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Geometria differenziale. — Projective invariant metrics and open 
convex regular cones. I. Nota di FABIO PODESTà, presentata (•) dal 
Corrisp. E. VESENTINI. 

ABSTRACT. — In this work we give a characterization of the projective invariant 
pseudometric P , introduced by H. Wu, for a particular class of real C°°-manifolds; in 
view of this result, we study the group of projective transformations for the same class 
of manifolds and we determine the integrated pseudodistance p of P in open convex 
regular cones of Rw , endowed with the characteristic metric. 

KEY WORDS: Projective connections ; Regular cones; Projective transformations. 

RIASSUNTO. — Metriche invarianti proiettive e coni aperti convessi regolari. In que
sto lavoro, suddiviso in una Nota I ed in una nota II, si fornisce una caratterizza
zione della pseudometrica proiettiva P, introdotta da H. Wu, per varietà con connes
sione lineare il cui tensore di Ricci è parallelo e semidefìnito negativo. Come applica
zione si studiano le trasformazioni proiettive di tali varietà e la pseudodistanza p, associata 
a P, nei coni aperti, convessi, omogenei di Rw. Si stabilisce infine un teorema di strut
tura per il gruppo delle trasformazioni affini dei coni. 

§0. INTRODUZIONE 

The purpose of this work is to find a characterization of the projective dif
ferential pseucfometric P, introduced by H. Wu ([12]), on a class ^~of C°°-mani-
folds endowed with a symmetric complete connection with parallel and negative 
semidefinite Ricci tensor. 

The work is divided in two parts: in part I we show (Theorem 2.1) that 
for manifolds belongings to the class ^ the pseudometric P can be essentially 
expressed in terms of the Ricci tensor. Thanks to this result a new proof can 
be given of a well known theorem (Theorem 2.2) concerning projective transfor
mations of those manifolds. These results are then applied to the case of open, 
convex, regular and selfadjoint cones in Rn, endowed with the characteristic 
Riemannian metric: under further hypotheses of irriducibility and affine-homo-
geneity, we have described the projective pseudodistance p, introduced by S. 
Kobayashi ([5]), through the study of a foliation {Fx}XeR* of the cone, which 

completely determines its geometry (Theorem 3.4). 

(*) Nella seduta del 13 dicembre 1986. 
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In part II , which will be published soon, we identify a class of projective 
automorphisms of the cones as a subgroup of the full group of projective trans
formations (Theorem 4.1), showing how in this case the word " projective " 
used for this theory is deeply related to its classical meaning. 

In the end we prove a structure Theorem (Theorem 5.3) regarding the 
group of affine transformations of a selfadjoint, affine-homogeneous and irre
ducible cone and conclude this section establishing an analogue of the Schwarz 
Lemma for affine transformations (Theorem 5.4). 

§ 1. PRELIMINARIES 

For all the results exposed in this section we refer to Eisenhart ([2]) and 
to Bortolotti ([1)]. Throughout the following, M will be a differentiate (i.e. 
C°°) manifold of dimension n > 2. Two symmetric connections T and T # 

on the tangent bundle to M are said to be projectively equivalent if they define 
the same system of geodesies- up to parametrization. 

If (Tyfc) and (T*^) are the local components of T and r* , the two con
nections are projectively equivalent if and only if there exists a global diffe-
rentiable 1-form cj> expressed locally by § = 2 i>jàxj such that 

3 

(1.1) ViJ,k=l...n T}k=r«k+$fa+sih. 

If we denote with V the covariant differentiation relative to T and with R 
R* the respective Ricci tensors, we have locally 

(1.2) \fi9j = 1 . . .n R*j == R^ -n §ij + i>n , 

where 

( 1 . 3 ) <j>̂  =Vji>i — 4>* 4>̂  -

Let Ï ={ueR \ -1 <u < 1} and consider on the tangent bundle T M 
the connection T . 

DEFINITION 1.1. A differentiable map / : I - * M with nowhere vanishing 
derivative is said to be a projective map if f is a geodesic in M and u is a projective 
parameter for this geodesic. 

