ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SILVANA FRANCIOSI, FRANCESCO DE GIOVANNI

Soluble Groups with Many Černikov Quotients

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **79** (1985), n.1-4, p. 19–24. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1985_8_79_1-4_19_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1985.

Teoria dei gruppi. — Soluble Groups with Many Černikov Quotients. Nota (*) di SILVANA FRANCIOSI e FRANCESCO DE GIOVANNI, presentata dal Socio G. ZAPPA.

RIASSUNTO. — Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H $|\not|$ N con N *p*-gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti propri artiniani su un gruppo risolubile finito, e si fornisce una caratterizzazione di tali moduli.

§1. INTRODUCTION

If \mathbf{X} is a class of groups, a group G is said to be *just-non*- \mathbf{X} if it is not in \mathbf{X} but all its proper quotients are \mathbf{X} -groups.

Soluble just-non-polycyclic groups are studied in recent papers of Groves [2] and Robinson and Wilson [7], while just-infinite groups are considered in earlier papers of McCarthy [3] and Wilson [8].

Our aim here is to study soluble just-non-Černikov groups. Torsion soluble just-non-Černikov groups are described in a satisfactory way by Theorem A: such groups are precisely the semi-direct products $H \mid \times M$, where M is an infinite abelian group of prime exponent and H is an irreducible infinite Černikov group of automorphisms of M. Theorem B reduces the study of non-torsion soluble just-non-Černikov groups to that of just-non-artinian modules over a finite soluble group, while Theorem C gives a description of such modules.

Finally in §4 we construct many examples of just-non-Černikov groups, and we embed every Černikov group in a just-non-Černikov group.

Most of our notation is standard. In particular we refer to [5].

§2. Torsion soluble just-non-Černikov groups

We shall prove:

THEOREM A. A torsion soluble group G is just-non-Černikov if and only if $G = H \mid \times M$ where M is an infinite abelian group of prime exponent and H is

(*) Pervenuta all'Accademia il 12 settembre 1985.

an infinite Černikov group which acts faithfully as an irreducible group of automorphisms of M.

Proof. Let G be just-non-Černikov; then the last non-trivial term A of the derived series of G is obviously a *p*-group (for some prime *p*). Denote by D the divisible part of A and by S the socle of D. If $S \neq 1$, D/S is in Min and so D is in Min, which is impossible. Therefore D = 1 and A is reduced. It follows that $A^p = 1$, since otherwise A/A^P is finite and A is finite, a contradiction; thus A is an infinite elementary abelian *p*-group. For each $a \in A \setminus \{1\}$, the subgroup $C_G(a)$ has infinite index in G, and so we have $B \leq C_G(a)$ where B/A is the finite residual of G/A. Since A/ a^G is finite and B/A is divisible, we obtain

$$[A, B] \leq a^G$$
 , and so $1 \neq [A, B] \leq \bigcap_{a \in A \smallsetminus \{1\}} a^G = M.$

Obviously M is the unique minimal normal subgroup of G. Write Q = G/M. Then M is a simple Q-module and, if R denotes the finite residual of Q, we have H^o(R, M) = 0 since $|Q:R| < \infty$. By a theorem of Robinson ([6] Theorem B) it follows that $H^2(Q, M) = 0$ and so $G = H \Vdash M$ for some $H \leq G$. If $C = C_G(M)$, we have $C = HM \cap C = M(H \cap C)$, and $H \cap C$ is normal in HM = G. Since $H \simeq G/M$ is Černikov it follows that $H \cap C = 1$ and $C_G(M) = M$. Therefore H acts faithfully as an irreducible group of automorphisms of M.

Conversely, if $G = H \ltimes M$ has this structure, G is not a Černikov group, since M is infinite. If N is a non-trivial normal subgroup of G, we have $M \cap \bigcap N \neq 1$, since $C_G(M) = M$, and so $M \leq N$ and G/N is a Černikov group.

REMARK. If M is an infinite abelian group of prime exponent p and H is an irreducible infinite Černikov group of automorphisms of M, then the finite residual R of H is a p'-group.

