ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Alessandro Caterino, Maria Cristina Vipera

Wallman-type compactifications and function lattices

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **82** (1988), n.4, p. 679–683. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1988_8_82_4_679_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1988.

Topologia. — Wallman-type compactifications and function lattices (*). Nota di Alessandro Caterino e Maria Cristina Vipera (**), presentata (***) dal Socio G. ZAPPA.

ABSTRACT. — Let $F \in C^*(X)$ be a vector sublattice over R which separates points from closed sets of X. The compactification $e_F X$ obtained by embedding X in a real cube via the diagonal map, is different, in general, from the Wallman compactification $\omega(Z(F))$. In this paper, it is shown that there exists a lattice F_z containing F such that $\omega(Z(F)) = \omega(Z(F_z)) = e_F X$. In particular this implies that $\omega(Z(F)) \ge e_F X$. Conditions in order to be $\omega(Z(F)) = e_F X$ are given. Finally we prove that, if αX is a compactification of X such that $Cl_{\alpha X}(\alpha X \setminus X)$ is 0-dimensional, then there is an algebra $A \in C^*(X)$ such that $\omega(Z(A)) = e_A X = = \alpha X$.

KEY WORDS: Compactifications; Normal bases; Function lattices; Zero-sets.

RIASSUNTO. — Compattificazione di tipo Wallman e reticoli di funzioni. — Sia $F \in C^*(X)$ reticolo ed Rspazio vettoriale che separa i punti dai chiusi. La compattificazione $e_F X$, ottenuta immergendo X in un cubo reale mediante l'applicazione diagonale e_F , è in generale diversa dalla compattificazione di Wallman $\omega(Z(F))$. In questa nota si dimostra che esiste un reticolo F_z contenente F tale che $\omega(Z(F)) = \omega(Z(F_z)) =$ $= e_{F_z} X$. Ciò implica in particolare che $\omega(Z(F)) \ge e_F X$. Si danno condizioni necessarie e sufficienti affinché valga l'uguaglianza. Infine si dimostra che, se αX è una compattificazione di X tale che $Cl_{\alpha X}(\alpha X \setminus X)$ è zero-dimensionale, allora esiste un'algebra A di funzioni continue limitate definite su X tale che $\omega(Z(A)) = e_A X = \alpha X$.

1. INTRODUCTION

Let X be a Tychonoff space and let F be a subset of $C^*(X)$, the ring of all bounded continuous real functions on X.

If the diagonal map $e_F: X \to \mathbb{R}^F$ is an embedding, in particular if F separates points from closed sets, then we denote by $e_F X$ the compactification $\overline{e_F(X)}$ of X.

One has another compactification naturally associated with F, when Z(F), the family of the zero-sets of the elements of F, is a normal base: the Wallman-type compactification $\omega(Z(F))$ (see [10]). These two compactifications can be very different: for instance it is known that, if X a metrizable non-compact locally compact space and $F = \{f \in C^*(X) | \lim_{x \to \infty} f(x) = r_f \in \mathbb{R}\}$ then Z(F) is a normal base and $\omega(Z(F)) = \beta X \neq e_F X = X \cup \{\infty\}$.

More generally, if αX is a T_2 -compactification of X, and C_{α} is the ring of the real continuous functions which extend to αX , then $Z(C_{\alpha})$ is a normal base and $\omega(Z(C_{\alpha})) \ge \alpha X = e_{C_{\alpha}} X$ (see [7]). In this paper it is shown that, for every compactification $\omega(Z(F))$, where $F \in C^*(X)$ satisfies suitable conditions to guarantee that Z(F) is a normal base, there exists a set $G \in C^*(X)$ such that $\omega(Z(F)) = \omega(Z(G)) = e_G X$.

^(*) Ricerca compiuta presso il Dipartimento di Matematica dell'Università di Perugia e parzialmente finanziata da 40% e 60% M.P.I.

^(**) Indirizzo degli Autori: Dipartimento di Matematica dell'Università - Via Vanvitelli 1 - 06100 Perugia. Tel. 075/40242.

^(***) Nella seduta del 23 aprile 1988.

More precisely, if F is a vector sublattice of $C^*(X)$ such that $\mathbb{R} \subset F$ and e_F is an embedding, then we remark that Z(F) is a normal base and we show how to enlarge F to a lattice F_z such that $Z(F_z) = Z(F)$ and $\omega(Z(F_z)) = e_{F_z}X$. (This implies in particular $\omega(Z(F)) \ge e_F X$).

