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Geometr ia algebrica. — On a linearity criterion for algebraic 

systems of divisors on a projective variety (•). No ta di U M B E R T O B A R -

TOCCI <**> e L u c i o GUERRA <••), presenta ta <•*•> dal Socio E . M A R 

T I N E L L I . 

ABSTRACT. — In the present paper, it is established in any characteristic the va
lidity of a classical theorem of Enriques', stating the linearity of any algebraic system of 
divisors on a projective variety, which has index 1 and whose generic element is irredu
cible, as soon as its dimension is at least 2. 

KEY WORDS: Divisors; Algebraic/linear systems; Chow varieties. 

RIASSUNTO. — Su un criterio di linearità per sistemi algebrici di divisori su una varietà 
proiettiva. Nel presente lavoro, viene stabilita la validità in ogni caratteristica di un 
classico teorema di Enriques, che stabilisce la linearità di ogni sistema algebrico di 
divisori di una varietà proiettiva, il quale abbia indice 1 ed il cui elemento generico 
sia irriducibile, non appena detto sistema abbia dimensione almeno 2. 

INTRODUCTION 

For an irreducible algebraic system 2 a of hypersurfaces (of degree m) in 
a complex projective space Pr

c, the index v of 2 is defined as the number of 
distinct hypersurfaces of 2 passing through a generic set of S points of P r , whe
re S = dimensipn of 2 . 

The classical Index theorem (1 ) (see for instance [1], p. 188) states that 
the index v of 2 equals the degree of the parameter variety T of 2 , which is 
embedded in the projective space P N , N = (n*r) — 1 , representing all hyper
surfaces of degree m in P r , provided that : 

(i) the generic element of 2 has no multiple components (in this case, 2 
is also often said to have no << variable » multiple components}. 

From this Index theorem one obtains the following simple characteriza
tion of linear systems of hypersurfaces in P r , namely that : an irreducible alge-

(*) Work carried out as part of the activity of the National Research Group 
in Algebraic Geometry. 

(**) Dipartimento di Matematica, Università, Perugia. 
(***) Nella seduta del 19 giugno 1987. 
(1) Not to be confused with the more widely known Index theorem of Hodge-

Hirzebruch-Atiyah-Singer ! 
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braic system 2 as before, which satisfies assumption (i), is a linear system if, and 
only if, its index is equal to I. 

This characterization can easily be extended to algebraic systems 2 of 
positive Weil divisors on a normal projective variety Xd of P r (d = dimension 
of X ) , provided that the following (necessary) condition is considered in addi
tion to the previous ones: 

(ii) S w totally contained within a linear system. 

Let us explicitly state this result: 

PROPOSITION 1. An irreducible algebraic system 2 of divisors on X , sa
tisfying both conditions (i) and (ii), is a linear system if, and only if, its index 
is equal to 1. 

As a matter of fact, under assumption (ii), the system 2 is cut out on X by 
some algebraic system 2 ' of hypersurfaces of P r (up to some possible fixed di
visor A: 2 + A = 2 ' • X), and what one can actually prove is that the index 
v of 2 equals the index v' of 2 ' , whence the conclusion. 

A deep improvement of Proposition 1 is given by the following: 

THEOREM (Enriques, [2]). An irreducible algebraic system 2 s of divisors 
on X.d , where a > 2 , having index v = 1 and dimension S > 2 , is a linear system 
provided that it only satisfies the following further condition : 

(i') the generic element of 2 is irreducible. 

Condition (i') is a stronger version of condition (i); the assumption that 
v = 1 is the obvious necessary condition for an algebraic system to be linear. 
What is remarkable in Enriques' theorem is that assumption (ii) is not needed 
any more as in Proposition 1. ; as a matter of fact, we shall see that in the present 
set-up it is automatically satisfied as soon as the dimension of 2 is at least 2. 

