Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Monika Kubicova

Periodic solutions to a non-linear differential equation of the order $2 n+1$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 83 (1989), n.1, p. 133-137.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1989_8_83_1_133_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti Acc. I .u. fis.
(8), J^{V} (1989), pp. 133-137

Equazioni differenziali ordinarie. - Periodic solutions to a non-linear differential equation of the order $2 n+1$. Nota (*) di Monika Kubicova, presentata dal Corrisp. R. Conti.

Abstract. - A criterion for the existance of periodic solutions of an ordinary differential equation of order k proved by J. Andres and J. Voráček for $k=3$ is extended to an arbitrary odd k.

Key words: Nonlinear ordinary differential equations; Periodic solutions; Existence.
Rlassunto. - Si estende ad una equazione differenziale ordinaria di ordine dispari arbitrario k un criterio di esistenza di soluzioni periodiche dimostrato da J. Andres e J. Voráček per il caso di $k=3$.

We consider the equation:

$$
\begin{align*}
x^{(2 n+1)}+a_{1}\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right) x^{(n+1)}+\ldots+a_{n+1}\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right) x^{\prime}+ & b(x)= \tag{1}\\
& =e\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right)
\end{align*}
$$

with functions $a_{1}, \ldots, a_{n+1}, e \in C\left(R^{2 n+2}, R\right), b \in C(R, R)$. Furthermore we assume the ω-periodicity in the variable t of $a_{1}, \ldots, a_{n+1}, e(\omega>0, n \geqslant 1)$.

The existence of an ω-periodic solution of (1) will be proved by the Leray-Schauder fixed point technique. In the paper the result of J. Andres and J. Voráček from [1] for the third order equations to the equations of the order $2 n+1$ is extended.

The equation (1) results for $p:=1$ from the following family of differential equations depending on the parameter p :

$$
\begin{align*}
x^{(2 n+1)}+p\left[a_{1}\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right) x^{(n+1)}+\ldots+\right. & a_{n+1}\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right) x^{\prime}+ \tag{p}\\
& +(b(x)-c x)]+c x=p e\left(t, x, x^{\prime}, \ldots, x^{(2 n)}\right)
\end{align*}
$$

with a suitable constant $c \neq 0$.
For the existence of an ω-periodic solution of (1) the following conditions are sufficient:
(i) All the ω-periodic solutions $x(t)$ of $\left(2_{p}\right)$ and $x^{\prime}(t), \ldots, x^{(2 n)}(t)$ are for $0 \leqslant p \leqslant 1$ a priori bounded by a constant independent of p.
(ii) The linear equation:

$$
\begin{equation*}
x^{(2 n+1)}+c x=0 \tag{0}
\end{equation*}
$$

(resulting from $\left(2_{p}\right)$ for $p=0$) has no ω-periodic solution different from identical zero.
The condition (ii) is satisfied if and only if the characteristic equation of $\left(2_{0}\right)$, i.e. the equation

$$
z^{2 n+1}+c=0
$$

(*) Pervenuta all'Accademia il 17 agosto 1988.
has no root in the form $i(2 \pi / \omega) k, k$ is an integer. It is clear that the condition (ii) is satisfied for any $c \neq 0$. Hence it is sufficient to consider the case when the condition (i) is satisfied.

From the Wirtinger Lemma [2], p. 185, it follows that for every ω-periodic function $x(t) \in C^{2 n}(R, R)$ such that $x^{(2 n+1)} \in L^{2}(\langle t, t+\omega\rangle)$ we have:

$$
\begin{equation*}
\int_{t}^{t+\omega}\left(x^{(k-1)}(s)\right)^{2} d s \leqslant\left(\frac{\omega}{2 \pi}\right)^{2} \int_{t}^{t+\omega}\left(x^{(k)}(s)\right)^{2} d s, \quad \text { for all } t \in R \text { and } k=2,3, \ldots, 2 n+1 . \tag{3}
\end{equation*}
$$

In the following the composited function $a_{k}\left(t, x(t), x^{\prime}(t), \ldots, x^{(2 n)}(t)\right)$ of the variable t formed by the function a_{k} and the function $x(t)$ will be denoted by the symbol $a_{k x}(t)$ $(k=1,2, \ldots, n+1)$.

