Rendiconti Lincei

 Matematica E ApplicazioniAndrea D'Agnolo, Giuseppe Zampieri

A propagation theorem for a class of microfunctions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 1 (1990), n.1, p. 53-58.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_1990_9_1_1_53_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 1990.

Equazioni a derivate parziali. - A propagation theorem for a class of microfunctions. Nota di Andrea D'Agnolo e Giuseppe Zampieri, presentata (*) dal Socio G. Scorza Dragoni.

Abstract. - Let A be a closed set of $M \simeq \mathrm{R}^{n}$, whose conormal cones $x+\gamma_{\dot{x}}^{*}(A), x \in A$, have locally empty intersection. We first show in $\$ 1$ that dist $(x, A), x \in M \backslash A$ is a C^{1} function. We then represent the microfunctions of $\mathcal{C}_{A \mid X}, X \simeq C^{n}$, using cohomology groups of \mathcal{O}_{X} of degree 1 . By the results of $\$ 1-3$, we are able to prove in $\S 4$ that the sections of $\mathcal{C}_{A| || |^{-1}\left(x_{0}\right)}, x_{0} \in \partial A$, satisfy the principle of the analytic continuation in the complex integral manifolds of $\left\{H\left(\phi_{i}^{C}\right)\right\}_{i=1, \ldots, m},\left\{\phi_{i}\right\}$ being a base for the linear hull of $\gamma_{\chi_{0}}^{*}(A)$ in $T_{x_{0}}^{*} M$; in particular we get $\left.\Gamma_{A \times_{M} T_{M} X}\left(\mathcal{C}_{A \mid X}\right)\right|_{\partial A \times_{M} i_{M}^{M} X}=0$. When A is a half space with C^{ω}-boundary, all of the above
 $p \in \dot{\pi}^{-1}\left(x_{0}\right)$, when at least one conormal $\theta \in \dot{\gamma}_{x_{0}}^{*}(A)$ is non-characteristic for \mathfrak{N}.

Key words: Partial differential equations on manifolds; Boundary value problems; Theory of functions.
Riassunto. - Un teorema di propagazione per una classe di microfunzioni. Sia A un insieme chiuso di $M \simeq \mathrm{R}^{n}$, i cui coni conormali $x+\gamma_{\dot{x}}^{*}(A), x \in A$, hanno localmente intersezione vuota. Si prova nel $\$ 1$ che $\operatorname{dist}(x, A), x \in M \backslash A$ è una funzione C^{1}. Si rappresentano poi le microfunzioni di $\mathcal{C}_{A \mid X}\left(X \simeq C^{n}\right)$, mediante gruppi di coomologia di \mathcal{O}_{X} in grado 1 . Se ne deduce nel $\$ 4$ un principio di prolungamento analitico per sezioni di $\mathfrak{C}_{A|X|{ }_{-}^{-1}\left(x_{0}\right)}, x_{0} \in \partial A$ che generalizza alcuni risultati di Kataoka. Se ne dà infine applicazione ai problemi ai limiti.
$\$ 1\left({ }^{1}\right)$. Let X be a C^{∞} manifold, A a closed set of X. We denote by $\gamma(A) \subset T X$ the set

$$
\gamma_{x}(A)=C(A,\{x\}), \quad x \in X
$$

where $C(A,\{x\})$ is the normal cone to A along $\{x\}$ in the sense of [4]; we also denote by $\gamma^{*}(A)$ the polar cone to $\gamma(A)$. We assume that in some coordinates in a neighborhood of a point $x_{0} \in \partial A$:
(i) $\left(x-\gamma_{x}^{*}(A)\right) \cap\left(y-\gamma_{\dot{y}}^{*}(A)\right) \cap S=\emptyset \quad \forall x \neq y \in \partial A \cap S$,
(ii) $x \mapsto \gamma_{x}^{*}(A)$ is upper semicontinuous.