Proof. By contradiction suppose that the *p*-component K of R is nontrivial, and denote by K_n the subgroup of the elements of order $\leq p^n$ of K; then $K = \bigcup K_n$ and every K_n is finite. By Theorem A the group $G = H \bowtie M$ is just-non-Černikov and every $L_n = K_n \bowtie M$ is nilpotent (see [5] Part 2, Lemma 6.34). Therefore $1 \neq Z(L_n) \triangleleft G$, so that $G/Z(L_n)$ is a Černikov group and $L_n/Z(L_n)$ is finite since it has finite exponent. Then L'_n is a finite normal subgroup of G, so that $L'_n = 1$ and each L_n is abelian. Therefore K acts trivially on M and K = 1.

In §4 we will construct a torsion soluble just-non-Černikov group whose unique minimal normal subgroup is not a Hall subgroup.

EXAMPLE. Let K be the algebraic closure of the field GF(p); then the multiplicative group K* of K is a direct product of groups of Prüfer type, one

for each prime other than p. Let H be an infinite subgroup of K* satisfying the minimal condition on subgroups, and let A be the additive group of the subfield of K generated by H; then A is an infinite elementary abelian p-group on which H acts faithfully and irreducibly by multiplication. The split extension $G = H \bowtie A$ is just-non-Černikov.

This example is essentially due to Carin.

§ 3. NON-TORSION SOLUBLE JUST-NON-ČERNIKOV GROUPS

The analysis of the Fitting subgroup and of the Fitting quotient is essential in describing non-torsion soluble just-non-Černikov groups. In fact we have:

THEOREM B. (1) Let G be a non-torsion soluble just-non-Černikov group and let F be the Fitting subgroup of G. Then Q = G/F is a finite group and F is a faithful just-non-artinian Q-module.

(2) Conversely, if Q is a finite soluble group and F is a faithful just-nonartinian Q-module, every extension of F by Q is a non-torsion soluble just-non-Černikov group with Fitting subgroup F.

Proof. (1) Let A be the last non-trivial term of the derived series of G, and let M be the intersection of all non-trivial G-invariant subgroups of A. If $M \neq 1$, M is a minimal normal subgroup of G and $G/C_G(M)$ is an irreducible locally finite group of automorphisms of M, so that M is torsion (see [5] Part 1, Lemma 5.26), which is impossible. Therefore M = 1. Denote by B/A the finite residual of the Černikov group G/A. If H is a non-trivial G-invariant subgroup of A, the torsion group $B/C_B(A/H)$ is finite (see [5] Part 1, Theorem 3.29.2) and so $C_B(A/H) = B$ since B/A is divisible; it follows that [A, B] $\leq M = 1$, and so $A \leq Z(B)$ and B is nilpotent. Therefore G is nilpotent-by-finite; it follows that F is a torsion-free nilpotent group and Q is finite.

The group F/Z(F) is Černikov, so that F' = 1 and F is abelian. Then $C_G(F) = F$ and F is a faithful Q-module. If K is a non-trivial Q-submodule of F, we have $K \triangleleft G$ and obviously F/K is an artinian Q-module. Finally the Q-module F is non-artinian since G has no minimal normal subgroups.

(2) Let G be an extension of F by Q. Then $C_G(F) = F$ and so, if N is a non-trivial normal subgroup of G, we have that $N \cap F$ is a non-trivial Q-submodule of F and $F/N \cap F$ is an artinian Q-module. Thus $G/N \cap F$ is in Min-*n*, and so $F/N \cap F$ is in Min (see [5] Part 1, Theorem 5.21); it follows that G/N is Černikov and G is a just-non-Černikov group. Since Q is finite, we obtain that F is torsion-free by Dietzmann's Lemma.

By (1) the Fitting subgroup F (G) of G is abelian, so that $F(G) \le C_G(F) = F$ and F(G) = F.

From Theorem B it follows that it is sufficient to study faithful just-nonartinian modules over finite soluble groups. We recall that a Q-module A is said to have *finite* Q-rank r if every finitely generated Q-submodule of A can be generated by $s \leq r$ elements and r is the least positive integer with this property, while A is said to have *finite total* Q-rank if the sum of the Q-rank of A/T and of the Q-ranks of the A_p (for all primes p) is finite (where T is the torsion subgroup of A and A_p is the p-component of A). Here \mathcal{Q} denotes the field of rational numbers.

THEOREM C. Let Q be a finite soluble group and let A be a faithful Q-module. Then A is a just-non-artinian Q-module if and only if A is Z-torsion-free, $A \otimes_{\mathbb{Z}} \mathcal{Z}$ is a simple $\mathcal{Q}Q$ -module and the Q-sections of A have finite total Q-rank.

