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Analisi matematica. — Geodesies on typical convex surfaces. N o t a d i P E T E R M A N ­

F R E D G R U B E R , p re sen ta t a (*) dal Socio G . C I M M I N O . 

In memoriam Antonio Pignedoli (1918-1989) 

ABSTRACT. — Using Baire categories uniqueness of geodesie segments and existence of closed 
geodesies on typical convex surfaces are investigated. 

KEY WORDS: Convex surfaces; Geodesies; Uniqueness of geodesic segments; Closed geodesies. 

RIASSUNTO. — Linee geodetiche su superfici convesse tipiche. Si investigano problemi delle unicità di 
segmenti geodetici e della esistenza di linee geodetiche chiuse su superfici convesse che sono tipiche nel 
senso delle categorie Baire. 

1 . I N T R O D U C T I O N A N D S T A T E M E N T O F R E S U L T S 

The investigation of typical elements of a space in the sense of Baire categories has 
a long history starting with results on spaces of continuous functions. In convexity the 
appearance of such results is of a more recent date, see the surveys [6,14]. This arti­
cle deals with geodesies on convex surfaces. 

Theorems of Zamfirescu[13] show that geodesic segments or shortest paths on 
typical convex surfaces can behave quite unexpectedly. For example, he proves that 
most points on a typical convex surface are not relative interior points of any geodesic 
segment. Our first result indicates a more regular behaviour. For most convex surfaces 
most pairs of points are connected by a unique geodesic segment. The second result 
shows that this cannot be extended to all pairs of points, at least in dimension 3. Fi­
nally we prove that most convex surfaces in dimension 3 contain no simple closed 
geodesic. This contrasts a famous theorem of Lusternik and Schnirelman [9] saying 
that on a sufficiently smooth topological sphere in dimension 3 there are at least 3 dis­
tinct simple closed geodesies. See also [8]. (The concepts of geodesies in convexity 
and in differential geometry coincide for sufficiently smooth convex surfaces.) 

A convex body in d-dimensional euclidean space Ed is a compact convex subset of 
E^ with non-empty interior. Its boundary is a (closed) convex surface. Call a convex 
surface polytopal if the underlying convex body is a polytope. By a geodesic segment or 
shortest path on a convex surface S we understand a continuous curve on S connecting 
two points of S and having minimal euclidean length among all such curves. For any 
pair of points p,q^S there exists a geodesic segment on S connecting pyq. Let p$(p,q) 
denote its length. Then p$ is a metric on S, called the intrinsic or geodesic metric. The 
topology of S induced by p$ coincides with the relative topology of S as a subset of Bd. 
Hence the metric space (S}ps) is complete. See [1,4]. 

(*) Nella seduta del 22 giugno 1988. 
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On the space of non-empty compact subsets of Ed define a metric S by 

8(C, D) = max] sup inf \x — y\, sup inf \x — y\ 
hceD yeD yeD xeC 

where | | denotes the euclidean norm on E .̂ S was first defined and put to use by 
Hausdorff and Blaschke. The selection theorem of Blaschke yields that the space S of 
convex surfaces in Ed endowed with the topology induced by S is locally compact. 
See.[2,5]. 

In a complete metric or locally compact space a meager set or a set of first Baire 
category, that is a countable union of nowhere dense sets, can be considered small by 
Baire's category theorem. When speaking of most or of typical elements of such a 
space we mean all elements, except those in a meager set. See [7,10]. 

THEOREM 1. For most convex surfaces S in Ed most pairs of points (p,q) eS xS are 
connected by a unique geodesic segment. 

Here the cartesian product S X S is considered as a compact subset of E2d. One 
must not expect to be able to substantially improve upon Theorem 1, since for d= 3 
we have the following result: 

THEOREM 2. For most convex surfaces S in E and any p eS the set of points q e S 
which are connected with p by at least two distinct geodesic segments is dense in 
S. 

A geodesic G on a convex surface S is defined as a continuous curve on S which lo­
cally is a geodesic segment. It has always a parametrization in terms of arc length. G is 
simple if in a parametrization in terms of arc length points corresponding to different 
values of the parameter are distinct except, possibly, for the endpoints. A simple 
geodesic G is closed if it has finite lenght, its end points coincide and are in the relative 
interior of a geodesic segment contained in G. 

More general than the concept of geodesies is that of quasigeodesics; these are 
«limits» of geodesies, see e.g. [1], p. 373, [4], p, 114. Using the theorem of Luster-
nik and Schnirelman [9] referred to above, Pogorelov[ll] proved in the convex 
case the following extension of it: On any convex surface in E3 there are at least three 
distinct closed quasigeodesics. Our last result shows that in Pogorelov's theorem one 
cannot replace quasigeodesics by geodesies. 