Remark 1.1.
(a) If A is convex in $X \cong \mathbb{R}^{n}$ then (1.1) holds. Moreover in this case $\gamma(A)=\overline{N(A)}$ where $N(A)$ is the normal cone to A in the linear hull of A.
(b) All sets A with C^{2}-boundary satisfy (1.1).
(c) The set $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq-\sqrt{\left|x_{2}\right|}\right\}$ verifies (1.1). (Here $\gamma \ddot{\hat{o}}(A)=\mathbb{R}_{x_{2}}^{-}$but $N_{o}^{*}(A)=\mathbb{R}^{2}$.)
(*) Nella seduta del 18 novembre 1989.
$\left.{ }^{(}{ }^{1}\right)$ This section has been modified on the proofs.
(d) The set $A=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq\left|x_{2}\right|^{3 / 2}\right\}$ does not verify (1.1); in particular (1.1) is not C^{1}-coordinate invariant.

Lemma 1.2. Fix coordinates in X at x_{0} and assume that (1.1) bolds. Then for every $x \in(X \backslash A) \cap S_{\varepsilon}\left(S_{c}=\left\{y:\left|y-x_{0}\right|<\varepsilon\right\}\right.$, ε small $)$ there exists a unique point $a=a(x) \in$ $\in \partial A \cap S_{2 \varepsilon}$ such that

$$
\begin{equation*}
x \in a-\gamma_{a}^{*}(A) . \tag{1.2}
\end{equation*}
$$

Proof. One takes a point $a=a(x)$ verifying

$$
\begin{equation*}
|x-a|=\operatorname{dist}(x, \partial A), \tag{1.3}
\end{equation*}
$$

and verifies easily that a also verifies (1.2). The unicity is assured by (1.1).
From the uniqueness it easily follows that $a(x)$ is a continuous function. (One could even easily prove that it is Lipschitz-continuous.)

We set $d(x)=\operatorname{dist}(x, A)$ and, for $t \geq 0, A_{t}=\{x: d(x) \leq t\}$; we also set $\gamma_{x}=\gamma_{x}\left(A_{d(x)}\right)$.
Lemma 1.3. Let (1.1) bold in some coordinate system; then $\gamma_{x}, x \in \partial A$ are balf-spaces and the mapping $x \mapsto \gamma_{x}$ is continuous.

Proof. We shall show that

$$
\begin{equation*}
\gamma_{x}=\{y:\langle y-x, a(x)-x\rangle \geq 0\} \tag{1.4}
\end{equation*}
$$

(The function $x \mapsto a(x)$ being continuous, the lemma will follow at once.) In fact since $\{y:|y-a(x)| \leq d(x)\} \subset A_{d(x)}$, then " \supseteq " holds in (1.4). On the other hand we reason by absurd and find a sequence $\left\{x_{y}\right\}$ such that

$$
\left\{\begin{array}{l}
x_{\nu} \rightarrow x \tag{1.5}\\
d\left(x_{\nu}\right) \leq d(x) \\
\left\langle a(x)-x, x_{\nu}-x\right\rangle \leq-\delta\left|x_{\nu}-x\right|, \quad \delta>0
\end{array}\right.
$$

By continuity we can replace $a(x)-x$ by $a\left(x_{\nu}\right)-x_{\nu}$ in (1.5) and conclude that, for large $\nu,\left|x-a\left(x_{\nu}\right)\right|<\left|x_{\nu}-a\left(x_{\nu}\right)\right|=d\left(x_{\nu}\right)$, a contradiction.