We recall that if t is an affine parameter for a geodesic y a projective para
meter p is defined as a solution of the differential equation 

(1.4) ^ _ _ i _ ? R ( ( ( l f W ) ^ ^ 
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where { , } is the Schwarz derivative and (R^) are the local components of the 
Ricci tensor. In ([12]) Wu has defined as follows an infinitesimal projective 
pseudometric P somewhat similar to the infinitesimal pseudometric on complex 
manifolds, introduced by Royden (see e.g. Franzoni-Vesentini ([3])): consider 
on I the hyperbolic Poincaré metric given by 

(1.5) We I ds2 du2 

( 1 — u*y 

and for v e R , b e I let | v \b the norm of v with rispect to ds2 at b. 

For * e M , X e T M X , the length P (x , X) of X at x with respect to Wu's 
projective pseudometric is 

(1.6) P ( * , X ) =inf<^ | V 
there exists / : I —> M pro . such 
that / ( è ) = x and dfb (V) = X . 

Since ( I , ds2) is homogeneous under the action of all Moebius transfor
mations of I onto itself and the projective parameters are invariant under Moe
bius transformations, we can restate (1.6) as follows 

(1.7) P ( * , X ) = inf<^ | V 
there exists / : I -* M proj. such 
that / ( 0 ) =x and d/0 (V) = X 

The map P : T M -»• [0 oo) is upper-semicontinuous (Wu ([12])). 

S. Kobayashi ([5]) has introduced a projective pseudodistance p as follows: 
let co be the distance induced on I by ds2 and pick x, y e M . We consider a 
chain a of geodesic segments consisting of 

(a) a sequence of points x = x0, xJ , . . . , xk =y in M; 

(b) a sequence of points ax, bx, . . . , ak , bk in I ; -

(c) projective maps fr, . . . ,fk such that f{ fa) = x^ fifa) =Xi 
Vi z=z 1 , . . . , k and put 

L (a) = 2 co fa , b{) . 
i 

Then the pseudodistance p between x and y is given by 

(1.8) P(x>y) = i n f L ( a ) 

where the infimum is taken over all chains a as above. 
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The following properties of p are all of immediate proof: 

(a) If / : I -* M is projective, then p (J(a) ,/(&)) < co {a , b) \la ,be I; 

(b) If S is a pseudodistance on M with the property (a)y then S (x ,y) < 
<p(x,y) Vx , y e M . 

The following theorem is due to Wu ([12]). 

THEOREM 1.1. The pseudodistance p is the integrated form of the pseudo-
metric P , i.e. 

(1.9) v ^ j e M p(x ,y) =mi I P 
Y J Y 

Y 

where the infimum is taken over all C°°-curves y in M joining x and y. 

Following Rinow ([9]), Theorem 1.1 implies that p is an inner pseudo-
distance. 

In the following section we want to establish an explicit expression of the 
pseudometric P for a large class of manifolds. 

§ 2. T H E PROJECTIVE PSEUDOMETRIC P AND PROJECTIVE TRANSFORMATIONS 

We consider the class ^ of C°°-manifolds with a symmetric connection 
r such that 

(a) the symmetric part of the Ricci tensor is parallel and negative se
midefinite; 

(b) T is complete. 

Note that in the equation of Schwarz (1.4) the Ricci tensor can be replaced 
by its symmetric part, If M e ^ the right term of (1.4) is constant and non 
positive. Indeed, with obvious notations, given a geodesic y with affine pa
rameter t 

V - R ( Y ) = R ( V V Y ) + ( V - R ) ( i ) = 0 . 

Moreover equation (1.4) can be integrated. Given x = y (0) and 

1 « _ 2 v- » ^ «¥ ,m
 dY' (2.1) 

T**=^;p,(*)^(0)^(0) 
there exist real numbers a , p , S with a , (3 ^ 0 and real numbers a , b , c , d 
such that 

(2.2) p (t) = a [1 — p exp (ft J)]-1 + S if. ft > 0 



FABIO PODESTà, Projective invariant metrics, ecc. 129 

and 

(2.3) p (t) = (at + b)(ct + d)-1 if k = 0 . 

