ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti Lincei Matematica e Applicazioni

STEWART E. STONEHEWER, GIOVANNI ZACHER

Dual-standard subgroups in nonperiodic locally soluble groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.2, p. 101–104. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1990_9_1_2_101_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Teoria dei gruppi. — *Dual-standard subgroups in non-periodic locally soluble groups*. Nota di Stewart E. Stonehewer e Giovanni Zacher, presentata (*) dal Corrisp. G. Zacher.

ABSTRACT. — Let G be a non-periodic locally solvable group. A characterization is given of the subgroups D of G for which the map $X \to X \cap D$, for all $X \leq G$, defines a lattice-endomorphism.

KEY WORDS: Group; Lattice; Lattice-endomorphism.

RIASSUNTO. — Sottogruppi dual-standard nei gruppi non periodici localmente risolubili. Sia G un gruppo non periodico localmente risolubile. Vengono caratterizzati i sottogruppi D di G per cui la posizione $X \rightarrow X \cap D$, per tutti gli $X \leq G$, definisce un endomorfismo reticolare.

In a given group G, a subgroup is called *dual standard* $(D \leq G)$ if, for all subgroups X of G, the map $X \to X \cap D$ is a lattice endomorphism of G. Ivanov [2] has shown that a torsion-free locally soluble group G contains a proper non-trivial dual-standard subgroup if and only if G is locally cyclic and non-trivial. Our aim here is to characterize, more generally, the dual-standard subgroups in non-periodic locally soluble groups. For a description of dual-standard subgroups in locally finite groups we refer to [1] and [5].

We begin by recalling from [5] a routine result which is often useful for reducing arguments to finitely generated situations.

LEMMA 1. Let G be a group, \mathcal{L} a local system of subgroups of G and $D \leq G$. Then $D \leq G$ if and only if $D \cap L \leq L$ for each L in \mathcal{L} .

A characterization of dual-standard subgroups in finite groups has been given by Zappa [7]; since the result plays a crucial role in our investigation and also for the convenience of the reader, we recall it here. We denote by $\pi(G)$ the set of primes which divide the order of a finite group G. Then we have

THEOREM (Zappa). Let G be a finite group and $D \leq G$. If $D \leq G$ then $D \triangleleft G$ and there are Hall subgroups M, H, L of G with H nilpotent, $G = (M \times L) \rtimes H$, $L \leq D \leq HL$ and $\pi(HL/D) = \pi(D/L)$. Also the Sylow subgroups of H are cyclic or generalized quaternion (in which case $|H \cap D|$ is twice an odd number). Moreover, if Q is any Sylow subgroup of H, then

i) $\langle l \rangle^{Q} = \langle l \rangle^{Q \cap D}$ for all $l \in L$; and ii) $\mathcal{C}_{L}(Q) = \mathcal{C}_{L}(Q \cap D)$.

Conversely if $D \triangleleft G$ and there exist Hall subgroups M, H, L of G satisfying all the above conditions, then $D \leq G$.

(*) Nella seduta del 9 dicembre 1989.

A proof of this theorem may also be found in [6, pp. 75-78]; it will be convenient in what follows to refer to it as Zappa's structure theorem, in particular to (i) and (ii) as Zappa's conditions.

LEMMA 2. Let G be a finite group with $D \triangleleft G$ and G/D cyclic. Let $Z_1 \leq D$ with Z_1 contained in the centre Z(G) of G, $\pi(G/D) \subseteq \pi(D/Z_1)$ and, for $q \in \pi(G/D) \cap \pi(Z_1)$ let a Sylow q-subgroup of G be cyclic. Then $D/Z_1 \leq G/Z_1$ implies $D \leq G$.

PROOF. By Lemma 2 in [5], we may assume that $|G:D| = q^{\alpha}$ (q prime) and, by induction on $|Z_1|$, Z_1 to be of prime order. From our assumptions it follows that the Zappa structure of G/Z_1 will be $G/Z_1 = (S_q Z_1/Z_1) \times (L/Z_1)$, where S_q is a Sylow q-subgroup of G.

Case 1. $|Z_1| = q$. Then we have $G = S_q L_1$, where S_q is cyclic, $L = L_1 \times Z_1$ and $Z_1 \leq S_q$. Let $T_1 \leq L_1$ such that $[T_1, S_q \cap D] \leq T_1$. Then, with $T = Z_1 \times T_1$, $[T, S_q \cap D] \leq T$ and hence $[T, S_q] \leq T$. Therefore $[T_1, S_q] \leq T_1$ and Zappa's condition (i) holds. Now let $[T_1, S_q \cap D] = 1$ for some $T_1 \leq L_1$. Then $[T_1 \times Z_1, S_q \cap D] = 1$ and since S_q normalizes T_1 by (i), $[T_1 \times Z_1, S_q] \leq Z_1 \cap T_1 = 1$ and (ii) holds.