Let $N(A)$ be the normal cone to A in the sense of [4].
Lemma 1.4. Let B be closed and assume that:
(1.6) $\quad \gamma_{x}(B)$ is a balf space for every $x \in \partial B$,
$x \mapsto \gamma_{x}(B)$ is continuous.
Then $N_{x}(B), x \in \partial B$ are also balf spaces.
Proof. Suppose by absurd that there exist $\Gamma^{\prime} \subset \subset \gamma_{x_{0}}(B)$ and two sequences $\left\{z_{v}\right\}$,
$\left\{y_{v}\right\}$ with

$$
\left\{\begin{array}{l}
z_{v}, y_{v} \rightarrow x_{0} \\
z_{v}, y_{v} \in \partial B \\
\theta_{v}=y_{v}-z_{v} \in \operatorname{int} \Gamma^{\prime} \\
{\left[z_{v}, y_{v}\right] \subset B}
\end{array}\right.
$$

(Here $\left[z_{v}, y_{v}\right]$ denotes the segment from z_{v} to y_{v}.) But then $\gamma_{\nu_{v}}(B) \supset \Gamma^{\prime} \cup\left\{-\theta_{v}\right\}$, a contradiction.

Remark 1.5. Let B verify $N_{x_{0}}(B) \neq\{0\}$, then if one takes coordinates with $(0, \ldots, 0,1) \in N_{x_{0}}(B)$ and sets $x=\left(x^{\prime}, x_{n}\right)$, one can represent $\partial B=\left\{x: x_{n}-\varphi\left(x^{\prime}\right)=0\right\}$ for a Lipschitz-continuous function φ. Moreover if $N_{x_{0}}(B)$ is a half-space and if we let $\boldsymbol{R}^{+}(0, \ldots, 0,1)=N_{x_{0}}^{*}(B)$, then φ is differentiable at x_{0} due to $\left|\varphi\left(x^{\prime}\right)-\varphi\left(x_{0}^{\prime}\right)\right|=o\left(\left|x^{\prime}-x_{0}^{\prime}\right|\right)$.

Proposition 1.6. Let (1.1) bold in some coordinates; then $d(x), x \notin A$, is a C^{1} function.

Proof. By Lemmas 1.3, 1.4, $N_{x}\left(A_{d(x)}\right)$ are half-spaces; set $\tau_{x}=\partial N_{x}\left(A_{d(x)}\right)$ and denote by n_{x} the normal to τ_{x}. Let $y \in \tau_{x}$; according to Remark 1.5 there exists $\tilde{y} \in \partial A_{d(x)}$ with $|\tilde{y}-y|=o(|y-x|)$. It follows:

$$
\begin{equation*}
|d(y)-d(x)|=|d(y)-d(\tilde{y})| \leq k|y-\tilde{y}|=o(|y-x|) . \tag{1.8}
\end{equation*}
$$

By (1.8) we obtain $\left(\partial / \partial \tau_{x}\right) d(x)=0$. On the other hand one has $\left(\partial / \partial n_{x}\right) d(x)=1$. Finally $\partial d(x)=n_{x}, x \notin A$, and hence d is C^{1}.
§2. Let X be a C^{∞}-manifold, $Y \subset X$ a C^{1}-submanifold, M^{\cdot} a complex of Z-modules of finite rank, and set $M^{* *}=\boldsymbol{R} \operatorname{Com}_{Z}\left(M^{*}, Z\right)$. Let μ hom (\cdot, \cdot) be the bifunctor of $[4, \mathbb{\$}]$; one easily proves that

$$
\begin{align*}
& \mu \operatorname{hom}\left(Z_{Y}, M_{Y}\right) \cong M_{Y_{Y}^{*} X}^{*} \tag{2.1}\\
& \mu \operatorname{hom}\left(M_{Y}, Z_{Y}\right) \cong M_{T_{Y}^{*} X}^{*} \tag{2.2}
\end{align*}
$$

Lemma 2.1. Let $M_{Y} \cong Z_{Y}$ in $D^{+}(X ; p), p \in \dot{T}_{\hat{Y}} X([4, \S 6])$. Then $M \cong Z$.
Proof. The proof is a straightforward consequence of the formula $\operatorname{Hom}_{D^{+}(X ; p)}(\cdot, \cdot) \leftrightarrows H^{0} \mu \mathrm{hom}(\cdot, \cdot)_{p}$, and of (2.1), (2.2).
$\mathbb{\$ 3}$. Let M be a C^{ω}-manifold of dimension n, X a complexification of $M, A \subset M$ a closed set. According to [6] we define $\mathcal{C}_{A \mid X}=\mu \operatorname{hom}\left(Z_{A}, \mathcal{O}_{X}\right) \otimes$ or $_{M \mid X}[n]$.