We can now prove the following: 

THEOREM 2.1. Let M e rS and let R be the relative Ricci tensor. Then 

(2.3) V* e M , X G T M s P (* , X) = (« — I)-1/* | R (*) (X , X) | l/« 

Proof, a) Let x e M and X G T M X and suppose at first that 

(2.4) R (x) (X , X) < 0 . 

Let / : I -> M be any projective map such that f(0) = #' and d/0 (V) = 
= X , with V G R and denote with y the corresponding geodesic, with t as affine 
parameter running over an interval J c R . Shrinking the interval J , if ne
cessary, the affine parameter t can be expressed in terms of the projective one 
so that we can suppose to have the representation 

(2.5) Vueï / ( « ) = Y (*(«))• 

Since a translation of the affine parameter doesn't affect the projective 
parameter, we can suppose that t (0) = 0 . Hence if we put 

(2.5) _ („ - 1) -L k» = £ R„ (Y (*)) - ^ (t) - ^ (t) 

from the general expression (2.2) and from (2.5) we have 

(2.6) V*G J u (t) =b[l—a exp (k J)]"1— * (1 — a)-1 a,beR* 

Hence 

(2.7) P ( * , X ) = i n f { | V | 0 | / : I - > . M proj. /(0) =x , y ( o À o ) V =X} = 
au 

: i n f { | ^ ( 0 ) ' l | X Y : J ->• M geodesic, y (0) = x , u (t) 
dt w ' | | y ( 0 ) 

proj. par., « (0) = 0 , « (J) 2 (— 1 , 1)} 

where || . || is any norm on T M , . Now we show that we can assume y (0) = 
= X . Choosing any a e R* and setting t* = a t, t* e J* = {a t 11 e J} and 

(2.8) y*(t*)=y(Ç\, t*ej* 
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we have with obvious notations 

{ « , * } = [ { « , * } - { « * , ' } ] ( ^ ) 8 = - ^ r { « . « } = 

= —^-7 R (Y (t)) (y (t), Y (t)) • — = —?— — R (*) (X , X) = 
(2.9) « - 1 1 «a « — 1 a2 

- ? - R (x) (y* (0), Y* (0)) = — R (Y* (i*)) ( Y # (**), Y* (**)) = 
n — 1 n — 1 

Hence a projective parameter u* relative to t* is given by 

(2.10) 

and therefore 

(2.11) 

u* (t*) 
" ( T ) 

du* 

dt* t *=0 
11X11 

Y* (0) 

du 

~dt t = 0 
XI 

Y (0)1 

We have only to choose a e R * such that Y * ( 0 ) ==X to obtain that 

au 
(2.11) P ( * , X ) = i n f . 

d* t=0-

y : (— s , s) -> M (s > 0) is a geodesic, 
y (0) = x , y (0) = X tf (*) proj. par. 
with u (0) = 0 , u (— s , s) 3 (— 1 , 1) 

P ( * , X ) = inf {fe. | f tf l | ( l_fl)-a} 
(fl,i)eC 

From (2.7) we get immediately that 

(2.13) 

where 

C =\(a,b)eR 

Since 

3 interval J c R 0 e J such that the 
given in (2.6) maps J onto I 

C =<^ (a,b)eR* 

and since 

(2.13) 

i) a < 0 and | b \ > 1 — a \ba\>\—a 
ii) fl€(0, 1) and a \b \ > \—a 

iii) a € (1 , oo) and | b \ ;> 1 — a 

1 
inf {| 6 a | (1 — a)-*k) =— k 
c 2 
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we have from (2.12) and (2.13) 

(2.14) P (* , X) = ~ k = (n — \yw | R (X) (X , X) | V2. 

b) If R (x) (X , X) = 0 

denote with y : R -* M the geodesic with y (0) = a? and y (0) = X . Setting 
now 

(2.15) J» = ( - 2V=T • n2) a n d ^ : J* - (~ ! • *) 

a»W =nt[(n — I) t +W2]"1 V*€j n 

denote with tn (u) the inverse map of un and consider fn : I -* M given by 

/n («0 = Y (*n («0) V« € I . 