THEOREM 3. Most convex surfaces in E3 confain no simple closed geodesic. 

2. PROOF OF THEOREM 1 

We may clearly assume that J > 3 . To facilitate the proof first some needed tools 
are collected. 

For the moment being we call a geodesic as defined in sect. 1 a geodesic in the sense 
of convexity. By & geodesic in the sense of differential geometry on a convex surface of 
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class C2 we understand a curve satisfying the corresponding differential equation; see 
e.g. [3]y p. 178. The euclidean length of a continuous curve on a convex surface is 
defined as the supremum of the euclidean lengths of the inscribed polygons. For a 
convex surface of class C2 a formally slightly different definition of Siegel[12] leads 
to the same value for the euclidean length. (This can be seen by representing the con­
vex surface locally in the form ^d=f(^Xi...y^-\) w i t h / e C2.) Thus a result of 
Siegel[12], p. 86, can be stated as follows: 

Let S be a convex surface of class C2 with positive gaussian curvature. Then 
(1) any geodesic segment on £ in the sense of convexity is a geodesic in the sense 

of differential geometry. 

In the following it will always be clear from the context which type of geodesic we 
consider. 

A sequence of continuous curves in E^ is said to converge to a continuous curve if 
there are parametrizations of these curves and of the limiting curve, all defined on the 
same compact interval, for which the convergence is uniform. Note that convergence 
in this sense implies convergence of (the sets determined by) the curves in the sense of 
the metric S. Convergence for a sequence of convex surfaces is defined by means of the 
metric $, see the definition of the topology on the space S of all convex surfaces in sect. 
1. The next proposition is taken from Alexandrow[l], p. 106; see also [4], pp. 
75,81. 

Let (S; ) be a sequence of convex surfaces converging to a convex surface S 
and for each i let G/ be a geodesic segment in 5/ connecting points piy q{ e S{. 

(2) Then there is a subsequence Gik converging to a geodesic segment G on S 
and subsequences (pik), (qik) converging to points p resp. q in S which are 
connected by G. 

The definition of S yields the next proposition: 

Let {Si ) be a sequence of convex surfaces converging to a convex surface S. If 
(3) p e S then there are points, pi e Si such that (pt•) converges to p. Conversely, the 

limit of a convergent sequence (pi ) where pi e Si is in S. 

Since a metric is continuous with respect to the topology induced by it, the following 
holds: 

Let (Q)y (Di) be sequences of non-empty compact sets in E^ converging to 
(4) compact sets C and D, respectively, and let s > 0. If £(Q, D, ) ̂  s for all /, then 

S(C,D)^s too. 

Having available the above tools, the proof of Theorem 1 is comparatively simple. 
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We first prove the following: 

Let S be a convex surface of class C3 with positive gaussian curvature and let G 
(5) be a geodesic segment in S connecting points p,qeS. Then if r,s e G\{p, q}, 

the subsegment of G connecting r, s is the unique geodesic segment in S con­
necting r, s. 

Let H be a geodesic segment in S connecting r, s and suppose that H <£ G. Then we 
may choose distinct points t,ueG D H such that the subsegment K of H connecting 
/, u intersects G at t, u only. By exchanging /, u if necessary we may assume that p, ty u, q 
are in this order on G. We distinguish two cases: 

(i) The tangents of G and K at / coincide. Since G and K both satisfy the same 
differential equation and the same initial conditions at / and since the differential 
equations is of class C1, we have that KcG, a contradiction. 

(ii) The tangents of G and K at / are distinct. Then the subsegment of G from p 
to /, the geodesic segment K and the subsegment of G from u to q form a geodesic seg­
ment in S connecting p,q which is not of class C2, in contradiction to (1). This proves 
(5). The next proposition is an immediate consequence of (5). 

Let S be a convex surface of class C3 with positive gaussian curvature. Then 
(6) there is a set of pairs (ry s) dense in S X S such that r, s are connected by a 

unique geodesic segment in S. 

For kym = 1,2,..., let 

Skm-— {S e S- There is a pair (p, q) e SxS such that for any pair (r, s) e S X S 
with (|p — r\)2 + \q — s^ r < l/k there are two geodesic segments in S connect­
ing r,s and having distance ^ l/m). 

! 
Here distance means distance in the sense of the metric è of the sets determined by the 

geodesies. Using (2), (3) and (4) it is routine to show that 

Skm is closed in 5 . 

By (6), 

Skm has empty interior in S. 

