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Teoria dei gruppi . — Soluble Groups with Many Cernikov Quo

tients. Nota <•> di S ILVANA FRANCIOSI e FRANCESCO DE G I O V A N N I , p re 

sentata dal Socio G. Z A P P A . 

RIASSUNTO. — Si studiano i gruppi risolubili non di Cernikov a quozienti propri 
di Cernikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H IX N 
con N ^-gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi 
di N che sia infinito e di Cernikov. Nel caso non periodico invece si riconduce tale studio 
a quello dei moduli a quozienti propri artiniani su un gruppo risolubile finito, e si for
nisce una caratterizzazione di tali moduli. 

§ 1. INTRODUCTION 

If X is a class of groups, a group G is said to be just-non-K if it is not in 
X but all its proper quotients are X-groups. 

Soluble just-non-polycyclic groups are studied in recent papers of Groves 
[2] and Robinson and Wilson [7], while just-infinite groups are considered in 
earlier papers of McCarthy [3] and Wilson [8]. 

Our aim here is to study soluble just-non-Cernikov groups. Torsion soluble 
just-non-Cernikov groups are described in a satisfactory way by Theorem A: 
such groups are precisely the semi-direct products H |X M, where M is an infi
nite abelian group of prime exponent and H is an irreducible infinite Cernikov 
group of automorphisms of M. Theorem B reduces the study of non-tor
sion soluble just-non-Cernikov groups to that of just-non-artinian modules over 
a finite soluble group, while Theorem C gives a description of such modules. 

Finally in § 4 we construct many examples of just-non-Cernikov groups, 
and we embed every Cernikov group in a just-non-Cernikov group. 

Most of our notation is standard. In particular we refer to [5]. 

§2. TORSION SOLUBLE JUST-NON-CERNIKOV GROUPS 

We shall prove: 

THEOREM A. A torsion soluble group G is just-non-Cernikov if and only 
if G = H |X M where M is an infinite abelian group of prime exponent and H is 

(*) Pervenuta alPAccademia il 12 settembre 1985. 
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an infinite Cernikov group which acts faithfully as an irreducible group of automor
phisms of M. 

Proof. Let G be just-non-Cernikov; then the last non-trivial term A of 
the derived series of G is obviously a ^>-group (for some prime p). Denote by 
D the divisible part of A and by S the socle of D. If S 7^ 1, D/S is in Min and 
so D is in Min, which is impossible. Therefore D = 1 and A is reduced. It 
follows that Ap = 1, since otherwise A/Ap is finite and A is finite, a contradic
tion; thus A is an infinite elementary abelian ^>-group. For each a e A \ { 1 } , 
the subgroup CG (a) has infinite index in G, and so we have B ^ CG (a) where 
B/A is the finite residual of G/A. Since A[aG is finite and B/A is divisible, 
we obtain 

[A , B] < aG , and so 1 7^ [A , B] < p> aG =M. 
aeA\{l} 

Obviously M is the unique minimal normal subgroup of G. Write Q = 
= G/M. Then M is a simple Q-module and, if R denotes the finite residual 
of Q, we have H° (R , M) = 0 since | Q : R | < co. By a theorem of Robin
son ([6] Theorem B) it follows that H2 (Q , M) = 0 and so G = H IX M for 
some H < G. If C = CG (M), we have C = HM Q C = M (H p> C), and 
H p j C is normal in HM = G. Since H ~ G/M is Cernikov it follows that 
H p ) C = l and CG (M) = M. Therefore H acts faithfully as an irreducible 
group of automorphisms of M. 

Conversely, if G = H IX M has this structure, G is not a Cernikov group, 
since M is infinite. If N is a non-trivial normal subgroup of G, we have M pi 
H ' N T ^ 1, since CG (M) = M , and so M < N and G/N is a Cernikov group. | 

REMARK. IfM. is an infinite abelian group of prime exponent p and H is an 
irreducible infinite Cernikov group of automorphisms of M, then the finite residual 
R o / f | is a p'-group. 

Proof, By contradiction suppose that the ^-component K of R is non-
trivial, and denote by Kn the subgroup of the elements of order <pn of K; then 
K = U Kn and every Kw is finite. By Theorem A the group G = H IX M 

is just-non-Cernikov and eveiy Ln = Kn IX M is nilpotent (see [5] Part 2, Lem
ma 6.34). Therefore 1 7^ Z (Ln) < G, so that G/Z (Ln) is a Cernikov group 
and Ln /Z (Ln) is finite since it has finite exponent. Then L^ is a finite normal 
subgroup of G, so that Un = 1 and each hn is abelian. Therefore K acts tri
vially on M and K = l . B 

In § 4 we will construct a torsion soluble just-non-Cernikov group whose 
unique minimal normal subgroup is not a Hall subgroup. 

