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Equazioni differenziali. — Boundedness results of solutions to the 
equation x"' + ax" + g (x) x' + h (x) = p (t) without the hypothesis 
h (x) sgn x > 0 for \ x \ > R. Nota di JAN ANDRES, presentata (•) dal 
Corrisp. R. CONTI . 

RIASSUNTO. — Per l'equazione differenziale ordinaria non lineare del 3° ordine 
indicata nel titolo, studiata da numerosi autori sotto l'ipotesi h (x) sgn x > 0 per I x I > 
> R, si dimostra l'esistenza di almeno una soluzione limitata sopprimendo l'ipotesi 
suddetta. 

1. HISTORICAL REMARKS 

About some fifteen years ago there was still under consideration a very 
actual question at that time of boundedness of solutions to the following Liénard-
type third order equations 

(1) x'" + ax" + g (x) x' + h (x) = p (t) , 

where a is a positive real, g (x)y h (x) e C1 (R1) and p (t) e C1 (R+). 
Assuming either (see e.g. [1-5]) 

(2) b <g (x) < G (b , G-suitable positive reals) 

X 

or [ 1 , 6 , 7 ] G (x)jx > b for all x e R1, where G (x) = J g (s) ds, 

(3) 

together wih 

(4) 

or 

(5) 

lim sup | h (x) | < oo 
|#I-»oo 

lim inf h (x) sgn x > 0 
|#|->0O 

lim sup h! (x) < ab 

(*) Nella seduta del 29 novembre 1986. 
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together with 

(6) lim h (x) sgn x = oo 
| # | - * 0 0 

respectively, and 

(7) lim sup \p(t)\ < oo , 
£-»oo 

(8) | j p(t)dt\ < oo, 

many dissipativity results then had been carried out. 
Furthermore, J.O.C. Ezeilo (jointly with H.O. Tejumola) pointed out [2] 

that (6) is superfluous with respect to (4) and (5) and the same author also no
ticed [3] that the conditions (7) and (8) are under (6) interchangeable. 

K.E. Swick has succeeded [4] moreover in replacing (5) by a more liberal 
restriction, namely 

lim inf a (aG (x)jx — 2h (x)jx) — (a2j2 — G {x)Jx — ah (x)lx)2 

|A:J->OO 

with a suitable constant a > 2 (a2 + b)./a (a2 + 2 b). The same author still 
has studied [5] the more general case (cf. (4), (6)) 

(9) h (x) sgn x > 0 for | x | > R (R-suitable positive real) 

in spite of replacing (7), (8) by 

oo 

(10) ( \p(t)\dt<oo 

in order to obtain the following result: 

(11) limx(t)=;x, lim x' (t) = lim x" (t) = 0 , 
t-^oo 

satisfied for all solutions of (1) with x being the appropriate zero points of h (x); 
but note that so far only (9) has been used everywhere (see also [6, 7] to get 
the Lagrange-like stability. 

REMARK 1. Recently the present author has shown [8] that also the oscilla
tory restoring term without (9) may imply the Lagrange-like stability of (1), pro
vided the distances between the zero points of h (x) are large enough. 

On the other side, J. Vorâcek has proved [7] that (1) admits a solution 
tending to the infinity for t -* oo, provided besides (2), (3), (7), (8) the reversal 
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condition to (9), namely 

(12) lim sup h (x) sgn x < — s (s-suitable positive real). 
|#|->oo 

A natural problem arises: whether there exists besides unbounded solu
tions of (1) a bounded one as well, taking into account the same restrictions. In 
the following text we will give an affirmative answer to this question in the 
special case g (x) = b. However, we would like to mention something before. 

2. D'-CLASS AND THE AUTONOMOUS EQUATION (1) 

DEFINITION. We say that (1) has D'-property {in the sense of Levinson) 
if such a constant D' exists that 

• lim 8up( | *'(*).| + \x"{t) | ) < D ' 

holds for all solutions x(t) of (1). 

It can be easily verified either by the Liapunov-Yoshizawa function 

(13) U (*', x") = (a2 + 2b) x'* + 2 ax' x" + 2 *"2 

or by virtue of the Cauchy formula (see [6]) and hence also by the planar geo
metrical methods used in the (x, j)-phase-space for 

^ — a - b J ^ ~ - ^ - { h { x { t ) ) - p { t ) ) 

that (1) has under (3), (7) the D'-property for g (x) = b > 0 . 