Thus 

(7) U S^m is meager is S. 
k,m 

For S e S and T^ = 1,2,..., let 

•4»(£) = {(p>^) eSxS: There are two geodesic segments in S connecting p,q 
and having distance ^ l/m}. 
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Clearly, 

U Am(S) = {(p,q) eSxS: There are two distinct geodesic segments in S con­io) • •: . m - # 
necting /?,#}. 

A simple version of (2) (Si = S2 = ... = S) together with (4) yields that Am (S) is closed 
in S X S. If Am (S) has non-empty interior in S X S, then the definition of Skm shows that 
S e Skm for all sufficiently large k. Thus S e S \ U Skm implies that Am (S) has empty in­
terior for all'w. Hence 

S e S \ U Sfa implies that U Am (S) is meager in S. 
k,m m 

Together with (7) and (8) this confirms Theorem 1. 

3. PROOF OF THEOREM 2. 

In this section let d = 3 . We first put together some background material. Zam-
firescu[13] proved that 

(9) on most convex surfaces most points are endpoints> 

that is to say, they are not relative interior points of geodesic segments. The next 
proposition is due to Alexandrow[l], p. 48; see also [4], p. 98. 

Let G, H be geodesic segments on a convex surface. Then precisely one of the 
following holds: 
(i) GnH = 0; 

(10) (ii) Gr\H consists of exactly one point; 
(iii) G,H have precisely their (ordinary) endpoints in common; 
(iv) Gn H is a subsegment of both G and H, one endpoint of which is an end-
point of G and the other one an endpoint of H. 

If a geodesic segment on a convex surface is the unique geodesic segment connect­
ing its endpoints p,qwe call it unique and denote it G(p,q). Proposition (2) yields the 
following: 

Let G(p,t0) be a unique geodesic segment on a convex surface S. Then any 
(11) geodesic segment in S connecting p,t; eS is arbitrarily close to g(p,t0) (in the 

sense of the metric 8) assuming that /,• is sufficiently close to t0. 

From the definition of S we easily conclude the following: 

Let (Q) be a sequence of non-empty compact sets converging to a compact set 
(12) C in the sense of the metric 8. If the C/s are all contained in a fixed closed set 

D, then C is also contained in D. 
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By (9) it is sufficient for the proof of Theorem 2 to show the following 

proposition. 

Let S be a convex surface with a dense set of endpoints, let p,q £ S b e distinct 

(13) and let N be a neighbourhood of q in S with p £ N. Then there is a point teN 

which is connected with p by two distinct geodesic segments. 

To prove this, assume the contrary; i.e. 

(14) any point of N is connected with p by a unique geodesic segment. 

Let r,s e N , r # 5 be endpoints which are so close to q that a geodesic segment 

G(r,s) connecting r,s satisfies the inclusion 

(15) ' G(r,s)cN. 

By (14) the geodesic segments G(p, r), G(p, s) are unique. Since r =£ s are endpoints and 

r,s¥=p, an application of (10) yields that 

(16) G(pM^G(p,s)^{p}. 

Since r$G{p,s),s$G(pyr) and p $ G(r,s)(cN) a further application of (10) shows 

that 

(17) G{pyr)nG(rys) = {r}/ G(p,s)n 

By (16) and (17) the geodesic segments G{p,r)yG{r, s), G(s,p) define a closed Jordan 

curve on S, say / . Let U, V c S be the relatively open Jordan domains determined by 

/• 

For t e G(r,s)\{rys} the geodesic segment G{prt) is unique and 
1 j ; G ( p , / ) \ f e / } c U o r . G ( p , / ) \ { p , / } G K • .;•.' 

Uniqueness follows from (14) and (15). For the proof of the rest it suffices to show 
that 

(19) | ; G ( p , / ) n / = { p , / } . 

By (17) / $ G(pyr)yG(p,s) hold and r, s $ G(p, t) hold since r,s^p, t and both are end-

points. Hence (10) yields that 

(20) G(p, /) n Gfar) = G(p, t) nG(p9s) = {p}. 

From r,s$G(pyt) and p$G(r,s)(cN) together with (10) we infer that 

(21). G ( p , f ) n G f o j ) = {/}.. 

(20) and (21) yield (19) and thus the proof of (18) is concluded. 

Let / (T) , 0 =̂  T =̂  a, be a parametrization of G(r, s) in terms of arc length such that 

/(0) = ry /(a) - s. Define 

• ' 4 = { T 6 (0,a): G(/>,/(r)) C / U U } , 

B = { T € ( 0 , a ) : G ( p , / ( T ) ) G / u y } . 