Of course, both conditions (i') and § > 2 are necessary^. As a matter 
of fact, it is well known that on some variety X one can find a non-linear pencil 
(that is to say, a 1-dimensional algebraic system of index 1) whose generic ele
ment is irreducible; for smooth surfaces in characteristic zero, this happens 
precisely when X is irregular ([3], p. 98). Furthermore, if X carries a non
linear pencil 2 , then X also carries a non-linear system of index 1 and dimen
sion § > 2 for each value of S , since it is enough then to consider the system 
made up of all possible sums of S elements of 2 . 

With these premises, when one allows the base field to be any algebraically 
closed field K of arbitrary characteristic p , then the question arises as to which 
of the previous statements remain true. 

(2) In [3], p. 25, the statement of Enriques' theorem is correct only on condition 
that with an "irreducible algebraic system", one satisfying (i') is meant, and not, as 
more usual, one whose parameter variety is irreducible, as we mean in this paper too. 
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In [4] a general version of the Index theorem is given, from which Propo
sition 1 follows exactly the same as in the classical case (we refer to the Biblio
graphy given in [4] for more historical sources on the present subject). 

Our task in the present paper is to prove that Enriques' theorem also main
tains its validity in all positive characteristics. 

We shall do that by bringing Enriques' proof into a rigorous algebraic 
form, which will then be also valid for any value of p . Essentially, the proof 
only rests on the extension of Proposition 1 quoted above and on a classical cri
terion relating linear equivalence on X to linear equivalence on a generic 
hyperplane section of X . The main point is however a reduction argument to a 
special case, which needs to be carefully developed: we shall do that by using 
some results from the theory of Chow varieties. 

§ 1. PRELIMINARY REMARKS ON ALGEBRAIC SYSTEMS 

We assume X.d embedded in some projective space P r . The positive 
^-dimensional cycles of a fixed degree m in Pr, with support in X , are repre
sented by the points of a closed subset Ch^>w (X) of the Chow variety Ch^>w (P**) 
parametrizing all positive ^-dimensional cycles of degree m in Pr (here the word 
" v a r i e t y " is traditionally used even when Chk'm (Pr) is reducible). 

If T is any sub variety of Ch*>w (X) , then the set 2 (T) of all cycles of X 
whose Chow points lie in T is called the algebraic system associated with T . 
The fact that T is a variety is usually expressed by saying that 2 (T) is an irre
ducible algebraic system. The dimension of 2 (T) is then, by definition, the 
dimension of T . 

Even though the algebraic structure of the Chow varieties Ch^>w (X) may 
depend on the fixed projective embedding of X , nevertheless their Zariski 
topology doeslnot, as follows from [5], § 2, hence all the above definitions about 
algebraic systems do not either. 

However, an algebraic system can also be given by means of any variety 
U and positive cycle Z on U X X , such that all the irreducible components 
of Z project onto U . Indeed, with a generic (here and in the following, this 
means " for almost all ") ue U we can then associate the cycle Zu= p r x (Z • 
• u X X ) , which has constant dimension k and degree m . Of course, the 

same cycle may be associated with several u , and Zu need not be defined for 
all u . But, because of the following Proposition, we obtain an algebraic sy
stem in the sense of the previous definition. 

PROPOSITION 2. In the present situation, the closure of the set of Chow points 
of cycles of the form Zu is a subvariety T of Ch '̂™ (X), and there exists an irre
ducible correspondence between U and T which associates the Chow point of Zu 

with each ue U such that Zu is defined. 
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Proof. Is found in [5], §2. The correspondence in question is actually 
the graph of a rational map U -> T but, unfortunately, a complete proof of 
this result, valid in any characteristic, does not seem to be available in the exist
ing literature (see [6] for some more references and remarks); however, we 
shall not need this more precise statement. 

Conversely, for any algebraic system 2 (T), there is an incidence cycle I on 
T x X such that 1 1 = cycle whose Chow point is t, for almost all t e T (fol
lows from [7], p. 107, § 8 (è)). 