Case 2. $|Z_1| = p \neq q$. This time $S_q \cap Z_1 = 1$ and $G = S_q L$. Let $T \leq L$ and $[T, S_q \cap D] = 1$. Then $[T, S_q] \leq Z_1$, hence $1 = [T, S_q, S_q] = [T, S_q]$ since q does not divide |T|, and (ii) holds. Thus it remains to show that condition (i) holds.

By the Frattini argument it sufficies to show that any *r*-subgroup *T* of *L* (*r* prime), which is normalized by $S_q \cap D$, is also normalized by S_q . If $r \neq p$, then $[S_q, T \times Z_1] \leq \leq T \times Z_1$ implies $[S_q, T] \leq T$. If r = p, then we may assume that $Z_1 \leq T$. Let $T_1 = Z_1 \times T$. Thus T_1 is normalized by S_q . Let

$$U=\bigcap_{x\,\epsilon\,S_q}\,T^x\,.$$

Then $U \triangleleft S_q T_1$ and so, factoring by U, we may assume that U = 1 and T is elementary abelian. Now $[S_q \cap D, T_1] \leq T^x$ for all $x \in S_q$. Hence $[S_q \cap D, T_1] = 1$ and so $[S_q, T_1] = 1$, by (ii). Thus $[S_q, T] = 1$ and so S_q normalizes T and condition (i) holds.

Therefore in both cases Zappa's theorem gives $D \leq G$ as required. \Box

We recall that if $D \leq G$, then $D \triangleleft G$, [6, III Theorem 1] and G/D is periodic if $D \neq 1$ [6, III Theorem 5].

PROPOSITION. Let G be a non-periodic group and $D \neq 1$ be a dual-standard subgroup of G. Suppose that the periodic elements of G form a subgroup P(G). Then $P(G) \leq D$. If in addition G is locally residually finite, then the elements of G/D have orders coprime to those of P(G).

PROOF. Suppose, for a contradiction, that there is an element g of finite order not contained in D. Let u be an element of infinite order in D and $G_1 = \langle g, u \rangle$. Then $D_1 = G_1 \cap D$ is a dual-standard subgroup of G_1 and $|G_1:D_1|$ is finite. Let $K = P(G_1) \cap D_1$. By applying [3, Theorem 3.7] to $D_1/K \leq G_1/K$ we conclude that $g \in D_1$, a contradiction.

Now suppose that G is locally residually finite. To establish the coprimeness property, we may assume that |G:D| = p (prime). Suppose, again for a contradiction, that G has an element b of order p. Then $b \in D$. Also $G = \langle a, D \rangle$ for some element a of infinite order. Thus $G_2 = \langle a, b \rangle$ is non-periodic and $D_2 = G_2 \cap D \leq G_2$.

By hypothesis there is a subgroup $X \triangleleft G_2$ with $|G_2:X|$ finite and $b \notin X$. Then $P(G_2) \cap X \triangleleft G_2$ and without loss of generality we may assume that $P(G_2) \cap X = 1$.

Let $1 \neq Z_1 \leq \langle a \rangle \cap Z(G_2) \cap D_2$ and $Z_2 = Z_1^p$. Then $D_2/Z_2 \leq G_2/Z_2$ and, by Zappa's structure theorem, the Sylow *p*-subgroup of G_2/Z_2 is cyclic. But $Z_1P(G_2)/Z_2$ contains a non-cyclic elementary abelian *p*-subgroup, a contradiction.

Now we can prove our main result.

THEOREM. Let G be a non-periodic locally soluble group and D be a non-trivial proper subgroup of G. Then D is a dual standard subgroup of G if and only if the following conditions are satisfied:

(a) $D \triangleleft G$ and G/D is periodic;

(b) the periodic elements of G form a subgroup B contained in D and G/B is locally cyclic;

- (c) the elements of G/D have orders coprime to those of B;
- (d) for all $b \in B$ and $g \in G$
 - (i) $\langle b \rangle^{\langle g \rangle} = \langle b \rangle^{\langle g \rangle \cap D}$ and (ii) $[b, \langle g \rangle] = 1$ if $[b, \langle g \rangle \cap D] = 1$.

PROOF. Suppose first that $D \leq G$. As we have already pointed out, (a) holds for arbitrary groups G. In order to prove (b)-(d) we may assume that G is finitely generated, hence soluble. Then (b) follows from [3, Theorem 3.7]. Also (d) is a special case of [4, Theorem 5]. It remains to prove (c). By [4, Theorem 4], B is finite, so G is residually finite. Thus (c) follows from the Proposition above.