We assume here that
(i) A satisfies (1.1) in some coordinates at $x_{0}=0$,
(ii) $A=\overline{\operatorname{int} A}$ in the linear hull of A,
(iii) $\operatorname{SS}\left(Z_{A}\right) \subset \gamma^{*}(A)$.

We take coordinates $\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n-1} \times \mathbb{R} \cong M, \quad\left(z^{\prime}, z_{n}\right) \in C^{n} \cong X$, and suppose that $A=A^{\prime} \times \mathbb{R}$. We define

$$
\begin{equation*}
G_{A}=\left\{z: y_{n} \geq \inf _{a^{\prime} \in A^{\prime}} a^{\prime 2} / 4+\left\langle y^{\prime}, a^{\prime}\right\rangle / 2\right\} \tag{3.2}
\end{equation*}
$$

Lemma 3.1. ∂G_{A} is C^{1}.
Proof. One defines the set
(3.3) $\left\{z: y_{n} \geq-y^{\prime 2} / 4\right.$ for $y^{\prime} \in-A^{\prime}, y_{n} \geq a^{2}\left(-y^{\prime}\right) / 4+\left\langle y^{\prime}, a\left(-y^{\prime}\right)\right\rangle / 2$ for $\left.y^{\prime} \notin-A^{\prime}\right\}$, (where $a\left(-y^{\prime}\right)$ is the point of ∂A^{\prime} such that $-y^{\prime} \in a\left(-y^{\prime}\right)-\gamma_{a\left(-y^{\prime}\right)}^{*}\left(A^{\prime}\right)$).

One easily proves that the above set coincides with G_{A}. Then one observes that the boundary of (3.3) is defined by

$$
\left\{\begin{array}{rlr}
-y^{\prime} / 4, & \text { for } y^{\prime} \in-A^{\prime} \tag{3.4}\\
a^{2}\left(-y^{\prime}\right) / 4+\left\langle y^{\prime}, a\left(-y^{\prime}\right)\right\rangle / 2=\left|y^{\prime}+a\left(-y^{\prime}\right)\right|^{2} / 4-y^{\prime 2} / 4= & \\
=\operatorname{dist}^{2}\left(y^{\prime},-A^{\prime}\right) / 4-y^{\prime 2} / 4, & \text { for } y^{\prime} \notin-A^{\prime}
\end{array}\right.
$$

Since $\operatorname{dist}\left(y^{\prime},-A^{\prime}\right), y^{\prime} \in M^{\prime} \backslash-A^{\prime}$, is C^{1}, due to Proposition 1.4, then the function defined in (3.4) is also C^{1}.

Proposition 3.2 (cf. [6]):
(i) We can find a complex bomogeneous symplectic transformation ϕ such that

$$
\begin{equation*}
\phi\left(A \times_{M} T_{M}^{*} X \oplus \gamma^{*}(A)\right)=N^{*}\left(G_{A}\right) \tag{3.5}
\end{equation*}
$$

(ii) ϕ can be quantized to Φ such that

$$
\begin{equation*}
\Phi\left(Z_{A}\right)=Z_{G_{A}}[n-1] ; \tag{3.6}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\left(\mathcal{C}_{A \mid X}\right)_{p} \cong \mathcal{C}_{G_{A}}^{1}\left(\mathcal{O}_{X}\right)_{\pi(\phi(p))}, \quad p \in \dot{\pi}^{-1}\left(x_{0}\right) . \tag{3.7}
\end{equation*}
$$