Let us recall just one more simple definition, which is used throughout 
the paper. If 2 is an algebraic system on X , we say that its generic element 
is irreducible if its Chow variety T is not contained in the closed subset of 
Ch*>m (X) parametrizing reducible cycles. If 2 is given by means of the pair 
(U , Z ) , this means that Z is irreducible and, in addition, that Zu is irreducible 
for a generic u I 

Consider, now, algebraic systems of positive Weil divisors of X , i.e. the 
case k = d — 1 . In this paper we are concerned with proving that, in this 
case, a certain 2 (T) is a linear system (the hypothesis that X is a normal variety 
is set so that the concepts of the theory of linear systems of divisors may legiti
mately be applied). In the present context, this means that the following two 
conditions hold (let us denote by D^ the divisor whose Chow point is t): 

(a) for all pairs t, T e T , the divisors D t and DT are linearly equiva
lent (L is totally contained within the complete linear system Vs = | D^ |); 

(b) the image of T in the natural mapping T -> P s , defined by § (6) = 
= D e , is a linear subspace of Ps (when this happens, one can prove that cj> is 
actually an isomorphism of T onto the linear space cj> ( T ) , [6]). 

If we assume that 2 satisfies all conditions in the statement of Enriques' 
theorem then, in order to prove that 2 is a linear system, it suffices to check {a), 
since (b) then follows in virtue of Proposition 1. We point out that, in order 
to prove (a)y it is enough to prove: 

(a') for almost all pairs I , T G T , the divisors D t and DT are rationally 
equivalent. This is because, for divisors on a normal variety, rational equiva
lence is the same as linear equivalence and since then the Chow variety T of 
the system 2 and the Chow variety L of the linear system | D t | intersect at 
least in a set of points which is open as a subset of T , whence T ^ L and 2 ^ 
£ | D ( | . 

We end this section with quoting the following criterion for linear equi
valence, which will be needed in § 2. 

PROPOSITION 3. Let D be a divisor on a normal variety X c F o / dimen
sion d > 3 . Then, for a generic hyperplane L o / F , D is linearly equivalent 
to zero on X if and only if D • L is linearly equivalent to zero on Y = X • L . 

Proof. [8], p. I l l , Theorem 2. 
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In the next §§2-3, we will show how the proof of the general assertion 
of Enriques' theorem can be reduced to the proof of some special case of the 
assertion itself. 

§2. REDUCTION TO THE 2-DIMENSIONAL CASE 

Here we show that, in order to prove the theorem (or, as is the same, in 
order to prove (#')), we may confine ourselves to the case when d = S = 2. 

2.1. It suffices to deal with the case d = dim (X) = 2 . 

In fact, if d > 3 , given two divisors Dt, DT of S , then a generic hyper-
plane L of the ambient space Pr cuts out on X and irreducible normal variety 
Y = X • L (see [9]) and is such that both D, • L , DT • L are defined and 
D e • L is also defined for almost all 8 . Thus 2 determines an algebraic 
system 2 ' = 2 • L supported in Y , containing both D^ • L , D_ • L , which 
still satisfies all the hypotheses of Enriques' theorem. By induction on d , we 
know that D^ • L , DT • L are linearly equivalent on Y , whence we deduce 
that D j , DT are linearly equivalent on X , in virtue of Proposition 3. 

2.2. We may also suppose without loss of generality that S = dim (2) = 2 . 

Indeed, if S > 3 , then two generic irreducible divisors D^, DT of 2 both 
contain such a point # e X that the subsystem 2^. = 2 (T^) , where T^ = 
= {t e T | Supp (Dt) 3 x} , is irreducible of dimension • S — 1 and index 1 . 
The generic element of 2^ being clearly irreducible, we know therefore, by in
duction on S , that D^, DT are linearly equivalent divisors. There is one basic 
fact which was implicitely used in the argument above. Let us state it also 
for future reference, as a: 

Remark '2.3. Let 2 be an irreducible algebraic system on a normal variety 
X . If xe X is not a base point of 2 , then 2^ is an algebraic system whose 
Chow variety T^ is of pure dimension S— 1 and the index of %x (which is 
defined in the same way as in the introduction) is still equal to v . Further
more, if v = 1 , then 2^ is necessarily irreducible. 

§3 . FURTHER REDUCTION TO A MORE SPECIAL CASE 

From now on we assume that X is a (normal) surface and 2 (T) is a 2 -
dimensional system on X satisfying all the hypotheses of Enriques' theorem. 

