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Teoria dei numeri. — An integrality criterion for elliptic modular forms. Nota (*) di 
ANDREA MORI, presentata dal Corrisp. C. PROCESI. 

ABSTRACT. — Let / b e an elliptic modular form level of N. We present a criterion for the integrality of/at 
primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to / 
the iterates of the MaaB differential operators. 

KEY WORDS: Modular forms; Modular curves; Complex multiplications. 

RIASSUNTO. — Un criterio di integralità per forme modulari ellittiche. Si enuncia un criterio di integralità 
per i primi non dividenti il livello per forme modulari ellittiche. Il criterio si basa sui valori assunti in certi 
punti particolari del semipiano a parte immaginaria positiva dalle forme ottenute applicando gli iterati degli 
operatori di Maa£ alla forma in esame. 

1. MOTIVATIONS 

Let X = {z = x 4- iy e C\ y > 0}. The group SL2 (R) acts on X via linear fractional 
transformations: 

* b\z={az + b){cz + dyl. 

Let r be a subgroup of finite index in the full modular group SL2(Z). The action of 
SL2(R) on X extends to an action of r on X u P1 (Q) and the orbits in P1 (Q) are called 
the cusps of r. 

Classically, one gives the 

(1.1) DEFINITION. An elliptic modular form foi weight k, (k e Z) relative to r is an 
holomorphic function on X such that 

a) f(yz) = (cz + d)kf(z), for each y = (" b\er 

b) f is holomorphic at the cusps. 

Moreover, / is called a cusp form if it is 0 at the cusps. 

The meaning of condition b) is roughly the following: because of condition a), fis 
forced to be periodic of period N, for some N eZ. Then, for each cusp 
J 6 J P 1 ( Q ) = Q U { O O } we can map X holomorphically onto the punctured disc 
D* = {z e C\ 0 < |z| < 1} in such a way that s •-> 0 and/descends to a function/ on D*. 
Then the requirement is that each/, must be holomorphically prolongable to the whole 
disc D = D*u{0} . For a more detailed and precise discussion see [13, §2.1]. 

The resulting power series are called the Fourier expansions of / at the different 
cusps. 

(*) Pervenuta all'Accademia il 15 settembre 1989. 
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(1.2) DEFINITION. When r = T(N) = {reSL2{Z) J r = ImodN}, / is called an 
elliptic holomorphic modular form of level N (and weight k). 

Although some of the following considerations hold for elliptic modular forms with 
respect to any r as above, we will limit ourselves to the N-level case. Let us denote 
Gk{N) the space of elliptic holomorphic modular forms of level N and weight k. It is 
well-known that the spaces Gk{N) are finite dimensional and in fact trivial for k^O, 
see [13, §2.6]. 

Ramanujan was the first to observe that the Fourier coefficients of elliptic 
holomorphic modular forms satisfy congruence properties: analyzing the function 

A{q)=qf\{l~qnr=^JT{n)q\ q = e2*\ 
«=i »=i 

the unique cusp form of level 1 and weight 12, he discovered that z(n) = 
= o-n(«) mod 691, where 

d\n 

Starting with the work [10], a great deal of different congruences for the coefficients 
r{n) have been discovered using classical methods; see the introduction of [14] for a list 
and the relative references. 

In order to provide a unitary theory of such congruence properties, Serre initiated 
in the late 60's the modern theory of modular forms introducing, in a purely algebraic 
way, his modular forms modulo primes and relating the Fourier coefficients of elliptic 
holomorphic modular forms to certain /-adic representations, see [11,12]. 

The next step was made by Deligne and Katz: reconsidering the earlier work [3] 
they wanted to reinterpret Serre's work in terms of the arithmetic of the space of 
moduli of elliptic curves with level structure (the so-called modular curves Y(N), whose 
complex points are given by the quotient r{N)\X). 

To start the theory one needs a general algebraic theory of modular forms, i.e. one 
would like to work over any base ring R0, the classical definition 1.1 corresponding to 
the case R0

 = C- The definition is as follows: 

(1.3) DEFINITION ([4]). Let R0 be any ring. A modular form of weight k and level N 
defined over R0 is a function/of triples (£, w, aN), where E is an elliptic curve defined 
over an R0-algebra R, a> is an R-rational invariant 1-form on E and aN is an N-level 
structure on £, such that 

a) / (£ , w, aN)eR; 

b) / (£ , Aw, aN) = X~kf{E, co, aN) for each A G Rx ; 

e) f(E, co, ocN) depends only on the R-isomorphism class of (E, OJ, aN); 

d) for any map <£: R—>S of R0-algebras, f(E ®S, <//*w,aN) = ip(f(E,<o,<xN)). 

This definition 1.3 extends definition 1.1 in the following sense: an elliptic 
holomorphic modular form/gives rise to a modular form/aig defined over C by the 
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formula 

(1) fAg{C/Z®2xJz)=f(x) 

for zeX, and making /^(E/Qw) compatible with (1) and definition 1.3b). 