In the same sense we use the symbols $b_{x}(t), e_{x}(t)$. Further we put:

$$
\omega_{1}:=\frac{\omega}{2 \pi} .
$$

At first we prove the estimates for ω-periodic solutions of $\left(2_{p}\right)$ in the L^{2} space norm.
Lemma 1. If the following inequalities:

$$
\begin{array}{ll}
\left|a_{k}\left(t, x_{1}, \ldots, x_{2 n}\right)\right| \leqslant A_{k}, & \text { for } k=1,2, \ldots, n+1, \\
\left|e\left(t, x_{1}, \ldots, x_{2 n}\right)\right| \leqslant E &
\end{array}
$$

hold for all $t, x_{1}, x_{2}, \ldots, x_{2 n}$, and

$$
\theta:=1-\sum_{k=1}^{n+1} A_{k} \omega_{1}^{n+k-1}>0
$$

then every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$ satisfies the inequality:

$$
\begin{equation*}
\int_{t}^{t+\omega}\left(x^{(n+1)}(s)\right)^{2} d s \leqslant D_{n+1}^{2}, \quad \text { for all } t \tag{4}
\end{equation*}
$$

where

$$
D_{n+1}^{2}:=\left[\frac{\omega_{1}^{n} E}{\theta}\right]^{2} \omega .
$$

Proof. Substituting a fixed $x(t)$ into $\left(2_{p}\right)$, multiplying the obtained identity by $x^{\prime}(t)$ and integrating in $\langle t, t+\omega\rangle$ we come to:

$$
(-1)^{n} \int_{t}^{t+\omega}\left(x^{(n+1)}(s)\right)^{2} d s=p \int_{t}^{t+\omega}\left(-a_{1 x}(s) x^{(n+1)}(s) x^{\prime}(s)-\ldots-a_{n+1 x}\left(x^{\prime}(s)\right)^{2}+e_{x}(s) x^{\prime}(s)\right) d s
$$

By the assumptions of Lemma 1 we get:

$$
\int_{t}^{t+\omega}\left(x^{(n+1)}(s)\right)^{2} d s \leqslant \int_{t}^{t+\omega}\left[A_{I}\left|x^{(n+1)}(s) x^{\prime}(s)\right|+\ldots+A_{n+1}\left(x^{\prime}(s)\right)^{2}+E\left|x^{\prime}(s)\right|\right] d s
$$

Using (3) and the Schwarz inequality we get the inequality:

$$
\theta^{2} \int_{t}^{t+\omega}\left(x^{(n+1)}(s)\right)^{2} d s \leqslant E^{2} \omega_{1}^{2 n} \omega, \quad \text { for all } t
$$

from where we come to (4).

Corollary 1. If all assumptions of Lemma 1 are fulfilled, then for every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$ we have:

$$
\begin{equation*}
\int_{i}^{t+\omega}\left(x^{(k)}(s)\right)^{2} d s \leqslant D_{k}^{2} \quad \text { for } k=n+1, n, \ldots, 2,1 \text { and for all } t \in R \tag{5}
\end{equation*}
$$ where

$$
\begin{gathered}
D_{k}:=\omega_{1} D_{k+1} \quad \text { for } k=n, n-1, \ldots, 2,1, \\
\left|x^{(k)}(s)\right| \leqslant D_{k}^{\prime}
\end{gathered} \quad \text { for } k=1,2, \ldots, n \text { and for all } s \in R, ~ 又
$$

where $D_{k}^{\prime}:=\sqrt{\omega} D_{k+1}$.
Proof. By the finite induction we get the estimates (5) from (3) and (4). Furthermore for $k=0,1, \ldots, n-1$ and for all t the ω-periodic function $x^{(k)}(s)$ fulfils on $\langle t, t+\omega\rangle$ the assumptions of the Mean value theorem. Thus there is a point $t_{1} \in\langle t, t+\omega\rangle$ such that:

$$
x^{(k+1)}\left(t_{1}\right)=0
$$

Consequently

$$
x^{(k+1)}(s)=\int_{t_{1}}^{s} x^{(k+2)}(u) d u \quad \text { for } k=0,1, \ldots, n-1 \text { and for all } s \in\langle t, t+\omega\rangle .
$$