Proof. Let A be just-non-artinian. Since Q is finite, the abelian group A is obviously torsion-free. Let M be a non-trivial $\mathcal{Q}Q$ -submodule of $A \otimes_{\mathbb{Z}} \mathcal{Q}$; then $M^* := \{a \in A/a \otimes 1 \in M\}$ is a non-trivial Q-submodule of A and there is an exact sequence

$$M^* \otimes_{\mathbb{Z}} \mathcal{Q} \xrightarrow{a} A \otimes_{\mathbb{Z}} \mathcal{Q} \longrightarrow A/M^* \otimes_{\mathbb{Z}} \mathcal{Q}$$

(see [1] Theorem 60.6). The abelian group A/M^* is in Min, since it is an artinian Q-module (see [5] Part 1, Theorem 5.21), and so

 $(A \otimes_{\mathbf{Z}} \mathcal{Q})/Im \alpha \simeq A/M^* \otimes_{\mathbf{Z}} \mathcal{Q} = 0$ and $M = A \otimes_{\mathbf{Z}} \mathcal{Q}$ since $Im \alpha \leq M$.

If $x \in A \setminus \{0\}$, the Q-submodule xQ of A generated by x is a free abelian group of finite rank and, as above, the abelian group A/xQ is in Min, so that the torsion-free abelian group A has finite (total) rank. It follows that A has finite (total) Q-rank since each finitely generated Q-submodule is finitely generated as a subgroup of A. Let U/V be a Q-section of A with $V \neq 0$. Then A/Vis an abelian group in Min and so U/V has finite total rank as an abelian group, and hence also finite total Q-rank.

Conversely let B be a non-trivial Q-submodule of A. We have $0 \neq B \simeq$ $\simeq B \otimes_{\mathbb{Z}} \mathbb{Z} \leq B \otimes_{\mathbb{Z}} \mathcal{Q}$ since B is torsion free, and so $B \otimes_{\mathbb{Z}} \mathcal{Q} \neq 0$. There is an exact sequence

$$\mathrm{B} \otimes_{\mathbf{Z}} \mathscr{Q} \xrightarrow{\mathfrak{a}} \mathrm{A} \otimes_{\mathbf{Z}} \mathscr{Q} \xrightarrow{} \mathrm{A} / \mathrm{B} \otimes_{\mathbf{Z}} \mathscr{Q}$$

and so $A/B \otimes_{\mathbb{Z}} \mathcal{Q} = 0$ since Im α is a non-trivial $\mathcal{Q}Q$ -submodule of the simple $\mathcal{Q}Q$ -module $A \otimes_{\mathbb{Z}} \mathcal{Q}$. If T/B is the torsion subgroup of A/B, it follows that $A/T \otimes_{\mathbb{Z}} \mathcal{Q} = 0$, and so A/T = 0 since it is torsion-free. Therefore A/B is a torsion group and it has finitely many non-trivial primary components since it has finite total Q-rank. Let $H = \langle x_1, \ldots, x_n \rangle$ be a finitely generated subgroup of A; since $H^Q = x_1 Q \cdots x_n Q$ is a finitely generated Q-submodule of A, there exist y_1, \ldots, y_r in A such that $H^Q = y_1 Q \cdots y_r Q$ where r is the Q-rank of A. If |Q| = q, then H^Q is a free abelian group of rank $\leq rq$. Therefore A has finite rank as an abelian group, and so the abelian group A/B is in Min. Since A is torsion-free, it follows that A is a just-non-artinian Q-module.

REMARK 1. Every soluble non-torsion just-non-Černikov group G is a residually finite minimax group.

Proof. The Fitting subgroup F of G is torsion-free abelian and $|G:F| < \infty$, so that, if $x \in F \setminus \{1\}$, x^G is a free abelian group of finite rank and F/x^G is in Min; then F is a minimax group and it is residually finite (see [4] Lemma 2.21). It follows that G is a residually finite minimax group.

REMARK 2. Let G be a group with $Z(G) \neq 1$. Then G is just-non-Černikov if and only if it is isomorphic with a non-trivial subgroup of \mathcal{Q}_{π} (the additive group of all rational numbers whose denominators are π -numbers) for some finite set π of prime numbers.