For the proof that 

(22) A,B are closed in (0,a), 
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it is sufficient to consider the case of A. Let (T,-) be a sequence in A converging to 
T0 6(0, a). We have to prove that T0 e A. By (14) and (15) the geodesic segments 
G(p,t(Ti)),G(p,t(r0)) are unique. Since /(TV)—>/(T0), proposition (11) implies that 
G(p, /(iy)) -» G(p, ^(T0 )). Since T, e i4, we obtain that G(p, /(TZ• )) c / u U. Hence 
G(p,/(T0)) c / u U b y (12) or, equivalently, T0 € A This proves (22). Since 

, 4 n £ = 0 and AuB = (0,a) 

by (18) and since the interval (0,a) is connected, (22) can hold only if either A = 0 or 
B = 0. We may suppose B = 0 and thus 4̂ = (0,a). Hence 

, for all T 6 ( 0 , a) the unique geodesic segment G(p,/(r)) is contained in 

/ O U . 

The last step of our proof requires to show that 

(24) JuU= U{G(p,/(T)):T€[0,a]}. 

Let ueJuU. Hue J then ueG(pyr) or u e G(r,s) or ue G(s,p) and thus « e G(p,t{r)) 
tor a suitable r e [0,a]. Suppose now that « e U . Let T(0) = G(p,r). For r e (0,a] con­
sider the closed Jordan curve determined by G(p,r), G{p,t{z))y G(t(z),p) (see (17), 
(20), (21)). By (23) it is contained i n / u U. Let T(T) be the closed set bounded by this 
curve and contained in / u U and define 

T0 = sup{re [0, a]: u$ T(T)}. 

Assume first that & is a relative interior point of T(T0 ). By the definition of T0 there is a 
sequence Ty in [0, a] with Tt•• —» T0 and such that u $ T(T/). It follows then from (14) and 
(15) that G(p,t(z0)) is unique. Hence (11) yields that G(p,/(Tf-))-> G(p,t{r0)) Since by 
assumption & is a relative interior point of T(T 0 ) , we thus obtain that u is a relative in­
terior point of T(iy ) for / sufficiently large, yielding a contradiction. Assume next that 
u is an exterior point of T(iy). Since ueUcT(a), we must have r 0 < a . Since 
G(p,/(r0)) is unique, it follows from (11) that G(p,t(r)) is arbitrarily close to 
G ( P , / ( T 0 ) ) for TÌ>T 0 sufficiently close to T0 in contradiction to the definition of T0. 

Thus the only remaining possibility is that ue G(p,/(T0)), concluding the proof of 
(24). 

(24) contradicts the fact that the relatively open subsect U of S contains endpoints. 
This proves (13) and thus concludes the proof of Theorem 2. 

4. PROOF OF THEOREM 3 

Let d=3. As a consequence of the Àrzelà-Ascoli theorem the following results, 
see also [4], p. 75: 

Let (G/) be a sequence of continuous curves of uniformly bounded lengths 
(25) A(GZ), all contained in a bounded subset of E3. Then there is a continuous 

curve G with G,—» G and A(G) ^ l im inf A(G,). 

(For the concept of convergence of curves see sect. 2.) Arguments of 
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Alexandrow[l], pp. 377, 378, imply the next two propositions; see also [4], 
p. 113. 

A polytopal convex surface in E3, for which the sum of the curvatures of any 
set of vertices never equals 2?r, contains no simple closed geodesic. 

The set of polytopal convex surfaces in E3 with the property that the sum of 
the curvatures of any set of vertices never equals 2iz is dense in S. 

(The curvature of a vertex v of a polytopal convex surface P is three times the volume 
of the intersection of the solid euclidean unit ball in E3 with the convex polyhedral 
cone generated by the exterior normal vectors of the facets of P containing p.) 

To prove Theorem 3 define for k,m = 1,2,'..., 

S km = {S e S- $ contains a simple closed geodesic G with X(G)^k such that any 
subarc H of G with X(H) ̂  l/k.is a geodesic segment and for any pair p,q e G 
with distance measured along G at least l/k the inequality ps(pyq)^ l/m 
holds}. 

From propositions (2), (3) and (25) follows: 

Skm is closed in S. 

(26) and (27) imply that 

Skm has empty in interior 5. 

Thus 

U Skm is meager in 5. 
k,m ' -. 

Since this union is precisely the set of all S e S that contain a simple closed geodesic, 
Theorem 3 is proved. 

A C K N O W L E D G E M E N T S 

For discussions which led to considerable simplifications of the original proofs of Theorems 1,2 I am 
obliged to Doctors Buchta and Sorger. Many thanks go to Doctor Chatterjee and Professor Schnitzer for 
their helpful hints. 
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