On the basis of the Schwarz inequality and (5) we get the estimate (6) in the sup norm.
Lemma 2. If all assumptions of Lemma 1 are fulfilled and there exist real numbers $c \neq 0, m>0$ such that the inequality

$$
\begin{equation*}
x b(x) \operatorname{sgn} c \geqslant|c| x^{2} \quad \text { for every }|x| \geqslant m \tag{7}
\end{equation*}
$$

is true, then every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$ satisfies

$$
\begin{equation*}
|x(t)| \leqslant D_{0}^{\prime}, \quad \text { for all } t \in R \tag{8}
\end{equation*}
$$

with $D_{0}^{\prime}:=R+D_{1}^{\prime} \omega$

$$
R:=\max \left[m ; \frac{A_{1} D_{n+1}+\ldots+A_{n+1} D_{1}}{c}+\frac{E}{c}\right] .
$$

Proof. We again substitute $x(t)$ into $\left(2_{p}\right)$. Multiplying the resulting identity by $x(t)$ and integrating in $\langle t, t+\omega\rangle$ we obtain for every t :

$$
\begin{aligned}
p \int_{t}^{t+\omega}\left(a_{1 x}(s) x^{(n+1)}(s) x(s)+\ldots+a_{n+1 x}(s) x^{\prime}(s) x(s)\right. & \left.-e_{x}(s) x(s)\right) d s= \\
& =(p-1) \int_{t}^{t+\omega} c x^{2}(s) d s-p \int_{t}^{t+\omega} x(s) b_{x}(s) d s
\end{aligned}
$$

Hence using the assumptions of Lemma 1 we get the inequality:

$$
\begin{align*}
\int_{t}^{t+\infty}\left((1-p) c x^{2}(s)+p x(s)\right. & \left.b_{x}(s) \operatorname{sgn} c\right) d s \tag{9}\\
& \leqslant \int_{t}^{t+\omega}\left[A_{1}\left|x^{(n+1)}(s) x(s)\right|+\ldots+A_{n+1}\left|x^{\prime}(s) x(s)\right|+E|x(s)|\right] d s
\end{align*}
$$

If on the whole interval $\langle t, t+\omega\rangle$ the inequality $|x(s)|>R(\geqslant m)$ held, by (7) and (9) we
would have:

$$
c \int_{t}^{t+\omega} x^{2}(s) d s \leqslant \int_{t}^{t+\omega}\left[A_{1}\left|x^{(n+1)}(s) x(s)\right|+\ldots+A_{n+1}\left|x^{\prime}(s) x(s)\right|+E|x(s)|\right] d s
$$

and on the basis of the Schwarz inequality and (7) this would imply the inequality:

$$
\begin{equation*}
c^{2} \int_{t}^{t+\omega} x^{2}(s) d s \leqslant c^{2} R^{2} \omega . \tag{10}
\end{equation*}
$$

On the other hand by the inequality $|x(s)|>R$ on $\langle t, t+\omega\rangle$ we come to

$$
c^{2} \int_{t}^{t \omega} x^{2}(s) d s>c^{2} R^{2} \omega
$$

which contradicts (10).
Thus on each interval $\langle t, t+\omega\rangle$ there must exist a point t_{1} with

$$
\left|x\left(t_{1}\right)\right| \leqslant R .
$$

Using the Mean value formula we get for all $s \in\langle t, t+\omega\rangle$:

$$
|x(s)| \leqslant\left|x\left(t_{1}\right)\right|+\left|x^{\prime}\left(t_{2}\right)\right|\left|s-t_{1}\right| .
$$

The periodicity of $x(t)$ assures that (8) holds for all $t \in R$.
Lemma 3. If all assumptions of Lemma 2 are satisfied then denoting

$$
H:=\max _{x \leqslant D_{0}^{\prime}}|h(x)|
$$

we have for every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$

$$
\begin{equation*}
\int_{t}^{t+\omega}\left(x^{(2 n+1)}(s)\right)^{2} d s \leqslant D_{2 n+1}^{2}, \quad \text { for all } t \in R \tag{11}
\end{equation*}
$$

where $D_{2 n+1}:=A_{1} D_{n+1}+\ldots+A_{n+1} D_{1}+(E+H) \sqrt{\omega}$.
Proof. We again substitute $x(t)$ into ($2 p$). Multiplying the obtained identity by $x^{(2 n+1)}(t)$ and integrating in $\langle t, t+\omega\rangle$ we get the identity:

$$
\int_{t}^{t+\infty}\left(x^{(2 n+1)}(s)\right)^{2} d s=-p \int_{t}^{t+\omega}\left(a_{1 x}(s) x^{(n+1)}(s)+\ldots+a_{n+1 x}(s) x^{\prime}(s)+b_{x}(s)-e_{x}(s)\right) x^{(2 n+1)}(s) d s
$$