They are projective parameters and / n (0) — # X , so that 

(2.16) P ( * , X ) = 0 . 

Our conclusion follows from (2.14) and (2.16) . Q.E.D 

The above theorem extends a theorem due to Kobayashi-Sasaki ([6]) about 
Einstein complete manifolds. The preceding result will now be applied to 
the study of the group of projective transformations Proj (M) of a manifold 
M belonging to ^. Recall that a diffeomorphism / of a manifold M endowed 
with coVariant differentiation V is said to be projective if the connection defined 
by / # V is projectively equivalent to that defined by V. If / # V = V , the / 
is said to be affine. It is easy to see that every projective transformation maps 
projective maps into projective maps so that we have that 

(2.17) V/€ Proj (M) P (x , X) - P (f(x) , / # X) V* e MVX e TM, 

We can now give a new proof of a classical theorem due to Nagano ([8]); 

THEOREM 2.2. Let M be a manifold belonging to & . Then every projec
tive transformation is affine, i.e. Proj (M) = Aff (M). 

Proof Let fe Proj (M) and R, R# be the Ricci tensors relative to the 
connections defined by V and/*V respectively, say T and F # . Then the local 
expression of F and F # is given by (1.1) for some global 1-form <j> . It is easy 
to see that 

(2.18) R* (*) (Y , Z) = R(/(*)) (/#Y ,/#Z) V*e M , Y, Z e T M , 
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and so, thanks to (2.17), (2.18) and Theorem 2.1 we have that R = R * . There
fore from (1.2) we get 

(2.19) $ij=n$ji V î , ; ^ l , . . . , n 

and so, interchanging the role of i and j , we have that 

Let now u : R -* M be any geodesic relative to the connection Y , with 
affine parameter t e R . Put 

(2.21) ° (*)=*„(«)<«(')) W e R . 

Using (2.20) a simple calculation shows that 

(2.22) W e R ± ( * ) = J V, ** (« (0) ^ (<) ^ (<) = (° (*))' 

Since there are no global O-solutions on R of the equation (2.22), which 
are not identically zero, we have <j>w(0) (it(0)) —0; because u(0) and u (0) are 
arbitrary, we obtain § = 0 and so / is an affinity . Q.E.D. 

§3. OPEN CONVEX REGULAR CONES 

Throughout this section Q will be a subset of Rn such that 

a) Vte R*Vxe O toçe Q; 

b) Q is regular, i,e, contains no affine line; 

c) O is open and convex. 

The dual Q# of Q defined by 

(3.1) Q* ={*»6R» # | < * , * » > > ( ) V#e Q \ { 0 } } 

is an open convex regular cone of R n # . Let dx be the Lebesgue measure on 
Rn: the characteristic function <j> of Q-, defined by the absolutely convergent 
integral 

(3.2) (j) (x) = f exp (— < x , x* >) d* * (x e Q) 

is a C°°-function on fì and log cj> is strongly convex. We can therefore define, 
following Vinberg ([11]), a Riemannian metric ^ on Û , called characteristic 
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metric, whose components are given by 

(3.3) V x e Q gij{x)=^L(x) 

It is easy to see that the group of automorphism of D , i.e. Aut (Q) = 
= {Ae GL (n, R) | A(£l) = Q} acts on Q as a group of isometries for the 
Riemannian manifold (Qfg). We say that t i is self-adjoint if there exists 
some scalar product ( , ) on Rn such that y e O if and only if 

(x,y) > 0 Vye fl\{0} . 

If a cone is self-adjoint, we have that 

( 3.4) <[> (a?) = I exp [— (x , j ) ] Ay 

a 

and that Q and £i# are linearly isomorphic; under this identification it is possible 
to define an involutorial isometry * ori D, by means of 

(3.5) xm = — d log § (x) . 