Proof. One takes coordinates $(z, \zeta) \in T^{*} X$, and defines ϕ for $\operatorname{Im} \zeta_{n}>0$ by:

$$
\left\{\begin{array}{l}
z^{\prime} \mapsto \zeta^{\prime} / \zeta_{n}-\sqrt{-1} z^{\prime} \\
z_{n} \mapsto\left\langle z, \zeta / \zeta_{n}\right\rangle / 2-\sqrt{-1} z^{\prime 2} / 4 \\
\zeta^{\prime} \mapsto-z^{\prime} \zeta_{n} / 2 \\
\zeta_{n} \mapsto \zeta_{n}
\end{array}\right.
$$

Then by recalling that G_{A} coincides with the set (3.3), one gets (i). As for (ii) one sets
$\mathscr{F}=\Phi\left(Z_{A}\right), \quad Y=\partial G_{A}$ ，and denotes by $j: Y \hookrightarrow X$ the embedding．One gets $S S(\mathscr{F}) \subset \pi^{-1}(Y)$ at p ；hence $\mathfrak{F} \cong j_{*} \mathcal{G}$ at p for some \mathcal{G} in $D^{+}(Y)$（cf．［4，§6］）．On the other hand one has $\operatorname{SS}(\mathcal{G}) \subset T_{Y}^{*} Y$ at $\pi(p)$（［4，Prop．4．1．1］）；hence $\mathscr{G} \cong M_{Y}$ at $\pi(p)$ for a complex M－of Z－modules．

Due to（3．1）（ii）there exists $q \sim p$ such that A is a manifold at $\pi(q)$ and hence
 from the fact that $X \backslash G_{A}$ is pseudoconvex．

For convex A ，the above proposition is stated in［6］．
$\$ 4$ ．Let M be a C^{ω}－manifold，X a complexification of $M, A \subset M$ a closed set satisfying condition（3．1）．

Proposition 4．1．Let $\left\{\phi_{i}\right\}_{i=1, \ldots, m}$ be a base for the space spanned by $\gamma_{x_{0}}^{*}(A)$ in $T_{x_{0}}^{*} X$ ． Then the sections of $\left.\mathcal{C}_{A \mid X}\right|_{\left(T_{M} X\right.} \oplus_{\left.\gamma^{*}(A)\right)_{x_{0}}}$ satisfy the principle of the analytic continuation on the complex integral manifolds of $\left\{H\left(\phi_{i}^{C}\right)\right\}_{i=1, \ldots, m}$ ．

Proof．Using the trick of the dummy variable we can assume A being of the form $A^{\prime} \times \mathbf{R}$ and hence use the transformation ϕ of $\mathbb{\$ 3}$ ．

Let $p, q \in \phi\left(T_{⿳ 亠 丷}^{\dot{M}} \times \gamma^{*}(A)\right)_{x_{0}}$ belong to the same integral leaf of $\left\{H\left(\phi_{i}^{C}\right)\right\}_{i=1, \ldots, m}$ ．We then have to show that if f is holomorphic in $X \backslash G_{A}$ and extends holomorphically at $\pi(p)$ ，then it also extends at $\pi(q)$ ．

We observe that $\phi\left(T_{\tilde{M}}^{*} X \oplus \gamma^{*}(A)\right)=T_{\hat{\partial} G_{A}} X$ in $\phi\left(\dot{\pi}^{-1}\left(x_{0}\right)\right)$ ；thus the claim follows from the Bochner＇s tube theorem at least when $\rho_{M}(p), \rho_{M}(q)$ belong to the interior of $\gamma_{x_{0}}^{*}(A)$ in the plane of $\left\{\phi_{i}\right\}\left(\rho_{M}: T^{*} X \rightarrow T_{\dot{M}}^{*} X\right)$ ．

Otherwise one has to remember that ∂G_{A} is C^{1} ，and use the following result whose proof is straightforward．