EXAMPLE. Let K be the algebraic closure of the field GF (p) ; then the 
multiplicative group K # of K is a direct product of groups of Prufer type, one 
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for each prime other than p. Let H be an infinite subgroup of K # satisfying 
the minimal condition on subgroups, and let A be the additive group of the sub-
field of K generated by H; then A is an infinite elementary abelian ^-group on 
which H acts faithfully and irreducibly by multiplication. The split extension 
G = H IX A is just-non-Cernikov. 

This example is essentially due to Carin. g | 

§ 3. NON-TORSION SOLUBLE JUST-NON-CERNIKOV GROUPS 

The analysis of the Fitting subgroup and of the Fitting quotient is essential 
in describing non-torsion soluble just-non-Cernikov groups. In fact we have: 

THEOREM B. (1) Let G be a non-torsion soluble just-non-Cernikov group 
and let F be the Fitting subgroup of G. Then Q = G/F is a finite group and F 
is a faithful just-non-artinian Q-module. 

(2) Conversely, if Q is a finite soluble group and F is a faithful just-non-
artinian Q-module, every extension of F by Q is a non-torsion soluble just-non-
Cernikov group with Fitting subgroup F. 

Proof. (1) Let A be the last non-trivial term of the derived series of G, 
and let M be the intersection of all non-trivial G-invariant subgroups of A. If 
M t£ 1, M is a minimal normal subgroup of G and G / C Q CM) is an irreducible 
locally finite group of automorphisms of M, so that M is torsion (see [5] Part 1, 
Lemma 5.26), which is impossible. Therefore M = 1. Denote by B/A the 
finite residual of the Cernikov group G/A. If H is a non-trivial G-invariant 
subgroup of A, the torsion group B/CB (A/H) is finite (see [5] Part 1, Theorem 
3.29.2) and so CB (A/H) = B since B/A is divisible; it follows that [A , B] < 
< M = 1, and so A < Z (B) and B is nilpotent. Therefore G is nilpotent-by-
finite; it follows that F is a torsion-free nilpotent group and Q is finite. 

The group F/Z (F) is Cernikov, so that F ' = 1 and F is abelian. Then 
CG (F) = F and F is a faithful Q-module. If K is a non-trivial Q-submodule 
of F, we have K < G and obviously F/K is an artinian Q-module. Finally 
the Q-module F is non-artinian since G has no minimal normal subgroups. 

(2) Let G be an extension of F by Q. Then CG (F) = F and so, if N 
is a non-trivial normal subgroup of G, we have that N P) F is a non-trivial Q-
submodule of F and F / N p | F is an artinian Q-module. Thus G / N P | F is 
in Min-rc, and so F / N o F is in Min (see [5] Part 1, Theorem 5.21); it fol
lows that G/N is Cernikov and G is a just-non-Cernikov group. Since Q is 
finite, we obtain that F is torsion-free by Dietzmann's Lemma. 

By (1) the Fitting subgroup F (G) of G is abelian, so that F (G) < CG (F) = 
' = F and F (G) = F. g 

From Theorem B it follows that it is sufficient to study faithful just-non-
artinian modules over finite soluble groups. We recall that a Q-module A is 
said to have finite Q-rank r if every finitely generated Q-submodule of A can be 
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generated by s < r elements and r is the least positive integer with this property, 
while A is said to hâve finite total Q-rank if the sum of the Q-rank of A/T and of 
the Q-ranks of the Ap (for all primes p) is finite (where T is the torsion subgroup 
of A and A^ is the ^-component of A). Here J denotes the field of rational numbers. 

THEOREM C. Let Q be a finite soluble group and let A be a faithful Q-mo-
dule. Then A is a just-non-artinian Q-module if and only if A is Z-torsion-freey 

A ®z & is a simple QQ-module and the Q-sections of A have finite total Q-rank. 

Proof. Let A be just-non-artinian. Since Q is finite, the abelian group 
A is obviously torsion-free. Let M be a non-trivial JQ-submodule of A ®z 

® Z J 2 ; then M * = { a e A/a® l e M} is a non-trivial Q-submodule of A and 
there is an exact sequence 

M* <g>z â >^> A ®z J - » A/M* ®z J 

(see [1] Theorem 60.6). The abelian group A/M* is in Min, since it is an 
artinian Q-module (see [5] Part 1, Theorem 5.21), and so 

(A ®z J ) / I m a ~ A/M* ®z J2 = 0 and M = A ®z J since Im a < M. 

If x e A \ { 0 } , the Q-submodule xQ of A generated by x is a free abelian 
group of finite rank and, as above, the abelian group A/ocQ is in Min, so that 
the torsion-free abelian group A has finite (total) rank. It follows that A has 
finite (total) Q-rank since each finitely generated Q-submodule is finitely generat
ed as a subgroup of A. Let U/V be a Q-section of A with V=£ 0. Then A/V 
is an abelian group in Min and so U/V has finite total rank as an abelian group, 
and hence also finite total Q-rank. 