2. A GENERAL PROBLEM. T H E ^-EXPANSION PRINCIPLE 

It is clear from definition 1.3 that if R0 c S0 is an inclusion of rings, modular forms 
defined over R0 give rise to modular forms (of the same level and weight) defined over 
So- It is very natural to pose the following general 

(2.1) PROBLEM. Let R0 c S0 be two rings and let / b e a modular form defined over S0. 
Under what conditions is / in fact defined over R0? 

A satisfactory solution to this problem can be given when the level N is invertible in 
R0 and R0 also contains a primitive N-th root of unity ÇN> If this is the case, one can 
define the Fourier expansions (also called q-expansions) as the values of/at the triples 
(Tate {qN) ® R0,wcan,aN) where aN runs through the different N-level structures of 
Tate (qN). Thus /(Tate (q") ® R0ycocm,xN) eZ[l/NyZN]((q)) ® R0, and / is said 
holomorphic if its ^-expansions belong in fact to the ring 2[1/N, £N] [[q]] ®R0. 

The following result holds: 

(2.2) THEOREM {q-expansion principle, [4, §1.6.1-2]). Let N ^ 3 , R0 and S0 two 
Z[l/N] -algebras with ÇN € R0 c S0, and / a holomorphic modular form of level N and 
weight k defined over S0. Suppose that on each of the connected components of 
Y(N) ® 2[1/N, £N] there is at least one cusp at which the coefficients of the 

^-expansion of/belong to R0 ® 2[1/N, £N]. Then / is defined over R0. 

OBSERVATIONS: 

<z) Theorem 2.2 can be extended to levels 1 and 2 if we look at modular forms of 
level 1 and 2 as particular modular forms of higher level, see [4, §1.9-10]. The difficulty 
comes from the fact that the functor «isomorphism classes of elliptic curves with 
N-level structure» is not representable for N = 1,2 due to the existence of non-trivial 
automorphisms. 

b) Similar results hold for modular forms in several variables (Siegel modular 
forms), see [2]. 

3. AN INTEGRALITY CRITERION 

We shall now fix our attention on a special case of the problem 2.1; namely, we 
consider the case S0= C, f an elliptic holomorphic modular form and R0 = 0{v), the 
valuation ring associated to a non-archimedean place v in some given number field K. 
Let p be the rational prime lying under the maximal ideal pv c 0{v). We shall assume that 
p does not divide the level N, so that N is invertible in Q{v). 

As shown by the author in his thesis [9], problem 2.1 can be solved in the special 



setting described above, looking at the values of/and the C00-functions obtained from/ 
applying the iterates of the Maafi differential operators Sk (to be described briefly in §4) 
at special points of X. The precise statement (a complete proof of which will appear in 
a forthcoming paper) is as follows: 

(3.1) THEOREM (Integrality criterion). Let / be an elliptic holomorphic modular 
form of weight k and level N ^ 3 . Let K be a number field with C^eK, v a non-
archimedean place of K not dividing N, and 0{v) cK its valuation ring. Let E be an 
elliptic curve defined over K with JC-rational complex multiplications and with ordinary 
good reduction modulo v, such that its N-torsion is K-rational. Let T e X be such that 
£ ® C— C/Z® ZT. Then / is defined over 0{v) if and only if the numbers 

cr{f) = (i-Anf/Qf2r)(Sff)(T) 
belong to 0{v) and 

(2) v(Ìkrct(f)\^v{r\) 

for r = 0,1,.. . , where 4r) is the r-th iterate of <§*, QE is the period of E and 

To define the period QE, let us recall that elliptic curves with complex 
multiplications have potential good reduction at all non-archimedean places. Hence, 
up to a finite extension of the field of definition, the space of invariant holomorphic 
1-forms on E has an integral structure. Let w^ be a generator of the underlying 
£Vmodule: it is defined up to a unit in 0K. Pick T eX such that there is an isomorphism 
of complex tori 

(3) 4>:C/Z@ZT^E®C. 

Then the differential l-form <p*(comt) on C/Z®Zr will be a scalar multiple of the 
l-form defined by dz. So, by abuse of notation, we write 

(4) $*(vJ=0Edz 

for some QE e C. The name of period given to QE is justified by the fact that it is an 
integral period of E, as 

QE= J #*(û>int)= J a>-mt. 
o *([0,1)] 

Note that choosing a different T to write the isomorphism (3) results in a different 
normalization of the period lattice of E: hence the number QE) as defined by (4) will be 
altered just by a unit in 0K. So the indeterminacy of QE is confined to a unit in OK. 