However, we remember here an analytical approach by J. Voracek[7] leading 
to the same result even for more general than (1) equations, when (2) is satisfied 
with G < a2, namely 

(14) 0 <b<g(x)<G <a2 forali *e R r . 

LEMMA 1. If the conditions (3), (7) and (14) are satisfied, then (1) has the 
D'-property. 

CONSEQUENCE 1. If the assumptions of Lemma 1 are satisfied for p{t) == 0 
together with (9), where R = 0 and 

(15) A ' ( 0 ) > 0 , ^ ( 0 ) - A ' - ( 0 ) > 0 , / ( 0 ) = ; 0 , 

then (11) holds for all the solutions of (1). 
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Proof. At first we will verify the Lagrange-like stability of (1). 
For this aim let us assume (on the contrary) that x (t) is an unbounded 

solution of (1). 
Since we have according to Lemma 1 that 

| x' (t) | < D ' , | x" (t) | < D' for large enough t, say t > T, sub
stituting x (t) into (1), integrating the obtained identity from T to t and mul
tiplying it by sgn#, we get the following inequality: 

x(t) t 

b(\x(t)\- \x(T) |) < | j g (s) ds | < - j | h(x (s)) | ds + 2 (a + 1) D' < 

x(T) T 

< 2 (a + 1) D' 

a contradiction to lim sup \x(t) \ =; co . 
t-*oo 

Thus all the solutions of (1) must be bounded (without any loss of gene
rality we arrive at the same statement under (8) in the non-autonomous case). 

Using the same argument as above, we still obtain the relation 

h(x(t))dt < G ( | * ( T ) | + lim !*(*) |) + 2 ( a + 1) D' < co, 

leading (for more details see [8]) either to (11) or to 

lim inf | x (t) | = 0 < lim sup | x (t) \ . 
t—>oo £-»oo 

The latter possibility can be however neglected under (15) with respect to 
the asymptotical stability of the origin (see [9]). This completes the proof. 

CONSEQUENCE 2. Let the assumptions of Lemma 1 be satisfied for p (t) = 0 
and let the function h (x) be oscillatory everywhere with isolated zero points ~x. 

If there exist such positive constants s, R that the condition 

(16) ag(x) — h'(x)>z 

holds for | x \ > R with g' (x) ==: 0 , then all the solutions of (1) are bounded. 

Proof. Remember again that Lemma 1 implies the existence of such a 
constant D' that every solution x (t) of (1) satisfies the relation 

(17) | x' (t) | < D' for t > Tx (Ts-large enough). 

Furthermore, it is clear that either the situation of Consequence 1 appears 
(not to be analysed here) or such sequences of the asymptotically stable (for 
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more details see [9]) zero points x±i with l i m ^ ± i = ± °° > namely {#J , {#-J , 
can be found that their basins of attraction are determined (see [9]) by means 
of a suitable positive constant Sx from 

(18) 1 * ' ( * ( ' ) ) * ' ( ' ) I < » . 

and by the validity of h (x) sgn (x — 'x) > 0 . 

Therefore since we have (for t > T^) 

lim g'(x(t))x'(t)=iO 

for an unbounded solution x(t) of (1) and a certain zero point ~x of h (x) with 
respect to (17) and^ ' (£) = 0, the relation (18) will be realized in a small enough 
neighbourhood of 'x and consequently x (t) will be attracted by it. Thus (1) 
is stable in the sense of Lagrange, which was to be proved. 

REMARK 2. More precisely, only one of two possibilities from the proof of 
Consequence 1 can be satisfied for every solution of (1) (see [8]). Hence (11) holds 
for all the solutions of (1), when g (x) = b, with respect to (18). 

3. EXISTENCE OF A BOUNDED SOLUTION UNDER (12) 

Now we come to the most controversial case via the asymptotic Poincaré 
boundary value problem. 

