ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAOLA PIETRA, CLAUDIO VERDI

On the Convergence of the Approximate Free
Boundary for the Parabolic Obstacle Problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti, Serie 8, Vol. 79 (1985), n.6, p. 159-171.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_6_159_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per motivi di
ricerca e studio. Non é consentito 1'utilizzo dello stesso per motivi commerciali. Tutte le
copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=RLINA_1985_8_79_6_159_0
http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1985.



P. PieTra e C. VERDI, On the Convergence of the Approximate, ecc. 159

Analisi numerica. — On the Convergence of the Approximate Free
Boundary for the Parabolic Obstacle Problem. Nota di Paora PirTRA *)
e CLaupio VERDI **), presentata (#*+) dal Corrisp. E. MAGENEs.

RiassuNto. — Si discretizza il problema dell’ostacolo parabolico con differenze
all’indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell’er-
rore per la frontiera libera discreta.

0. INTRODUCTION

An important question in dealing with the numerical solution of free boun-
dary problems is the approximation of the free boundary itself. The feature of
the problem does not allow general conclusions, since the discrete free boun-
dary could be a set with no relation to the continuous free boundary. If non-
degeneracy properties of the solutions are known, results as to the accuracy in
the approximation of the free boundary can be given (see Brezzi and Caffarelli
[1]; Nochetto [10]; Pietra and Verdi [11]).

The aim of this paper is to analyse the behaviour of the discrete free boun-
dary for a parabolic obstacle problem, discretized with backward-differences
in time and linear finite elements in space. The continuous solution does satisfy
non-degeneracy properties and the discrete one reproduces the same behaviour,
provided the decomposition is of acute-type. So the discrete free boundary
is allowed to be defined in the natural way as the boundary of the contact set
and a rate of convergence to the continuous free boundary can be proved. The
measure of the symmetric-difference of the continuous and discrete coincidence
sets or the distance between the free boundaries is bounded in terms of the
Le>-error estimate for the solutions.

An outline of the paper is as follows.

In Section 1 the non-degeneracy properties of the solution of the continuous
problem are proved. The discrete problem is stated in Section 2. Section 3
deals with the non-degeneracy property of the discrete solution and with error
estimates between the continuous and discrete free boundaries.

(*) Istituto di Analisi Numerica del C.N.R., Pavia, Italy.
(**) Istituto di Matematica, Informatica e Sistemistica, Universitd di Udine,
Udine, Italy.
(**%*) Nella seduta del 22 novembre 1985.
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Let us introduce some notation.
w : Lebesgue measure in RN+ ;
d((x,t),@,H)=max (| x— z|, |t —F [V2);
Q:(Z,l)={(x,t)e RN : d((x,1),(%,1) < c};
Q@,h)={x.t)e Q(x,?),t <1}
S. (E)=={(x,t)e RN+: d((x,t),E) < ¢}, VEc RN+ ye > (.

1. THE CONTINUOUS PROBLEM

Let Q be an open bounded set of RN (N > 1). We set Q =Q x 10, T[,
T < 00;8,Q=(3Q x ]0, THU (Q x {0}). For any § > 0, we set Q_5 =
={xre Q:d(x, 0Q) =38}, Q_y= Qs X [5,T[, and for any set Ec RN
(E < RN, we define A —E () O (B ==E M Q).

Given functions fe L*(Q) and ge H'(Q), with g >0 on 9, Q, we define
the convex set

€] W={ve H' (Q),v >0 ae. in Q,v=g on 9,Q}

and consider the following problem

To find ue W such that

(P) u,(v—u)d.x—i—fVu-V('v——u)dxsz(v—-u)dx voe W, ae. 1€ ]0, TJ.
Q Q

Q
It is well known (see, e.g., Friedman [8]) that if Qe C2t= and
2 f,8,8,D,8,D2g  belong tc C*(Q),0 <a<1
then the problem (P) has one and only one solution satisfying
3) g, Dyu,D2u belong to L2 (Q).
Moreover,
(4) if fe HY(Q)  then wu,e L2(0,T; H'(Q)).
Let us define the positivity set and the free boundary

(5) P={x,t)e Q:u(x,t) >0}, I'=oPNAQ.
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From now on, C, C,, etc. will denote constants independent of the point
(¢, t) and e. Finally, set

8,Q={(x,2)e3Q:g(x,t)>0}.