4. A BRIEF DESCRIPTION OF THE M A A 6 OPERATORS 

Let us recapitulate the essential aspects of the theory of the MaaB differential 
operators in one variable. For the theory in several variables, which is for many aspects 
totally analogous, see [2] or [6]. 
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The operators Sk, k = 0,1,2,..., on X were first considered in [8]. Their expression 
in the coordinate z = x + iy e X is 

(5) 4=-(i/W2/|+^y 

If we extended the definition 1.1 to include C° -functions, and denote Gk(N) the 
corresponding spaces, then the operator (5) descends to an operator $k: 
Gkity—ïG^iN), as an easy computation shows. 

In order to obtain algebraicity (and integrality) results, one needs to reinterpret à la 
Katz the operators Sk in terms of the relative de Rham cohomology of the universal 
family of elliptic curves with level structure. 

Let us then consider the family of elliptic curves n:Ex-^X, where 7r_1(T) = 
= Er=C/Z®Zr. When N ^ 3 , T(N) acts without fixed points on Ex defining a 
smooth family EN^> Y(N) to which we can attach the relative de Rham cohomology 
bundle HVR(EN/Y(N)) whose fiber over T e Y(N) is the first de Rham group of Er. For 
simplicity, let us denote Hi the associated C° -bundle. The Hodge decomposition of 
each fiber induces a splitting Hi = H1 , 0® H0,1 where H1,0 is isomorphic to the line 
bundle co = 7r*Jf2EN/y(N). Let Split: HL—>w be the resulting projection. 

We can now define an operator 6k : co®k'—» o^k+2 through the following steps: 

Step 1: Embed ço®k^Symmk(Hl); 

Step 2: Use the GauiS-Manin connection V :HJo—>Hi,® il1 to define a map 
V* : Symm^(HL)^ Symmk(Hl) ® O1 by product rule; 

Step 3: Apply the Kodaira-Spencer isomorphism fi1 — w®2; 

Step 4: Project: Split*: Symm*(HL) ® ço®2->a>®k® w®2 ~co®k+2. 

As explicitly computed in [2], after identifying modular forms of weight k with 
certain global sections of the line bundle w® ,̂ there is an equality of operators 
&k=(-l/4n)dk. 

One of the advantages of Katz's point of view is that the operators Ok can be 
modified, using the very same construction, once an other splitting of the de Rham 
bundle is available. For instance, working over a p-adic ring, is possible to define the 
p-adic Maafi operators exploiting the unit root space decomposition. One of the keys to 
understand the integrality criterion 3.1 is the fact that on the fibers over points of Y(N) 
corresponding to curves with complex multiplications, the Hodge splitting and the 
p-adic splitting coincide with the splitting induced by the complex multiplications 
themselves [5]. 

For the sake of completeness, it should be mentioned that the Maafi operators are 
subject to a third interpretation, as elements of a certain universal enveloping 
algebra[1,2]. As X=SL2(R)/K where 

K=\ (cos,* - « i n * , R 
1 sin* cos* ' 



an element fe G% can be lifted to a C00 function <f*kj on G = SL2(R) by the formula 

hAg) = (cz + drkf{g-i), V« = ^ JjeG. 

Then faj satisfies the relations 

(6) 

I &,/(g*) = *"'w &,( g), V* = m e K. 
On the other hand if tf> e C° (G) satisfies the relations (6) for some k, N, then the 
formula 

•/*,#(*) = (« + </)*#(«), Vg = ^ b]eG such that g-/ = z 

defines an element of Gf (N). 
The Lie algebra of G acts on C°{G) by 

^ U ) = ^ t(gexptA), ,4 e Lie (G), $eC°(G). 

The adjoint action of K induces a decomposition Lie (G) ® C = CH © CX © CY with 

and 

(7) Ad( fW)X = ^ X , Ad(r ( t f ) )y=e 2 t f y. 

Formulae (7) imply that X defines an operator Dk:G%(N)^>Gk+2(N) by Dkf= 
—fk+2,x*tkr After the prescribed identifications, an explicit computation yields 
Sk = (-l/4n)Dk. 

5. T H E IDEA OF THE PROOF 

The integrality criterion (3.1) can be proven showing that the numbers cr{f) are in 
fact the coefficients of the power series expansion of/relative to a well-chosen local 
parameter T at the point x e Y(N) corresponding to the elliptic curve E under 
consideration. This parameter T has the following two properties: 

(1) T is an eigenvector for the action of the complex multiplications of E on the 
completion of the local ring at x {i.e., on the fiber at x of the jet bundle on Y(N)); 

(2) T is rational over the field K, and exp (T) is i>-integral. 

The second property is obtained relating T to a formal parameter constructed quite 
naturally via the classification theory of formal deformations of ordinary elliptic curves 
in positive characteristic, which is exposed in [7]. Incidentally, the fact that this theory, 
due to Serre and Tate, holds for ordinary abelian varieties of any dimension, seems to 
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suggest that results similar to Theorem 3.1 should be expected also for Siegel modular 
forms. 

It should also be noted that in order to obtain integrality results, it is essential to 
consider the p-adic analogous of the Maafi operators mentioned in the previous section. 
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