The above result allows us to get some equivalent conditions for $\omega(Z(F))$ to be equal to $e_F X$.

Finally, we prove that, if αX is a compactification such that $\operatorname{Cl}_{\alpha X}(\alpha X \setminus X)$ is 0-dimensional, then there exists a subring A of C_{α} such that $\alpha X = e_A X = \omega(Z(A))$.

2. Preliminary results

All spaces considered are Tychonoff.

We recall that, for a given (Hausdorff) compactification αX of X, the map $f \mapsto f^{\alpha}$ (where f^{α} is the extension of f to αX) is an algebra-isomorphism and a lattice-isomorphism between C_{α} and $C(\alpha X)$ which is also a homeomorphism with respect to the uniform convergence topology (u.c. topology, for short).

Following [3], we say that $F \,\subset C^*(X)$ generates a compactification αX if αX is equivalent to $e_F X$ (in the usual sense). In this case, we have $F \subset C_{\alpha}$. If $F \subset G \subset C^*(X)$ and F, G generate $\alpha_1 X$, $\alpha_2 X$ respectively, then $\alpha_1 X \leq \alpha_2 X$.

From now on, we do not distinguish between equivalent compactifications.

We wish to recall a result about normal bases, which will be used later. (See [10], for instance, for the definitions of normal bases and Wallman-type compactifications).

Let αX be a compactification of X, \mathcal{L} a family of closed subsets of X. Then we put $\overline{\mathcal{L}} = \{ Cl_{\alpha X}(S) | S \in \mathcal{L} \}.$

PROPOSITION 1. Let αX be a compactification of X and let \mathcal{L} be a lattice of closed subsets of X. Then the following conditions are equivalent:

(i) \mathcal{L} is a normal base for X and $\alpha X = \omega(\mathcal{L})$;

(ii) $\overline{\mathcal{L}}$ is a base for the closed subsets of αX , and disjoint elements of \mathcal{L} have disjoint closures in αX .

This proposition is a slight modification of Theorem 1 in [4] (there ascribed to Shanin). Its condition (b) (that is $\overline{A \cap B} = \overline{A} \cap \overline{B}$ for all $A, B \in \mathcal{L}$) can be replaced by the requirement that disjoint elements of \mathcal{L} have disjoint closures in αX , in view of Lemma 2.3 in [5].

3. Normal bases of zero-sets

Let X be any (Tychonoff) space. Then one has:

PROPOSITION 2. Let $F \in C^*(X)$ be a lattice such that $\mathbb{R} + F \in F$, $\mathbb{R}F \in F$ and which separates points from closed sets. Suppose that, $\forall f, g \in F$ such that $Z(f) \cap Z(g) = \emptyset$, we have $\operatorname{Cl}_{e_FX}(Z(f)) \cap \operatorname{Cl}_{e_FX}(Z(g)) = \emptyset$. Then Z(F) is a normal base and $\omega(Z(F)) = e_FX$.

PROOF. Since Z(F) is a lattice, in view of proposition 1, we only have to prove that $\{Cl_{\alpha X}(Z(f)) | f \in F\}$ is a base for the closed subsets of $\alpha X = e_F X$. By [6], prop. 1, we have that F is a dense subset of C_{α} with respect to the u.c. topology. Hence $F^{\alpha} = \{f^{\alpha} | f \in F\}$, is dense in $C(\alpha X)$, therefore F^{α} separates points from closed subsets of αX . Now, let A be a closed subset of αX , $y \in \alpha X \setminus A$ and let $f^{\alpha} \in F^{\alpha}$ be such that $f^{\alpha}(y) \notin f^{\alpha}(A)$.

If $a = f^{\alpha}(y)$, we set g = |f - a|; then $g \in F$, $g^{\alpha}(y) = 0$ and, for some b > 0, $g^{\alpha}(z) \ge b$ $\forall z \in A$. We note that $Z = g^{-1}([b/2, +\infty[) = Z((g - b/2) \land 0) \in Z(F)$ and $y \notin (g^{\alpha})^{-1}([b/2, +\infty[) \supset \operatorname{Cl}_{\alpha X}(Z))$. It remains only to show that $A \subset \operatorname{Cl}_{\alpha X}(Z)$. Let $t \in A$ and let U be a neighbourhood of t in αX . Since also $(g^{\alpha})^{-1}([b/2, +\infty[)$ is a neighbourhood of t in αX , we have

$$\emptyset \neq X \cap (U \cap (g^{\alpha})^{-1}([b/2, +\infty[))) = U \cap Z.$$

Hence $t \in \operatorname{Cl}_{\alpha X}(Z)$.