Lemma 4.2 （cf．［1］）．Let $\left(z_{1}, z_{2}\right) \in C^{2}, z_{i}=x_{i}+\sqrt{-1} y_{i}, i=1,2$ and let ψ be a C^{1} function on $\mathbb{R}_{y_{1}, y_{2}}^{2}$ at 0 such that $\psi \geq 0$ and $\psi=0$ for $y_{1} \geq 0$ ．If f is analytic in the set

$$
\left\{\left|x_{i}\right|<\varepsilon\right\} \times\left(\left\{\left|y_{i}\right|<\varepsilon, y_{2}>\psi\left(y_{1}\right)\right\} \cup\left\{y_{1}=\varepsilon,-\delta<y_{2} \leq 0\right\}\right),
$$

then f is analytic at 0 ．
Remark 4．3．
（a）When A is a half－space with C^{ω}－boundary，Proposition 4.1 was already stated in［2］．
（b）In the situation of Proposition 4．1，one has（cf．［2］）：

$$
\left.\Gamma_{A \times_{M} T_{M}^{*} X}\left(\mathcal{C}_{A \mid X}\right)\right|_{\partial A \times_{M} T_{M} X}=0 .
$$

（c）Let \mathscr{M} be an \mathcal{E}_{X}－module at $p \in \dot{\pi}^{-1}\left(x_{0}\right)$ ．Suppose that there exists $\theta \in \dot{\gamma}_{x_{0}}^{*}(A)$ non－ characteristic for \mathfrak{N} ．Then： $\mathscr{C o m}_{\delta_{X}}\left(\mathscr{N}, \mathcal{C}_{A \mid X}\right)_{p}=0$ ．
（This was announced by Uchida when A is convex and all $\theta \in \dot{\dot{x}_{x_{0}}^{*}}(A)$（or $\left.\partial \dot{N}_{\dot{x}_{0}}^{*}(A)\right)$ are non－characteristic）．

Let now Ω be an open set of M and assume that $A=M \backslash \Omega$ satisfies the hypotheses (3.1). By the distinguished triangle $\mathcal{C}_{A \mid X} \rightarrow \mathfrak{C}_{M \mid X} \rightarrow \mathcal{C}_{\Omega \mid X} \xrightarrow{+1}$, by (3.7), and by the corresponding formula for $\mathcal{C}_{M \mid X}$, one can state (cf.[6]):

Proposition 4.4: We have $H^{0}\left(\mathfrak{C}_{\Omega \mid X}\right)=\left(\mathfrak{C}_{\Omega \mid X}\right)_{T_{M}^{\star} X}$.
By (4.1) and by Remark $4.3(c)$, one also gets, for a \mathscr{O}_{X}-module \mathfrak{N} :
$S S_{\Omega}^{\pi, 0}(f)$ being the microsupport in the sense of [6]. (One needs to assume here Z_{Ω} cohomologically constructible; but this follows probably from (1.1).)

Aknowledgements

The authors wish to thank Dr. A. Andreazzo and Prof. P. Schapira for useful discussions.

References

[1] A. Kaneko, Estimation of singular spectrum of boundary values for some semibyperbolic operators. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, (2), 1980, 401-461.
[2] K. Кataoka, On the theory of Radon transformation of hyperfunctions. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 28, 1981, 331-413.
[3] K. Kataoka, Microlocal theory of boundary value problems I and II. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27, 1980, 335-399, and 28, 1981, 31-56.
[4] M. Kashiwara - P. Schapira, Microlocal study of sheaves. Asterisque, 128, 1985.
[5] M. Sato - M. Kashiwara - T. Kawai, Hyperfunctions and pseudodifferential equations. Lecture Notes in Math., Springer Verlag, 287, 1973, 265-529.
[6] P. Schapira, Front d'onde analytique au bord. Sém. E.D.P. Ecole Polytechnique Exp., 13, 1986.
Dipartimento di Matematica
Via Belzoni, 7-35131 Padova