Throughout the paper we shall assume assumptions (2) and fe H!(Q).
Under the further hypothesis

(6) —f(@x, ) =>r>0 in Q

we shall prove some properties of the free boundary and non-degeneracy pro-
perties of the solution of the problem (P).

The following Lemma 1 shows that the solution « cannot be uniformly small
in some neighbourhood of a point on the free boundary.

Lemma 1. Let (%, %) be any point in P. For any cylinder Q, (%, 1) with
Q. (&, )N 8,Q==9, we have

A
2N+ 1

g2,

@) sup u(x,t)y—u (@ 1)>

(x,0)eQ.x, NP

Proof. Suppose first that (z,7)e P. The function

A

(8) w(x,t)zu(x,t)—u@,i)—"ZN+1

(lx—z P+ [t—1])

satisfies w (%, f)=0 and Aw — w, >0 in P. Hence, by the parabolic maxi-
mum principle, supw in P M Q, (Z, ) is non-negative and it is attained on
TNQ.x,H UEQ @,))N\P). Since w(x,t) <0 if (v,f)e I' and
Q. @, )N 6; Q = ¢, actually there must exist a point (y , 7)€ 9,Q, (Z, ) NP,
such that w (y, 7) > 0, hence the thesis follows.
If (z,?) ¢ P, we apply the result to a sequence of points (%, , t,) € P, with
(50, 1) = @, D)
|

In order to prove that the Lebesgue measure of I' is equal to zero (see
Theorem 1) we need the following Lemma 2.

LemMma 2. For any § > 0, there exist two positive constants <, and v such
that, for any point (% ,%)e T, we have

u(Qs(@,f)ﬁP)>Y
w@Q @, ) 7

9) V0<e<s.
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Proof. By Lemma 1, there exists a point (y,t)e Q. (%,7) so that
u(y,t)=C,e% Since #>0 and we Lo (0, T, C:L(Q)), by Remark 1 in
Caffarelli [2] we have |Vu(y, )| <C,e and then C;e2 <u(x, 1) < C,e?
Vix—y| <Ce. Since u,e€ L5 (Q), then C,e2<<u(x, ) < C, <2,
V (x,t)e Qc. (¥, 7), hence the lemma follows.

Remark 1. Setting
(10) A ={x,)eQ:0<u(x,t) <%},
properties (3) entails the following Lemma 3.

Lemma 3. For any § > 0, there exist positive comstants =, C and v such
that, for any point (%, %) e IS, we have

»(Q. @, 5 N AE

(11) —— >, VO <e<cg,.
L (Q.@,9) '
|
THEOREM 1. The free baundary T' has Lebesgue measure zero.
Proof. Lemma 2 implies that
L p@@,)NT) —
(12) lim — <1 v@,f)el.
o @G, ) )
For any measurable set E = RN+! we have (see, e.g., Federer [7] Sec. 2.9)
‘ <@,f)NE
(13) im P EEINE G heE.

=0 w (Qa (% I Z))

Since I' is measurable, then (12) and (13) imply p (I') =0.
|

It can be proved that the free boundary I" has a N-dimensional Hausdorff
measure finite. To this end we prove the following theorem.

THEOREM 2. For amy & > 0, there exist two pasitive constants e, and C
such that

(14) e (Ad) < Ce, VO<e<eg.

In order to prove Theorem 2, we need two lemmata.
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LevMa 4. For any 8 > 0, there exist two positive constants <, and C such that

(15) J(Au)2dxdt§Ca, VO<ec<e.
A®
Proof. 'The proof is carried out with techniques used in Caffarelli [2] for
an analogous estimate in the elliptic case. Let

(16) O,={(x,t)e P: | Vu(x,t)| <<c}, 0l ={(x,f)eP:|Diu(x,t)|<cl,

and set A (x , £) = (D;u (x, ) A €) V (— ). We note that (Aw)> <N Z (Dy; u)?,
hence we get

17) J(Au\z dedt <N fZ Dyt dvdt <N 3, f (D4 )? d d |
o? o® (0’)6

since O, = O!. Moreover

(18) j(D”u)zdxdt< f VD;u - VD;u dx dt = th’ VD;udxdt.