LEMMA 2. If all the solutions of (1) satisfying a one-parameter family of 
boundary conditions 

(19) *'(T) — x (0) =* x' (T) — x' (0) = , x" (T) — x" (0) = 0 

are " a priori" uniformly bounded together with their two first derivatives indepen
dently of T e (0 , co), then (1) admits a bounded solution, provided (12) holds 
with e = | p (0) | . 

Proof The proof concerning the solvability of (1), (19) for a finite 
T e R X (T=:{JICO, where ( x e ( 0 , l > ) can be found e.g. in [10] and the 
one of the limit case for T -;* oo is then guaranteed by the lemma of 
Krasnosel'skii [11, pp. 178-180]. 

THEOREM. Under the assumptions (3), (7), (8), (12) with s = ; \p(0) \ and 
g (x) = b > 0 the equation (1) admits a bounded solution. 

Proof According to Lemma 2 it is sufficient to prove the uniform " a 
priori " boundedness of the solutions of (1), (19) together with their two first 
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derivatives. For this purpose we will proceed by the well-known Yoshizawa's 
technique [12] of Liapunov functions. 

Since the time-derivative of (13) with respect to (1) reads for g (x) =b: 

U(1) (*', x") = — lax"* — 2abx'2 + (4x" + 2a*') {p(t) — h (x)), 

such a positive constant S must exist that U'(X) (x', x") is negative definite for 
| x' | + | x" | > S , t e R+ , x e R1 and simultaneously that 

(20) inf U (*', x") > sup U (*', x") 
\xf\+\x,f\^SQ >'|+|#"|=S 

is holding for some S0 > S with respect to U (x', x") -* oo for | x' | + | x" | -> oo. 
Since the bound S0 is a uniform one with respect to (20), only two trou

blesome possibilities may occur; either the relation | x' (t) | + | x" (t) | > S 
holds for x(t) of (1), (19) on all the interval ( 0 , T ) or it is satisfied for 
0 < t < T0 < T with | x' (T0) | + | x" (T0) | = S. Both possibilities however 
contradict to (19), because in the first case we come to U (xf (T) , x" (T)) < 
<U(*'(0). ,*"(0)) , while in the second one to | *'(T) | + | *"(T) | < S0 < 
< I *(0) | + \x" (0) | (for S < | x' (0) | + | x" (0) | < S0 we might get some 
bound Sx > S0 , when replacing S0 by Sx and S by S0 in (19), analogically). 

Although only | xf (t) \ + | x" (t) \ < Sx can be satisfied for all the solu
tions of (1), (19) as we could see, x(i) may be yet arbitrary. Therefore let us 
consider still another Liapunov function, namely 

X t 

2V (t,x,x', x") = 2 J h (s) ds + (bx + ax' + x" — \ p (s) ds)2, 

0 0 

implying obviously the existence of such a positive constant R that the relation 

(21) inf V (t, x , x', x") > sup V (t, x , x', x") 
!^I>RQ W=R 

holds for some R0 > R, | x' \ + \ x" \ < Sx and te R+. 

Similarly, since its time-derivative with respect to (1), namely 

t 

V'd) (t, x , x', x") =* — bh(x)x — h (x) {x" + (a + 1) x' — I p (s) ds) , 

o 

is this time positive definite under our assumptions for | x \ > R and | x' \ + 
+ l ^ ' I ^ S i , ^eR+, a uniform " a priori " boundedness result is given. 
Indeed, because otherwise if there exists such a point £0e < 0 , T) with | x (t0 j > 
> R j and such a first point T0 e (t0, T > with | x (T0) | =s R, then it should 
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be satisfied V (to) > V (T0) according to (21) and V (*0) < V (T0) with respect 
to the positive definiteness of V1 (t, x , x' , x") altogether. Moreover, | x (t) \ > 
> R0 for all t e ( 0 , T ) would imply that V (T) > V (0), a contradiction to 
(19). This completes the proof. 

REMARK 3. Recently we have proved [13] that such a hounded solution 
belongs under (10) to the class L2 < 0 , oo), provided h (x) sgn x < 0 for x^O . 

4. EQUATIONS LIKE (1) WITHOUT D'-PROPERTY 

Equations without D'-property have been considered only rarely (see e.g. 
[13, 14]) and mainly similar dichotomy results have been obtained for them. 
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