If the cone is affinely-homogeneous (as we will suppose from now on) the 
involution * has an unique fixed point, called pi in this case Q has a natural 
structure of symmetric space. The cone Q is said to be reducible if there is 
a decomposition Rn = R P X R? (with p , q^O and p + q = n) and two open 
convex regular cones Qx in RP and Qa in Jlq such that Q = Qx X û 2 . 

The following theorem is due to Rothaus ([10]). 

THEOREM 3.1. If Q is self-adjoint and affinely-homogeneous, then 

a) (Q\,g) is a complete Riemannian manifold with non-positive sectional 
curvature 

b) There exists a coordinate system in Rn in which at the point p the metric 
tensor is given by the identity and the Ricci tensor is given by Rp = diag (0 , dx , 
• • • > d.n-i)

 wtih d* < 0 V* = 1 , . * . , n — 1 . Moreover if Q is irreducible, 
then dx = d2 = . . . = dn_x < 0 . 

We now introduce a foliation in Q. by means of 

(3.6) VXG R* F ^ { ^ 6 Û I $ (x) = X} 

and prove the following: 

THEOREM 3.2. (a) Each F^ endowed with the induced Riemannian metric is 
a complete Riemannian manifold and is a maximal integral submanifold relative 
o the distribution L# =^{tx \ te R} (under the usual identification TQX = Rn). 
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(b) VI e R* the map ^ : û - > F x R* 

(3.7, feW=([ia y,[my\yxsa) 

is a diffeomorphism and is an isometry when we provide R* with the metric 

ds2 = n •• —— 

(c) When Q is irreducible, Fx is Einstein with negative scalar curvature 
and the Ricci tensor S of Fx is the restriction of the Ricci tensor R of Q. 

Proof, (a) It is enough to prove that for every xeQ T F ^ X L ^ , that 

is J ] S%j (x) xi vj =0Vv such that 2 — ^ (x) ^ = 0 • This follows from 

the fact that the characteristic function is homogeneous of degree —n 
and so, by Euler' theorem, we have 

(3.8) vy = i , . . . > w s4 I 9f( , )^=-^f i (x) 
oxlx3 o xJ 

(b) The proof of this part is a simple calculation and we leave it out, 

(c) We first observe that if (Tĵ ) are the Christoffel symbols, the homo
geneity implies that the components (R^i) of the curvature tensor and those 
of the Ricci tensor (R -̂) are given by 

(3.9) R ^ ± ( Ì Q L _ ^ V ) 

(3.10, R„=-4to+4?^i 

Since we have that 

(3.11) 2 . RiJ (x)xi xj = ° V* e Q 

and since by point (a) each Fx is an integral manifold relative to {Lx}XeQ our 
assertion follows from Theorem (3.1) and from (3.11). Q.E.D. 

We prove now the main result of this section: 

THEOREM 3.3. Let the cone Q. be self-adjoint, affinely-homogeneous and irre
ducible. Then \fx ,ye O 

p(xfy) = 0 

if and only if x =ty for some f e R * . 
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Proof, a) Let us suppose that x = t0 y (t0 e R*) and put y* = t x -f 
+ (1 —t) y te [ 0 , 1 ] . Then the vectors (x—y) and yt are on the same 
straight line through 0 and so by (3.11) 

(3.12) R(Y«)(Y«,Y«)=0 Vie [ 0 , 1 ] . 

By Theorem 2.1 we have that P (yt , yt) =0 identically and so since p is 
the integrated form of P , we have p (x , y) = 0 . 

b) If p(xyy) =0 for some x^ye Q, there is a sequence of C°°-
curves yn • [0 , 1] -> O joining # and j> with 

(3.13) Urn [ P = 0 
n J 

Y 

Let Fx be the leaf through the point x: since homotheties of the cone are 
isometries, we can suppose that X =? 1 . For z = (cj> (y)Ylny e Fj. we have 