Conversely, suppose that (a)-(d) hold. By Lemma 1, we may assume that G is finitely generated and therefore soluble. Thus $G = \langle g, B \rangle$ for some element g of infinite order. Let |G:D| = m. Then, by (d) (i), for each $b \in B$, $\langle b \rangle^{\langle g \rangle} = \langle b \rangle^{\langle g^m \rangle}$. Therefore, as in the proof of [4, Theorem 4], we see that B is finite. Thus $D \cap Z(G) \cap \langle g \rangle \neq 1$. Let $1 \neq z \in D \cap Z(G) \cap \langle g \rangle$. By choosing z appropriately we may assume that $\pi(G/D) \subseteq \subseteq \pi(D/\langle z \rangle)$. Then using (d) (i) and (ii), it follows from [4, Theorem 7], that $D/\langle z \rangle \leq_{ds} G/\langle z \rangle$.

Note that, by Lemma 2, we may replace $\langle z \rangle$ by any smaller subgroup $\neq 1$. To show that $D \underset{d.s.}{\leq} G$, let $U, V \leq G$. If U and V have finite index in G, then we can choose $z \in U \cap V$. Hence $\langle U, V \rangle \cap D = \langle U \cap D, V \cap D \rangle$.

It remains to consider the case where U (say) is infinite and V is finite. Thus $V \leq B$ and $U = \langle g^n b \rangle (U \cap B)$ for some $b \in B$ and $n \geq 1$. We claim that $\langle U, V \rangle \cap D =$ $= \langle U \cap D, V \rangle$. For $\langle U, V \rangle = \langle g^n b, U \cap B, V \rangle, U \cap D = (\langle g^n b \rangle \cap D) (U \cap B)$; and by (d) (i) we have $\langle U \cap B, V \rangle^{\langle g^n b \rangle} = \langle U \cap B, V \rangle^{\langle g^n b \rangle \cap D}$. But then $\langle U, V \rangle \cap D = (\langle U \cap B, V \rangle^{\langle g^n b \rangle} \cap D) = \langle U \cap B, V \rangle^{\langle g^n b \rangle} \cap D = \langle U \cap B, V \rangle^{\langle g^n b \rangle} \cap D = \langle U \cap B, V, \langle g^n b \rangle \cap D \rangle =$ $= \langle U \cap D, V \rangle$ as claimed. Therefore $D \leq G$. \Box REMARK. As a consequence of the main result in [5], we show that the group [G, B] is actually a direct product of its Sylow subgroups. In fact, assuming w.l.o.g., that *G* is finitely generated, we have $G = \langle gb, B \rangle$ with $b \in B$ and *B* a finite group, whose order is relatively prime to [G:D]. Let $T = C(B) \cap \langle gb \rangle \cap D$; *T* is normal in *G* and *G*/*T* is a finite group with D/T non-trivial dual-standard subgroup of G/T. By Zappa's structure theorem, we have $T \leq BT \leq L \leq D$ and since by [5], [gb, L] T/T must be nilpotent, such is [gb, B], hence also [G, B]. \Box

This paper is dedicated to the memory of Gaetano Scorza on the 50th anniversary of his death.

References

- [1] S. G. IVANOV, L-homomorphisms of locally solvable torsion-free groups. Mat. Zametki, 37, 1985, 627-635.
- [2] S. G. IVANOV, Standard and dually standard elements of the subgroup lattice of a group. Algebra i Logika, 8, 1969, 440-446.
- [3] S. E. STONEHEWER G. ZACHER, Lattice homomorphisms of non-periodic groups. J. Algebra, to appear.
- [4] S. E. STONEHEWER G. ZACHER, Lattice homomorphisms of groups and dual standard subgroups. Springer Lecture Notes in Mathematics, to appear.
- [5] S. E. STONEHEWER G. ZACHER, Dual-standard subgroups of finite and locally finite groups, to appear.
- [6] M. SUZUKI, Structure of a group and the structure of its lattice of subgroups. Springer Verlag, 1967.
- [7] G. ZAPPA, Sulla condizione perché un emitropismo inferiore tipico tra due gruppi sia un omotropismo. Giornale di Mat. Battaglini, 80, 1951, 80-101.

S. E. Stonehewer: Mathematics Institute - University of Warwick COVENTRY CV4 7AL (Gran Bretagna)

G. Zacher: Seminario Matematico - Università degli Studi di Padova Via Belzoni, 7 - 35131 Padova