Conversely let B be a non-trivial Q-submodule of A. We have 0 ̂  B ~ 
^ B <g>z Z < B ®z J2 since B is torsion free, and so B ®z £ ^ 0. There is an 
exact sequence 

B <g>z J >̂ > A <s>z J -»> A/B ®z 1 

and so A/B ®z J = 0 since Im a is a non-trivial JQ-submodule of the simple 
jQ-module A ®z &. If T/B is the torsion subgroup of A/B, it follows that 
A/T ®z â = 0, and so A/T = 0 since it is torsion-free. Therefore A/B is 
a torsion group and it has finitely many non-trivial primary components since it 
has finite total Q-rank. Let H = (xj , . . . , xn) be a finitely generated subgroup 
of A; since H Q = x1 Q • . . . • xn Q is a finitely generated Q-submodule of A, 
there exist yx, . . . , yr in A such that H Q =y1Q • . . . • y rQ where r is the Q-rank 
of A. If | Q | = q, then H Q is a free abelian group of rank < rq. Therefore A has 
finite rank as an abelian group, and so the abelian group A/B is in Min. Since 
A is torsion-free, it follows that A is a just-non-artinian Q-module. H 
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REMARK 1. Every soluble non-torsion just-non-Cernikov group G is a resi-
dually finite minimax group. 

Proof. The Fitting subgroup F of G is torsion-free abelian and | G : F | < 
< oo, so that, if xe F \ { 1 } , xG is a free abelian group of finite rank and FJxG 

is in Min; then F is a minimax group and it is residually finite (see [4] Lemma 
2.21). It follow? that G is a residually finite minimax group. | 

REMARK 2. Let G be a group with Z ( G ) ^ 1. Then G is just-non-Cerni
kov if and only if it is isomorphic with a non-trivial subgroup of J2n (the additive 
group of all rational numbers whose denominators are iz-numbers) for some finite set 
n of prime numbers. 

Proof. Suppose G just-non-Cernikov. Then G/Z (G) is a Cernikov 
group and so G' is Cernikov (see [5], Part 1, Theorem 4.23). Therefore G' = 1 
and G is a torsion-free abelian group of rank 1, and so it is isomorphic with a 
subgroup G* of J ( + ) . If m /ne G # s \ {0} , the set n of the prime numbers 
which either divide n or are orders of elements of G*/< mjn > is finite, sin
ce G # / < mjn > is in Min. It is easily proved that G # ^ J K . | 

EXAMPLE. If TC is a finite set of prime numbers and a is the automorphism 
x\-> — x of J£n9 the group ( a ) IX J2n is a soluble non-torsion just-non-
Cernikov group which is non-abelian. g 

§ 4. WREATH PRODUCTS AND JUST-NON-CERNIKOV GROUPS 

In this section we give methods to construct many examples of just-non-

Cernikov groups. 

4.1. Let lì be a non-abelian just-non-Cernikov group, and let K be a finite 
group. Then G = H I K is just-non-Cernikov. 

Proof. If N is a non-trivial normal subgroup of G, the intersection of N 
with each component H^ of the base group B is non-trivial, since Z (H) = 1. 
Therefore every H ^ N p i B J / N n B is a Cernikov grjup and so B / N f i ^ is 
Cernikov. It follows that G/N is a Cernikov group since | G : B | < oo. | 

4.2. Let H be a non-abelian simple group, and let K be an infinite Cernikov 
group. Then G = H I K is just-non-Cernikov. 

Proof. Each non-trivial normal subgroup N of G contains the base group 
of G, and so G/N is Cernikov. Moreover G is not a Cernikov group since K 
is infinite. | 

EXAMPLE. Let H be a soluble torsion just-non-Cernikov group whose 
unique minimal normal subgroup has exponent p, and let K be a finite soluble 
group whose order is divisible by p. Then G = H I K is a soluble torsion 
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just-non-Cernikov group whose unique minimal normal subgroup is not a Hall 
subgroup. H 

By 4.2 it follows that every Cernikov group is a subgroup and a quotient of 
a just-non-Cernikov group. 

4.3. Let G = H \ K be a just-non-Cernikov group with H non-simple. 
Then H is just-non-Cernikov and K is finite. 

Proof. Let B be the base group and denote by L a proper non-trivial 
normal subgroup of H; then L < B and L G = L K . Since G/L G is Cernikov, 
also B/L K ~ Dr H*/L* is Cernikov, and from H * / L * ^ l it follows that 

K is finite. We have H n L K = L and so H/L ~ H L K / L K < G/L K is a Cer
nikov group. Finally H is not a Cernikov group since G is not Cernikov. | 

Our last result is about the cardinality of soluble just-non-Cernikov groups 

4.4. A soluble just-non-Cernikov group G is countable. 

Proof. If G is non-torsion the result follows from Remark 1. Suppose 
that G is a torsion group and so G = H IX M as in Theorem A. Then H is 
countable since it is Cernikov and M is countable because it is an irreducible 
(and so cyclic) Z^H-module. | 
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