(3.14) P(x,z)<p(x,y) +P(y,z) =0 

since p{x fy) = 0 and >̂ (y, z) = ; by a). We define at this point 

(3.15) Y; (*) = <i> (Y. (*))"" Y» W V* e [0 , 1] 

so that y* are C°°-curves in Fx joining # and z . Because for every xe Q, and 
* in R* t* R (£ #) = R (x) and setting 

L (*)=-£-<!> (Y« 0) (1 /nM S ~ (Y. 0) ^ - (0 

we have 

R (Y: (*)) (Y: ( ' ) . Y* (*)) = * (Y» {t)f'n K (t)2 R (Yn (0) (Y„ (*), Yn (')) + 

(3.16) + 2 ($„ (*))-»/» R (Y„ (0) (<k (0 Y» W » * (Y» (*))1/n Y« (0) + 

+ R(Y»(0)(Y«(').Y.W)-

Since the cone is irreducible, by Theorems (3.1) (c) at each point xe Q 
the Ricci tensor vanishes along an unique direction, namely the one generated 
by x; so from (3.16) we have 

(3.17) R ( Y : ) ( Y : . Y : ) = R ( Y » ) ( Y » . Y » ) -

10. — RENDICONTI 1987, vol. LXXXI, fase. 2. 
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By Theorem (3.1) (b) the Ricci tensor of each leaf is a negative multiple 
of the metric tensor (say S = dg , d < 0) so that 

l 

(3.18) |P(Y„,Y„) =JP(Y:.YD =[j~lYJ^*nk^dt 

By (3.13) and (3.18) we have that the Riemannian distance dQ between 
x and z is zero, and so x = z, that is x =(<j) (y))1/ny . Q.E.D. 

THEOREM 3.4. Let the cone Q with dimension n'> 3 he as in Theorem 3.3. 
If K denotes the scalar curvature then \/x, y e Q. 

Proof. Thanks to part a) of the proof of Theorem 3.3 we know that 

(3.19) V*,jeQ p(x,y)=p(x,[±!£Jny) 

r<jr> (y)~]1ln 

so that x and z = -^-r-r y lie both on the same leaf, say W. By Theorem 3.1 
L^ (x)J 

(c) W is an Einstein space with Ricci tensor S and so, by Theorem 2.1, we have 

(3.20) V^eWVYe TW„ P w (y, Y) = I" I s (yHJ » ? ) T / 2 

Through the proof of Theorem 3.3 we have proved that 

V x . s e W p(x,z) =inf f p = [ ~ - ^ L l ? / 2 inf f P w = 

(3-21) „ I, r Y# v* 
r«— 2 T 7 / x = U^u *w(*,*) 

with obvious notations. By Theorem 3.1 (b) and (c) we have 

r i d I 1 3/2 r I d ! " l 1 / 2 

(3.22) fa (*,*) = \j~\ dw (*,*)= \JzZ2] d" <* ' *> 

where dw denotes the distance induced on W by g. Since the scalar curvatur 
K is given by K = d(w— 1) and (3.22) lead to our statement. Q.E.D 

http://Vx.se
file:///JzZ2
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In case of reducibility of the cone, we decompose Q as 3 * Qj where Qt-

are irreducible cones lying in Rwi (see e.g. Gentili ([4])): since the Ricci tensor 

has a matricial representation as direct sum of the Ricci tensors R^ of Q^, we 

obtain that: 

(3.23) VxeflvXeTQ, P (* , X ) = ^ - ^ ^ ^ 

where x =(xlt . . . 9 xk) and X = (Xx , . . . , X*) . A simple application of 

Theorem 3.3. leads to the following 

COROLLARY 3.1. Let O be self-adjoint, homogeneous and reducible as @k Qi 

where Qt are irreducible cones lying in Rni with /^ > 3 . If p (x , y) = 0 for 

some x = (xx, . . . , xk), y =(yl9 . . . fyk) then there exist ^ e R* (/ = 1 , . . . , k) 

such that Xi = tiyi \/i = 1 , . . . , k . 

Theorem 3.4 shows that the projective pseudodistance p on an irreducible 

cone is completely determined by its restriction to a single leaf, vanishing on 

any line through the origin. 
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