There is another important invariant of the system 2 which we are going 
to introduce. To this purpose, consider the following incidence correspon
dence between X and T X T : 

r = {(* , t, T) i x e Supp (Dt) n Supp (DT)} . 
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It is not difficult to see, by some easy dimension argument (and using Re
mark 2.3), that T possesses just one irreducible component G whose projec
tion into X contains some non-base point of 2 , and that G then projects onto 
X , with (irreducible) fibre x X Tx X T^ over any non-base point of 2 . The 
remaining components of F are therefore the x X T X T , for each base point 
x of 2 . Thus, we have the following decomposition: 

r = G U B x T x T , where B = base locus of 2 . 

It is known that, denoting by q = pe (e > 0) the inseparability degree, 
and by n the separability degree, of G over T X T , then for almost all pairs 
(t, T) , the intersection cycle 

G*T = p r x ( G - X x * x T) 

is defined and is q times a group of n distinct points of X . For such a pair 
(t, T) , G T̂ contains every intersection point of D^, DT apart from the base 
points of 2 , each being counted with multiplicity q (of course, a base point of 
2 may appear in some special G T̂ , but not in the generic one) . The integer 
n is classically called the degree of the system 2 . 

The degree of 2 can also be seen from a different point of view. If we 
consider the incidence divisor I on X X T then, in the same way as it defines 
the system S on X , it also defines an inverse system 2 ' of divisors of T , para
metrized by X , whose generic member has support equal to Tx. 2 ' is still 
2-dimensional and its index is equal to the degree of 2 . 

Remark 3.1. In general, the numerical invariants of an inverse system 
2 ' are related to those of 2 by the following formulas: 

with obvious notations. Furthermore, when v = 1 , if the generic element of 
2 is irreducible, then the generic element of 2 ' is q' times a variety T # , where 
q' = inseparability degree of the projection I —>• X . Let us say, in this situa
tion, that the generic element of 2 ' is quasi-irreducible. 

The aim of this section is to justify and develop the main point of Enriques* 
proof, that is, to show that: 

3.2. We may confine ourselves to the case when both v and n are equal to 1 . 

More precisely, we show how we can always replace the surface X with 

another (normal) surface X , and the system 2 on X with a new system 2 on 

X , having both v and n equal to 1 , so that 2 being a linear system on X im

plies 2 being a linear system on X . 
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From Proposition 2, we know that there exist a subvariety V of Ch°>w' (X) , 
ri = qn , and an irreducible correspondence between T x T and V which as
sociates the Chow point g h of the 0-cycle G^ with each pair (t, T) such that 
G^T is defined. Let us consider the algebraic system A = 21 (V) of 0-cycles of 
X , whose generic element is of the form G h . 

It is not difficult to see that, for almost all pairs (t, T), each one of the n 
distinct points x1, . . . , xn which appear in Gh is a generic point of X , in the 
sense that T^. is irreducible and D, is irreducible for almost all t e Tx.. Then, 
for itfij, Ta;. C\ rTx. contains two distinct points t, T . But, if through two 
distinct points x, ye X there are at least two distinct divisors of an algebraic 
system 2 having index 1 , then there are infinitely many divisors of 2 passing 
through x , y . Therefore, in the present case, T^. = T*. - denote it by T 0 -
or, in other words, every D e through some one of the x,t must contain every 
xt, . . . , xn . Hence, for almost all pairs (6 , E) e T 0 X T 0 , one has G0^ — 
= G<T . Now, a generic g e V represents: a 0-cycle of the form G / T e A . If 

. (0 , £)e T X T corresponds with g , then clearly D e P) D^ contains the sup
port of G tx , hence 0 , \e T 0 . On the other hand, we have seen that almost 
all pairs (0 , £) e T 0 X T 0 correspond with g . Thus, with a generic g e V , 
there is precisely a 2-dimensional variety T 0 X T0 which corresponds in the 
way previously defined. This implies that dim (A) = dim (V) = 2 . 

