3). There exist at least two distinct, non-negative and 
non-zero solutions of (1.1). 

PROOF. Let u0, v0 be given by Lemma 1.3. Clearly, u0, v0 are non-negative and non­
zero by Proposition 1.2-ii) and Lemma 1.3. 

Notice that lim F„(t) = F(t) W e R, where 

F(t) = 

0, i f / < 0 ; 
t 

jf(s)ds, if t^O. 

So, by Lemma 1.3 and the Lebesgue's dominated convergence theorem: 

lim \Vun(x)\2dx = \Vu0(x)\2dx 
, Q Q 

and 
lim F„(u„(x)) dx = \F(u0(x))dx. 

Û Q 

Then lim In(u„) = I(u0), where 
n—»°° 

I (« ) :=- j J |V«(x)|2<k- JF(uix))dx. 
2a 
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Similar arguments prove lim I„(v„) = I(v0). Hence, by (1.5) I(u0) ^S0<0^I(v0) and 
u0¥^v0. 

In order to prove that u0, v0 are solutions of (1.1), we observe that 

lim f„(x„) =f(x) if lim xn = x > 0. 

Then, if £ * = {x e û/«o(x) * 0}, 

lim /„(»„(*)) = / K M ) Vx e Û*. 

So that, for all « € C"(D*), the equalities 

J Vun{x) Vu(x) dx + fn{un{x)) u(x) dx = Q 

Q* O* 

and Lemma 1.3 imply 

V&o(;c) V#(x) Jx + J f(u0(x)) u{x) dx = 0. 
Û* Q* 

In particular, u0eC2(Q*) and — Au0(x)=f(u(x))y in £2*. 
Finally, by a Morrey-Stampacchia theorem (see [9, Theorem 3.2.2, p. 69]), we have 

also — Au0(x) = Q a.e. Q — Q*, and so u0 is a solution of (1.1). 
The same ideas show v0 is another solution of (1.1). • 

REMARK 1.5. Observe that our technique can be combined with some symmetry 
properties of the domain. More precisely, if Q is symmetric in the sense of Steiner [8] 
(i.e. Q is simmetrie with respect to a plane, for instance Xi = 0, and convex in the 
variable Xi), we deduce [7] that uny vn are symmetric (in the sense of Steiner). Hence, 
their limits u0y v0 (which are solutions of (1.1) as it has been proved) are symmetric also. 

2. THE SUPERLINEAR CASE 

Our method for study (1.1) can be useful to prove existence of solutions for other 
hypotheses on /. For instance, the superlinear case. We assume: 

(/4) There exist aly a2^0 such that 

U+a2\s\\ i f N > 2 , 
U ' [ ^ e x p ( ^ ) ) , with £ M J T 2 ^ 0 ( M ^ O O ) , î f N = 2 , 

where 0 ^ < (N + 2) (N-2) _ 1 . 

(/5) There exist p>2 and r ^ O such that 0<PF(s)^sf(s) Vs^r. 

THEOREM 2.1. Let us assume (/i), (/4-5). Then, the problem (1.1) has at least one non-
negative and nonzero solution. 

PROOF. Let/„, F„, F, In and I be functions like in section 1. Since by (/4) (see [3]) 

lim I{tex) = - oo 
/-» + » 

we deduce that there exists t0 > 0 such that I„(t0 <£i) ^ I(t0 &) < 0 for all n e N. 
Moreover, fn satisfies (/5) and f'n(0) = 0. Then I„ verifies all hypotheses of the 
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Mountain Pass Theorem [3] with ~e = t0<pi (independently of n e N). Consequently, it 
has a critical point un such that 

0<I„(z/J ^ max In(te)^ max l(te)= M, un>0 in Q, | k J L > 0 , 
*e[0,l] ^e[0,l] 

for all n e N. 
In order to prove an a priori estimate of u„9 observe that 

AM «» 
• F»(«») dx. M ^ ln(Un) = Uun) ~ -I'n{un) Un=(~- ^) ||«„|j| + f 

p \2
 P) à 

Since /„ ^ / and \F„(u) - F(u)\ ^ - / ( 0 ) « Vu^O, we deduce 

\ P ) Q \_ P J û 

By (/5), it follows Af> (1/2 - l /p) |K| | | - £||#„||E - ^ where ^ , c > 0 , and hence {un} is 

bounded in E. 

Then a limiting procedure and similar arguments to those of Theorem 1.4 conclude 

the proof. • 

REMARKS 2.2. a) Notice that from the results of [5] if, in addition to (/i), (/4-5), we 

assume that / is non-increasing, we can consider a «small» ball B c Q and a positive 

solution u of —Au=f(u) in B, u = Q on dQ. 

Hence, the extension zero in Q — B yields a weak solution u of — Au ef(u) a.e. in 

Q, u = 0 on dû. 
We remark that this procedure gives us solutions which may be not of class C1 (see 

[5, Theorem 1.1]). 

b) Observe also that in the case that Q = B(r) is the ball of radius r centered at 
x = 0 and under the conditions of a), we know by [4] that there exists r* > 0 such that 
the problem —Au =f{u) in B{r), u = 0 on SB(r) has no radial nonnegative solutions for 
r>r*. 

On the other side, we have obtained, see Theorem 2.1 and Remark 1.5, the 
existence of one C^radial non-negative solution of the multivalued problem (1.1), for 
all r > 0 . This proves the existence of an r0 and a positive radial solution u of 
— Au=f(u) in B(r0), u = 0 on dB(r0) such that u'(r0) = 0 (we denote u(s) = 
= u(\x\)y xeB(r)). This kind of solutions differ from those of[5] where u'(r0)<0. 
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