In the above proposition the hypothesis «*F* separates points from closed sets» can be replaced by « e_F is an embedding». In fact, these two conditions are equivalent when *F* is a lattice such that $\mathbb{R}F \subset F$ and $\mathbb{R} + F \subset F$.

If $f \in C^*(X)$, we set

$$S(f) = \{ f^{-1}([a, b]) | a, b \in \mathbb{R} \}$$

and, if $F \in C^*(X)$ we put $S(F) = \bigcup_{f \in F} S(f)$.

We note that S(F) = Z(F) when F is a lattice such that $\mathbb{R} + F \subset F$, $\mathbb{R}F \subset F$. In fact

$$f^{-1}([a,b]) = f^{-1}([a,+\infty[) \cap f^{-1}(]-\infty,b]) = Z((f-a) \wedge 0) \cap Z((f-b) \vee 0) \in Z(F).$$

Under the same hypotheses on F, if we put

$$F_{z} = \{g \in C^{*}(X) | S(g) \subset Z(F)\},\$$

then we have $F \in F_z$ and $Z(F_z) = Z(F)$. Furthermore one can easily prove that F_z is a lattice and $\mathbb{R} + F_z \in F_z$, $\mathbb{R}F_z \in F_z$.

THEOREM 3. Let $F \in C^*(X)$ be a vector sublattice over \mathbb{R} , which contains all constant functions and separates points from closed sets. Then Z(F) is a normal base and $\omega(Z(F)) = \omega(Z(F_z)) = e_{F_z}X$. Therefore $\omega(Z(F)) \ge e_F X$.

PROOF. Put $\alpha X = e_{F,}X$. Let $f, g \in F$ be such that $Z(f) \cap Z(g) = \emptyset$. If

$$b = \frac{|f|}{|f| + |g|},$$

one easily sees that $h \in F_z$. Then *h* has a continuous extension h^{α} to αX , hence $(h^{\alpha})^{-1}(0)$, $(h^{\alpha})^{-1}(1)$ are disjoint closed subsets of αX containing respectively Z(f), Z(g). Since $Z(F_z) = Z(F)$, then F_z satisfies all the hypoteses of Proposition 2.

PROPOSITION 4. Let $F \subset C^*(X)$ be a vector sublattice over R which contains all constant functions and separates points from closed sets. Then the following are equivalent:

- (i) $\omega(Z(F)) = e_F X;$
- (ii) For every $f, g \in F, Z(f) \cap Z(g) = \emptyset$ implies

$$\operatorname{Cl}_{e_{\mathbb{R}}X}(Z(f)) \cap \operatorname{Cl}_{e_{\mathbb{R}}X}(Z(g)) = \emptyset;$$

- (iii) $F_z \in C_{e_F}$;
- (iv) F is a dense subset of F_z with respect to u.c. topology.

PROOF. (i) \Rightarrow (ii) is a consequence of well known facts about normal bases (see also prop. 1).

(ii) \Rightarrow (iii). If $h \in F_z$ and $a, b \in \mathbb{R}$, a > b, then $h^{-1}([a, +\infty[), h^{-1}(] - \infty, b])$ are disjoint sets belonging to Z(F). So they have disjoint closures in αX . Then, by [6], cor. 3, *h* has a continuous extension to $e_F X$.

(iii) \Rightarrow (i) The hypothesis implies $e_F X = e_{F_z} X$, which is equal to $\omega(Z(F))$ by Thm. 3.

Finally, since F is dense in C_{α} and C_{α} is a closed set in $C^*(X)$, we have (iii) \Leftrightarrow (iv).

The following proposition establishes that, for every compactification αX whose remainder is sufficiently disconnected (in a sense to be made precise), there exists a subring A of C_{α} such that $\alpha X = e_A X = \omega(Z(A))$.

PROPOSITION 5. Let αX be a compactification of X and let $A = \{f \in C_{\alpha} | \forall p \in Cl_{\alpha X} (\alpha X \setminus X) \text{ there is a neighbourhood } U \text{ of } p \text{ such that } f^{\alpha} | U \text{ is constant} \}.$

Then $\alpha X = e_A X = \omega(Z(A))$ if and only if $\operatorname{Cl}_{\alpha X}(\alpha X \setminus X)$ is 0-dimensional.