Furthermore, the 2-dimensional system A is an involution on X , i.e. a ge
neric point x e X belongs to a unique 0-cycle of A . In fact, a generic element 
of A is of the form G,T = q (x± + . . . + xn), where the x{ are different from 
each another and are such that T^. = T^.. = T 0 is irreducible, as we already saw. 
Moreover, through a generic point xeX only there are generic members of 
A . If G h = q ( 2 ^ ) , xx = x , and Ge^ = q (2>'?:), yi = x , are two such 
0-cycles, then Tx = T^' = T„ = T 0 and hence G h = GQl . 

If we now consider the natural incidence correspondence between X and V: 
Z = {(x, g) | x belongs to the 0-cycle G of A whose Chow point is g} , 

then A being an involution implies that Z possesses a unique irreducible com
ponent A projecting onto X and then, clearly, onto V: 

With a generic x e X there corresponds the Chow point g e V of the uni
que 0-cycle G G A passing through x and, conversely, with a generic ^ e V 
there correspond the n distinct points belonging to the support of the 0-cycle 
G = { ( x 1 + . . . - f ^ ) e A whose Chow point is g. In other words, the 
separability degree of TT is 1 , the one of p is n . 

In the present situation, it follows from standard intersection theory that 
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the pull-back 71* (D t) is defined for almost all t, and is then of the form a times 
a simple divisor E„ where the multiplicity a is a power of the characteristic 
p. Actually, E t is an irreducible divisor, because of iz being generically 1 - 1 . 
Thus, if we write 7t# (E) = a'Dt, a' the (inseparable) degree of the restriction 

E t -> D t , then TZ^TZ* (D t) = a a' D t and, therefore, a a' = (inseparable) degree 
of 7T . Let us remark that, a priori, these a , a' might be depending on t ; 
however, one sees that they are constant for almost all t. 

From Proposition 2, we know that there exists an algebraic system TC* (2) 
on A , whose generic member is of the form a E t . It is clear, moreover, that 
we can then write 7r* (2) = a 2 ' , where 2 ' is an algebraic system whose gene
ric member is of the form E^ (look at the injective morphism E i-> a E between 
the suitable Chow varieties of A ) . The index of 2 ' is easily seen to be 1 (see 
the last comma before Remark 3.3 below). 

On the other hand, the push-forward p# (E^) is defined for almost all t, 

and is of the form b 71, where b — degree of the restriction Et —* F^ and F, = 
= irreducible divisor of V . Then, we can write p * (F t) = è'E t , the multi
plicity V being a power of the characteristic p . This happens because the 
generic E, is a disjoint union of supports of 0-cycles belonging to A . We 
thus have p# p # (F^) = bb' E^ and, therefore, bb' = degree of p . 

There is, then, an algebraic system 2 on V , whose generic member is o 

the form F t, hence irreducible. Both the index and the degree o / 2 are equal to 1. 

The two marked assertions above, concerning the numerical invariants 

of 2 ' , 2 , are easily checked by a purely set-theoretic argument, if one only 

keeps in mind the following: 

Remark 3.3. When, under some irreducible correspondence Z between 
two varieties X and Y , there is only a finite set of points y e Y which corre
spond* with a generic point xe X , whatever non-empty open subset V of Y 
be fixed, then there is a non-empty open subset U of X such that each one of 
the finite number of y , which corresponds with x e U , actually lies in V . In 
particular, the index of an algebraic system 2 (T) can be also computed as the 
number of generic divisors D^ (i.e. for t belonging to some non-empty open 
subset U g T , which can be arbitrarily chosen) passing through a generic set 
of S points of the carrier variety X . An analogous remark also holds for com
puting the degree of 2 . 

We may now replace V by its normalization, which is the variety X we 
claimed at the beginning, and A by its normalization, let us denote it by the same 
symbol A , and still we have a diagram 
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(we allow ourselves to use here the same symbols as before, for simplicity of 
notation). Also, we obtain a system 2 ' on the normalized A , and a system 
2 on X , which still share the same properties with their homonymous ones 
defined before. We have the following chain of implications: 

2 a linear system => p # (2) == V 2 ' linear => 2 ' linear => 

=> 7T# (2') = a' 2 totally contained within a linear system => 

=> a! 2 a power of a linear system => 2 a linear system. 