(0} ‘ @iy Q)

Noting that p(I')=0 (see Theorem 1), h'=0 on T, hie L2 (0,T;
Chl(Q)) and —u;, + f=— Au in P3 we obtain (recall (4))

f VA - VD, u dx dt:f(Di(—-u,—i—f)) B d dt +
Qs p®

(19)

T

f f (8, D;u) Al ds dt

o

8 a0 5NP®
by using approximation arguments. By Remark 1 in Caffarelli [2]
(20) As < Og,,

hence from (20), (17), (18), (19) the assertion (15) follows.
' |

Lemma 5. For any § > 0, there exist twa positive constants <, and C such
that

(21) qutdxdt§C€2, VO<e<g. -

A?

12. — RENDICONTTI 1985, vol. LXXIX, fasc. 6
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Proof. Let B, (x)={te]0,T[:(x,t)e A}andsetu, (x,2)=u(x,?) A
A €2 By using Fubini theorem and integrating by parts, we obtain

ffu,dxdt:f fu,dtdxzf fu., dt de=
Az Q(_g) Bz(x)fﬂsz,T[ Q(_s,
(22) ,
:——f fi u, dt dx + qus |'I(;2§Csz,
Q-3 Q-5
because fe H!(Q).
|
Proof of THEOREM 2. In the set P we have Au—u,—=—f > x>0, so
that
(23) 1< (Au—uwu) = (Auy— i+ 2u,f < (Au)?+2u,f.
Then we obtain
(24) g).(Ag):.%z_f)é’dxdtg.%f((Au)‘f—kZu,f)dxdt,
Al AL
hence Lemma 4 and Lemma 5 yield the thesis.
[

The strip S, (I'®) can be obtained by covering I'® by means of cylinders
Q€= (%, 1), (T, 7)e I'S. One may restrict the coverings to be such that each
point of I'® is contained only in a finite number N* of cylinders, where N* is
independent of the covering and of «.

THEOREM 3. For any § > 0, there exist two positive censtants g, and C such
that

(25) (S, (I?) <Ce, VO<e<Zcg.
Proof. By Lemma 3, there exist positive constants ¢, C, and v such that

2 N*
6 (M) <T@ T WO NAL) < w (B,

Y

hence Theorem 2 yields the property (25).
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2. THE DISCRETE PROBLEM

The problem P is discretized by piecewise linear finite elements in space
and by backward differences in time.
Let m > 1 be a integer, k=T /m be the time-step and ¢! =ik, i=0,.
.,m. Let {7;};, be a family regular and quasi-uniform of decompositions
of Q into closed N-simplices (see, e.g., Ciarlet [4]); % stands for the mesh-

size. For the sake of convenience, suppose that Q= Q,= U 7, that is,
tTe€T n

we are considering polygonal domains. Let now {x;}"_; be the nodes of 7,

numbered as follows

@ {x;}70_, are the internal nodes,
{xj}’;-=n0“ are the nodes on the boundary 9Q,

and denote by W (V’V) the vector of R" (R") of components W;,j=1,...,n,
(j=1,...,n). Let us set

(28) Vi={1e C°(Q) : . is linear V € T}
and indicate by {¢;}7_, the canonical basis of V,.