PROOF. First we show that disjoint elements of Z(A) have disjoint closures in αX . Suppose that $Z(f) \cap Z(g) = \emptyset$ with $f, g \in A$.

Now, if $p \in \operatorname{Cl}_{\alpha X}(Z(f)) \cap \operatorname{Cl}_{\alpha X}(Z(g))$, let U_f and U_g be neighbourhoods of p such that $f^{\alpha}|U_f$ and $g^{\alpha}|U_g$ are constant.

Then f(x) = g(x) = 0 for every $x \in U_f \cap U_g \cap X$, which is non-empty. This is a contradiction, because $Z(f) \cap Z(g) = \emptyset$. Now, let $Y = \operatorname{Cl}_{\alpha X}(\alpha X \setminus X)$ be 0-dimensional. Since A is obviously a lattice and an R-algebra, if we prove that A generates αX then, by applying Proposition 4, we obtain $\alpha X = e_A X = \omega(Z(A))$. Therefore it is sufficient to prove that A^{α} separates points of αX (see [3], thm. 2.3).

Let $x, y \in \alpha X$, $x \neq y$. First suppose that one of them, say x, does not belong to Y. Then choose a closed neighbourhood V of $Y \cup \{y\}$ not containing x. If $h: \alpha X \to \mathbb{R}$ is a continuous map such that h(x) = 0 and h(V) = 1, one has $h|X \in A$ and $h = (h|X)^{\alpha}$ separates x from y.

Now, suppose $x, y \in Y$. Since Y is 0-dimensional, there exist disjoint closed subsets C_1 and C_2 of Y (hence closed in αX) such that $x \in C_1$, $y \in C_2$ and $C_1 \cup C_2 = Y$. Let

 V_1 , V_2 be disjoint closed neighbourhoods in αX of C_1 and C_2 respectively, and let $k: \alpha X \to \mathbb{R}$ be a continuous map such that $k(C_1) = 0$ and $k(C_2) = 1$. As before $k | X \in A$ and $k(x) \neq k(y)$.

Conversely, suppose that $Y = Cl_{\alpha X}(\alpha X \setminus X)$ is not 0-dimensional. Then there is a connected subset C of Y which is not a singleton. Since locally constant functions defined on a connected space are constant, then A^{α} does not separate points of C.

Moreover, it cannot happen that $\alpha X = \omega(Z(A))$. Indeed, since A^{α} does not separate points of αX , then $\overline{Z(A)}$ is not a base for closed subsets of αX , because $\operatorname{Cl}_{\alpha X}(Z(f)) = Z(f^{\alpha})$ for all $f \in A$.

As a final remark, we point out that Brooks, in [7], used similar arguments to prove that, in the case of X locally compact, $\alpha X = \omega(Z(A))$ if and only if $\alpha X \setminus X$ is 0-dimensional.

References

- R. A. ALÒ and H. L. SHAPIRO (1968) A note on compactifications and semi-normal spaces, J. Austr. Math. Soc., 8, 102-108.
- [2] P. C. BAAYEN and J. VAN MILL (1978) Compactifications of locally compact spaces with zero-dimensional remainder, Top. Appl., 9, 125-129.
- [3] B. J. BALL and S. YOKURA (1983) Compactifications determined by subsets of C* (X), II, Top. Appl., 15, 1-6.
- [4] C. BANDT (1977) On Wallman-Shanin compactifications, Mat. Nachr., 77, 333-351.
- [5] C. M. BILES (1970) Wallman-type compactifications, Proc. Am. Math. Soc., 25, 363-368.
- [6] J. L. BLASCO (1983) Hausdorff compactifications and Lebesgue sets, Top. Appl., 15, 111-117.
- [7] R. M. BROOKS (1967) On Wallman compactifications, Fund. Math., 60, 157-173.
- [8] A. CATERINO and M. C. VIPERA Weight of a compactification and generating sets of functions, Rendic. Sem. Mat. Univ. Padova, to appear.
- [9] R. E. CHANDLER (1976) Hausdorff Compactification, Marcel Dekker, New York.
- [10] O. FRINK (1964) Compactifications and semi-normal spaces, Amer. J. Math., 86, 602-607.
- [11] E. F. STEINER (1968) Wallman spaces and compactifications, Fund. Math., 61, 295-304.