The first and third arrows in this sequence are standard. The second and 
fifth depend on the following easy. 

Remark 3.4. Let 2 be an algebraic system on a normal variety X , and 
let a be a positive multiplicity. Then a 2 is never a linear system if 2 is non
linear itself. Furthermore, rf 2 is linear, then a 2 is linear if, and only if, the 
multiplicity a is a power of the characteristic p . 

Finally, the fourth arrow follows from a more general version of Proposi
tion 1, which can be easily proved in the same way as Proposition 1, with the 
same arguments used in [4]. We state this Proposition as: 

Remark 3.5. An algebraic system 2 of index 1 , satisfying condition (ii), 
either is a linear system itself, or is a power of a linear system L , plus some pos
sible fixed divisor A (that is to sav, 2 is made up of all divisors of kind a D + A , 
with D e L , for some positive multiplicity a). 

§ 4. CONCLUSION 

Because of the results of the last two sections, it is enough now to prove 
Enriques' theorem in the case when X is a (normal) surface, and 2 (T) is a 2-
dimensional system on X , whose generic element D , is irreducible, and both 
whose index and degree are equal to 1 . Thus, the present situation is sym
metric with respect to 2 and its inverse system 2 ' , both whose index and degree 
also are equal to 1 , the only difference being that the generic element of 2 ' 
is a priori only quasi-irreducible (Remark 3.1). We shall now prove that: 

4.1. Both the generic element D t of 2 and the support Tx of the generic element 
of 2 ' are rational curves. 

Property {a') stated in § 1 then follows, by only taking into account the 
second comma after Proposition 2 in § 1, and therefore Enriques* theorem re
sults completely demonstrated. Furthermore, in order to verify assertion 4.1, 
note that: 
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4.2. It is enough to prove Dt a rational curve. 

Indeed, we might well have made the situation wholly symmetric by simply 
allowing from the beginning the generic element of the system 2 to be quasi-
irreducible (it is clear a priori, for instance because of Remark 3.4, that Enri
ques' theorem still holds in this slightly more general form); moreover, under 
this hypothesis, a direct proof completely similar to the following one would 
serve to prove the rationality of the support of the generic D t . On the other 
hand, in the present situation, we may: first, observe that proving the ratio
nality of the support T^ of the generic element of the inverse system 2 ' is com
pletely similar to proving the rationality of the generic D^ and, second, apply 
the already mentioned Remark 3.4 to the system on T made up of all these T^ 
(to be precise, we have to consider the induced system on the normalization 
of T) . 

Thus, let us come to the proof of 4.2, which will need just a few more 
lemmas. 

For every two.irreducible Dt, DTe 2 such that G^T is q times a single 
point 0 € X , not a base point of 2 , let us consider the following incidence subset 
of X X D f X DT: 

r = {(* , A , B) I 3 8 G T | D0 s x , A , B} , 

giving rise to a family of correspondences between D^ and DT: 

r , = { ( A , B ) € D ; X D T | ( ^ , A , B ) e r } , for every xe X . 

LEMMA 4.3. If x is a generic point of X , then Yx is a generically 1 — 1 
correspondence. 

Ifroof. It is clear that almost all divisors D0 e 2 are such that both GQt 

and G 6 T (are defined and) consist of q times a single point which is not a base 
point of 2 . Fix one such D 0 , and choose xe T>Q not belonging t o D ; U D T . 
Since x is not a base point of 2 , the subsystem 2^ is a pencil (Remark 2.3) and 
therefore, since x$ D t U DT , no base point of 2^ , apart from the base points 
of 2 , belongs to D^ U DT (if y is a base point of 2^ , not of 2 , then 2 y = 2^). 
Furthermore, almost all D^ G 2^ are such that G ^ = #A , GY)T = qB , A , B 
not base points of 2 (nor of 2^) (for, one such divisor is D e ) . Therefore, 
through almost all A € D ; there is just one D^ G 2 ^ , which meets DT at a single 
point B , not a base point of 2 . By the symmetric argument, with almost all 
B e DT , there is just one corresponding point A G D r . • 