The integrals J @; ¢ dx will be calculated by the following quadrature

Q
formula

29) (@ aa=0if j1, (9, 08— f 9, dx .
Q

Let us define the matrices
M= {mﬂ} ={(¢;, <P1)h}?,ll)=1 >

(30) A —(ep={([ Vo, Vordspor,y,  A={a,

Q
B={;}=M-+EkA.
Setting

B [, 0,0 ds,

Q
(31) j=1,...,m,i=1,...,m,

n
G’; == z aﬁ g (x, s t") )
l=n0+1
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the discrete problem is the following

(Pr) = 2,8 (%;,0) 9,

7=1

for i=1,...,m, find uj, = 3, Ulg;e V, such that
i=1

U}zg(xj,ti), j=mn+1,...,n0,
(32i) Ui>0
(32ii) BUi > k(FF—G') + M Uit
(32iii) (BU' —k(F—G)—MU)Ui=0.

This problem has one and only one solution (see, e.g., Glowinski, Lions
and Trémolieres [9]). The discrete solution of the problem (P) is the function

Ung (-, By =ub,, () if te 16, #].

The assumptions on the finite element space imply

(33) lZaﬂ:O, j=1,...,n0.
=1

In order to obtain a parabolic discrete maximum principle (P.D.M.P.)
we need further hypotheses on the decomposition. We consider decomposi-
tions of acute—type (see, e.g., Ciarlet [3], Ciarlet and Raviart [5]). In these cases

i
(34) a; <0 if jAI.
Denote by <=1 x [ti7,1], teT,, i=1,...,m, and set I ;==

={7 :7€J,, 1 <i<m}. Consider a connected union of elements of.7 ;.
We shall denote by D either this set or the set of its nodes and define

0, D={(x;,2)e D :(x;, 1) ¢D or Ix,€ supp ¢, : (x;, f) ¢ D} .

We report the statement of the P.D.M.P. The proof is an easy extension
of that one in the elliptic case.

TueoreM 4 (P.D.M.P.). Let D bz a connected union of elements of I p.
Let {W#}" € R<™+h sych that

(35) my; (Wi— Wit) 1 k(AW); <0,  V(x;,#)e D—2g,D.
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Then

(36) max W:!> max W,
(x;,the3,D (x;,t)eD~2,D

3. APPROXIMATION OF THE FREE BOUNDARY

We define the discrete positivity set and free boundary
(37) Pue=A{(x, e Q:up(x,8) >0;, Inu=0PNQ,

and observe that P,; is an union of elements of 7
The following Theorem 5 is a result of non- degeneracv for the discrete
solution.

THEOREM 5. There exist three positive constants v, h, and k, such that, for
4
any 0 < h < hy, for any 0 < k < ky, for any r > 2h andrzz—?,— k and for any
node (xy , t*)€ Py with Q, (% ,t*¥) M, Q=10 , we have

(38) max Ul > vy, 72
(), HeQ,(x 1 INPy,,

Proof. Set o* (x) = | x — x4 |*> and consider the vector @* of its nodal

values. By Theorem 3.3 of Brezzi and Caffarelli [1] there exist two positive
constants §, and 3;, independent of # and x,, such that

(39) ~—80fcpj(ac)cbcS(A@”*)jS—B‘,Jcpj(x)dx, j=1,...,m,.
Q Q

For i=0,...,m, consider the vector W of components

. . A
40 W=Ut— —— (5% (x, i g% 1.
( ) ] ) 2 (80+ 1) (G (x])+ It 4 ]), ] 1, n,

where A is the constant defined in (6).

Let D the connected biggest union of elements of 7, such that D —0,D <
< Ppr M Q, (%4 , t*) and such that x, € int {x : (x, t¥*)e D}. By (32.iii), in the
nodes (x; ,tY)e D — 9, D, we have

(41) m; (Ui — Ui 4 & (A U, — R Fi,

hence from (33)
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(42) mj; (Wi— Wit) + k (AW); =
; A A —~
= e om, ((FF — 1) — (% — 1)) — E(AG¥)..
Then from (6), (29) and (39) we obtain
. . - A

Then the P.D.M.P. implies that {W"’}l’-’;(, takes its maximum in D on a node
(%p,179) on 0,D. Clearly W¢ >0, so that U] >0 and hence (x,, 17) € I';.
It follows that

(44) d((x,, 29, 0,Q, (%, t¥) <h  or <Fki2,

then

2 2
(45) c*(x,,)>(r—h)22_'4_ or (t*—t)>r—k=.