Proof. Suppose G just-non-Černikov. Then G/Z(G) is a Černikov group and so G' is Černikov (see [5], Part 1, Theorem 4.23). Therefore G' = 1 and G is a torsion-free abelian group of rank 1, and so it is isomorphic with a subgroup G^* of $\mathcal{Q}(+)$. If $m/n \in G^* \setminus \{0\}$, the set π of the prime numbers which either divide n or *are* orders of elements of $G^*/< m/n >$ is finite, since $G^*/< m/n >$ is in Min. It is easily proved that $G^* \subseteq \mathcal{Q}_{\pi}$.

EXAMPLF. If π is a finite set of prime numbers and α is the automorphism $x \mapsto -x$ of \mathcal{Q}_{π} , the group $\langle \alpha \rangle I \times \mathcal{Q}_{\pi}$ is a soluble non-torsion just-non-Černikov group which is non-abelian.

§ 4. WREATH PRODUCTS AND JUST-NON-ČERNIKOV GROUPS

In this section we give methods to construct many examples of just-non-Černikov groups.

4.1. Let H be a non-abelian just-non-Černikov group, and let K be a finite group. Then $G = H \wr K$ is just-non-Černikov.

Proof. If N is a non-trivial normal subgroup of G, the intersection of N with each component H_i of the base group B is non-trivial, since Z(H) = 1. Therefore every $H_i(N \cap B)/N \cap B$ is a Černikov group and so $B/N \cap B$ is Černikov. It follows that G/N is a Černikov group since $|G:B| < \infty$.

4.2. Let H be a non-abelian simple group, and let K be an infinite Černikov group. Then $G = H \wr K$ is just-non-Černikov.

Proof. Each non-trivial normal subgroup N of G contains the base group of G, and so G/N is Černikov. Moreover G is not a Černikov group since K is infinite.

EXAMPLE. Let H be a soluble torsion just-non-Černikov group whose unique minimal normal subgroup has exponent p, and let K be a finite soluble group whose order is divisible by p. Then $G = H \wr K$ is a soluble torsion

just-non-Černikov group whose unique minimal normal subgroup is not a Hall subgroup.

By 4.2 it follows that every Černikov group is a subgroup and a quotient of a just-non-Černikov group.

4.3. Let $G = H \wr K$ be a just-non-Černikov group with H non-simple. Then H is just-non-Černikov and K is finite.

Proof. Let B be the base group and denote by L a proper non-trivial normal subgroup of H; then $L \triangleleft B$ and $L^G = L^K$. Since G/L^G is Černikov, also $B/L^K \simeq Dr H^k/L^k$ is Černikov, and from $H^k/L^k \neq 1$ it follows that K is finite. We have $H \cap L^K = L$ and so $H/L \simeq HL^K/L^K \leq G/L^K$ is a Černikov group. Finally H is not a Černikov group since G is not Černikov.

Our last result is about the cardinality of soluble just-non-Černikov groups

4.4. A soluble just-non-Černikov group G is countable.

Proof. If G is non-torsion the result follows from Remark 1. Suppose that G is a torsion group and so $G = H \bowtie M$ as in Theorem A. Then H is countable since it is Černikov and M is countable because it is an irreducible (and so cyclic) \mathbb{Z}_p H-module.

References

- [1] L. FUCHS (1970-73) Infinite Abelian Groups, Academic Press, New York-London.
- [2] J.R.J. GROVES (1978) Soluble groups with every proper quotient polycyclic, « Illinois J. Math. », 22, 90-95.
- [3] D. MCCARTHY (1968) Infinite groups whose proper quotient groups are finite I « Comm. Pure Appl. Math. », 21, 545-562.
- [4] D.J.S. ROBINSON (1968) Residual properties of some classes of infinite soluble groups, « Proc. London Math. Soc. », (3) 18, 495-520.
- [5] D.J.S. ROBINSON (1972) Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin.
- [6] D.J.S. ROBINSON (1976) The vanishing of certain homology and cohomology groups, « J. Pure Appl. Algebra », 7, 145-167.
- [7] D.J.S. ROBINSON and J.S. WILSON (1984) Soluble groups with many polycyclic quotients, « Proc. London Math. Soc. », (3) 48, 193-229.
- [8] J.S. WILSON (1971) Groups with every proper quotient finite, «Proc. Cambridge Philos. Soc. », 69, 373-392.