Because of 4.3, if x is a generic point of X , then there exists precisely one 
irreducible component E^ of Tx projecting onto D^ and DT , Ex being thus an 
irreducible generically 1 — 1 correspondence between D^ and DT . At this 
point, we could spend some time showing that {Tx} is a 2-dimensional family 
of correspondences fin the same sense as in § 1 for a family of cycles) pararne-
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trized by x e X in a generically 1 — 1 way. However, all we need is the fol
lowing property: 

LEMMA 4.4. For almost all pairs A , A ' e D , , B , B ' e D T , there exists 

some Ex under which (A , B) and (A' , B') are pairs of corresponding points and, 

moreover, no point different from B (resp. B') does correspond with A (resp. A'). 

Proof. For almost all D e e S , one has Ge t = qA , GQT = qB , A ,B not 
base points of 2 . Now, almost all D^ e 2 are such that G^ = qA' , G7)T = 
= qB' , G^Q = qx , A' , B ' , x not base points of 2 . It is clear, from the proof 
of 4.3, that T^ is generically 1 — 1 , so that Ex is defined. The second half 
of the statement follows since no base point of 2^ belongs to D^ U DT . • 

Now, if D t is a generic member of 2 , then we can choose some auxiliary 
DT as before, and some point j / e X such that Ty determines an irreducible 
generically 1 — 1 correspondence Ey between DT and D ^ , in order to obtain 
a family {F^. — E^ o E^} of irreducible generically 1 — 1 correspondences of 
Dt with itself, by just composing each E .̂ with this fixed E ? / . Clearly, this 
family {Fx} satisfies the same property as in 4.4. Furthermore, from {Fx} we 
can then construct a family {tyx} of birational maps of D^ with itself, which still 
enjoys some property coming from 4.4, as we shall see. 

This is because in the diagram 

both projections n , iz are generically 1 — 1 morphisms having the same inse
parability degree q = (f . In fact, the obvious automorphism D t x D t <-> D t x 
X D | , (A , B)<-» (B , A) , carries F^. isomorphically onto itself and exchanges 

projections iz and izf . Now, any morphism C -> D between curves is obtained 

as a composition C ->• C -> D , where cr is a Frobenius map of degree equal 

to the inseparability degree of iz, and ty is a separable rational map whose degree 

is then the separability degree of n . Therefore, if we denote by cr the g-Fro-

benius map F^.-> F ,̂ , then there exist birational maps F^ - - - — > D t such 

that the diagram 
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is commutative, where §x = ij/ o ty-1 also is a birational map. 
This family {§x} enjoys the following property: 

LEMMA 4.5. For almost all A , A ' , B , B' e D ^ , there exists some §x such 
that §x (A) = B , §x (A') — B' and, moreover, no point C different from A (resp. 
A') is such that §X(C)= B (resp. B'). 

Proof. There are open subsets D ç D h V ç D T such that Ey induces a 
bijective correspondence between U and V . Therefore, with a generic set 
A , A ' , B , B' G D t , such that A , A' e U , then a set C', C e DT , B , B' e D t , 
corresponds through E^ , which is generic in the sense of 4.4. If we take Ex 

as in 4.4, relatively to such C , C , B , B' then, clearly, (A , B ) , (A ' , B') are 
pairs of corresponding points under F^ = E^ o E^ and, moreover, no point 
different from B (resp. B') corresponds with A (resp. A'). Furthermore, almost 
all such A , A ' , B , B' are smooth points of D t , so §x is automatically defined 
at A , A' and §x (A) = B , §x (A') = B' . D 

In particular, we see that for almost all pairs A , B e D t there are infinitely 
many birational maps òx such that §x(A) = B . This implies that D / is a 
rational curve, as we claimed in 4.2. Indeed, a curve whose desingularization 
has genus > 2 possesses finitely many birational maps at all (see [10], p . 66). 
On the other hand, for a curve whose desingularization is an elliptic curve, 
there are only finitely many birational maps taking a given point into another 
(see [11], p. 182). The proof of 4.2 is now achieved, hence the proof of Enri
ques' theorem is so too. 
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