On the other hand, W{ > 0 implies UZ > (c* (xp) + (t* — 19))

A
25 + 1)

hence the assertion (38) is verified with

A

o TR D)

Now we shall bound the distanice between the free boundaries by means
of the L>®-error between # and u,,. In order to do that, we will assume that
the time-step k is chosen as k= ¢ 4% (« < 2); moreover we assume that an Le-
error estimate of the type (47) is known (see, e.g., Cortey Dumont [6]; Pietra
and Verdi [11]; Fetter [12]):

(47) sup || (t9) — s, Il < 2 ()
Y 1 (7) —
with lim » (h) =0, o = 28Vy, for h small enough,
h—0 *

were Y, is given by (46) and { = max <1 ,V—§->

In order to obtain the final Theorem on the rate of convergence of the
discrete free boundaries, we state two lemmata.
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Lemma 6.  There exists a positive constant hy such that, for any 0 < h < h,,
for any node (x, ,t*)€ Q and for any r > 0 with Q, (xy ,t*) N\ 8, Q=10 and
02 (h) < v,73 we have

(48) u(x,)=0 in Q,(wg,t*) NQ= > up(x,,2*)=0.
Proof. Assume that u(x,2) =0 in Q,(xy,t*) N Q and suppose that
2 (h 4
Upp (%4 , t*) > 0. By (47), r* 2ﬁ—)24[52h°‘ > Tk and 7 >2hJ/2>

i
> 2h. Then we can apply Theorem 5 and obtain

49)  max Ul > yor2 =72 (h) .
@;.MeQ,(x tHNQ

So the error estimate (47) is contradicted.

|
342
LemMma 7. Set ¢, (h) == (h) (}/2%—2 There exists a positive constant
Yo
hy such that, for any 0 < A << h;, we have
(50) (Q—P)—-—Ssl(;,) (TYc Q— Py
, 10 3 .
roof. Let ¢y (h)=—= and S=(Q —P)—8_» (I'). If (x4 ,2%) isa

V‘ 0
node belonging to S, then u (og ,t)=0in Qaz( » (®g , %) M Qand Qez( »n &g, 1Y N
M 3,Q=4¢. Hence, Lemmn 6 yields u; (xy , t*) =0.
The strip Se,m () is not large enough. Indeed, there could exist an ele-
ment of 7, with a vertex in S and a vertex in P,;. It is sufficient to remove a

further strip of width V?p 2 from S. Globally we remove a strip of width
g, (h) from Q —P, and then (50) holds.

THEOREM 6. For any 8 > 0, there exist two positive constants h, and C
such that, for any 0 < h < h,, we have

(1) w(® +Puw)?) <Cn(h).
Proof. Lemma 7 implies that

(52) (Pre — PP =((Q —P) —(Q—Pw))* = S¢n (1) -
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On the other hand, if (x, £) e (P — Py)%, we have wuy; (x, £) =0 and then
0 < u(x,t) < C2x%(h), by means of the error estimate (47). Hence, we obtain

(53) (P =PypPc Ssl(h) (v Aéln(h) .

Theorem 3 yields p (Ssl(h) (%)) < C¢, (h) and Theorem 2 yields p. (A&v.(h)) <
< Cx(h). Then the thesis follows.

Remark 2. If we assume the following property

(54) V8>0) 330) C>0: Agcsce(l—‘s), V0<8_<_€0,

then the distance between the free boundaries can be estimated. Indeed from
(53) it follows that

(55) (Tar)® = Scywm (TP) .

Actually, property (54) could be obtained from the non-degeneracy pro-
perty (7) if the continuous free boundary is regular.

ConcLupING REMARK. Here, the error estimates (51) and (55) for the free
boundaries have been obtained in the cylinder Q. In Pietra and Verdi [11],
where the approximation of the free boundarv for the multidimensional one-
phase Stefan problem has been treated, bounds of the same feature have been
derived at each time level. There, the positivity of #, allowed us to reduce the
problem to an elliptic case. In a general parabolic variational inequality, the
lack of monotonicity requires the different analysis here used.
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