Using the assumptions of Lemma 3 we come to:

$$
\begin{aligned}
\int_{t}^{t+\omega}\left(x^{(2 n+1)}(s)\right)^{2} d s \leqslant \int_{t}^{t+\omega}\left[A_{1} \mid x^{(n+1)}(s)\right. & x^{(2 n+1)}(s) \mid+\ldots+ \\
& \left.+A_{n+1}\left|x^{\prime}(s) x^{(2 n+1)}(s)\right|+E\left|x^{(2 n+1)}(s)\right|+H \mid x^{(2 n+1)}(s)\right] d s .
\end{aligned}
$$

Hence the Schwarz inequality and (5) implies that:

$$
\int_{t}^{t+\omega}\left(x^{(2 n+1)}(s)\right)^{2} d s \leqslant\left(A_{1} D_{n+1}+\ldots+A_{n+1} D_{1}+(E+H) \sqrt{\omega}\right)^{2}:=D_{2 n+1}^{2} .
$$

Using (11) and (3) we can extend the inequalities (5) for $k=2 n+1, \ldots, 2,1$. Then by a similar method as in Corollary 1, the estimates (6) can be extended for $k=1,2, \ldots, 2 n$. Thus the following corollary holds.

Corollary 2. If all assumptions of Lemma 2 are fulfilled, then every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$ satisfies:

$$
\begin{equation*}
\int_{t}^{t+\omega}\left(x^{(k)}(s)\right)^{2} d s \leqslant D_{k}^{2} \quad \text { for } k=2 n+1,2 n, \ldots, 2,1, \text { and for all } t \in R \tag{12}
\end{equation*}
$$

where $D_{2 n+1}$ is given in Lemma 3

$$
\begin{array}{lr}
D_{k}:=\omega_{1} D_{k+1} & \text { for } k=2 n, 2 n-1, \ldots, n+2, \\
D_{n+1} \text { is given in Lemma } 1 & \text { for } k=n, n-1, \ldots, 1 . \\
D_{k}:=\omega_{1} D_{k+1} &
\end{array}
$$

Further:

$$
\begin{equation*}
\left|x^{(k)}(s)\right| \leqslant D_{k}^{\prime} \quad \text { for } k=1,2, \ldots, 2 n \text {, and for all } t \in R \text {, } \tag{13}
\end{equation*}
$$

where

$$
D_{k}^{\prime}=\sqrt{\omega} D_{k+1} \quad \text { for } k=1,2, \ldots, 2 n .
$$

Theorem. If the following inequalities:

$$
\begin{aligned}
\left|a_{k}\left(t, x_{1}, \ldots, x_{2 n}\right)\right| & \leqslant A_{k} \quad \text { for } k=1,2, \ldots, n+1, \\
\left|e\left(t, x, \ldots, x_{2 n}\right)\right| & \leqslant E
\end{aligned}
$$

hold for all $t, x_{1}, x_{2}, \ldots, x_{2 n}$,

$$
\theta:=1-\sum_{k=1}^{n+1} A_{k} \omega_{1}^{n+k-1}>0
$$

and if there exist such real numbers $c \neq 0, m>0$ that (7) holds, then the equation (1) admits an ω-periodic solution.

Proof. From Corollary 2 we get for every ω-periodic solution $x(t)$ of $\left(2_{p}\right)$:

$$
\sum_{k=0}^{2 n}\left|x^{(k)}(t)\right| \leqslant \sum_{k=0}^{2 n} D_{k}^{\prime}:=P
$$

with P independent of $p \in\langle 0,1\rangle$.
Thus both conditions (i), (ii) which are sufficient for the existence of an ω-periodic solution of (1), are fulfilled.

References

[1] J. Andres - J. Voráček, 1984. Periodic solutions to a non-linear parametric differential equation of the third order. Atti Acc. Lincei Rend. fis. (8), 77: 81-86.
[2] G. H. Hardy - J. E. Littlewood - G. Pólya, 1951. Inequalities. Cambridge Univ. Press, 185.

