Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Shu-Xiang Yu, Chengfu Jin

Some properties of integral curves in a neighbourhood of planar singular points

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 77 (1984), n.3-4, p. 87-90.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1984_8_77_3-4_87_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Equazioni differenziali. - Some properties of integral curves in a neighbourhood of planar singular points. Nota ${ }^{(*)}$ di Yu Shu-xiang e Jin Chengfu, presentata dal Corrisp. R. Conti.

RiAsSunto. - Si studia l'andamento delle traiettorie di un sistema dinamico piano rappresentato dalle equazioni (1) del testo, nell'intorno di un punto singolare isolato.

I. Introduction

Consider the differential system defined in the plane

$$
\begin{align*}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\mathrm{P}(x, y) \tag{1}\\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=\mathrm{Q}(x, y),
\end{align*}
$$

where $\mathrm{P}(x, y)$ and $\mathrm{Q}(x, y)$ are continuous functions with continuous first partial derivatives. We suppose $\mathrm{P}(0,0)=\mathrm{Q}(0,0)=0$ and there is a constant $\mathrm{R}>0$ such that
(2) $\mathrm{F}(x, y)=\mathrm{P}^{2}(x, y)+\mathrm{Q}^{2}(x, y)>0 \quad$ when $0<x^{2}+y^{2}<\mathrm{R}^{2}$.

In the study of the behaviour of integral curves in the neighbourhood of a non-elementary singular point, it is important to know the number of trajectories tending to this point along a given exceptional direction. It is reduced to studying the decision problems for Frommer's normal sectors. A considerable number of papers have been written in connection with these problems (see [1, Ch. V]). In the present paper, we give some new results based on some distinct ideas.

II. The main results

In addition, we impose the following hypothesis.
(H). There exists a constant $\alpha_{1}>0$ such that any curve of the family

$$
\begin{equation*}
\mathscr{T}_{\alpha}=\left\{\mathrm{F}(x, y)=\alpha \mid(x, y) \in(2), 0<\alpha<\alpha_{1}\right\} \tag{3}
\end{equation*}
$$

is a closed Jordan curve, and $\mathscr{T}_{\alpha_{i}}$ is contained in the domain bounded by $\mathscr{T}_{\alpha_{j}}$ when $0<\alpha_{i}<\alpha_{j}<\alpha_{1}$.

Consider now the system (1). With every point $\mathrm{M}=(x, y)$ of the plane we associate the vector $\mathrm{V}(\mathrm{M})=(\mathrm{P}, \mathrm{Q})$. Let K be a closed Jordan curve not
(*) Pervenuta all'Accademia il 21 settembre 1984.
passing through any singular point. Take the counter clockwise sense along K as positive sense; assign a fixed direction β in the plane, say, the positive x-axis; take a fixed point A on K ; take any one of the infinitely many values of the angle between the direction β and the vector $\mathrm{V}(\mathrm{A})$ and denote its value by ψ. If M traverses K once in the positive sense beginning at A, ψ varies continuously, and since the final position of M coincides with its initial position, the final value of ψ will differ from its initial value by $2 \pi j_{k}$ where j_{k} is an integer. j_{k} is called the Kronecker index of K with respect to the system (1). Instead of considering a closed Jordan curve, we consider an open Jordan arc. By extending the definition of index, we can introduce the notion of variation of the vector V along an $\operatorname{arc} L=\widehat{A B}$ of the curve. The variation of V along $\widehat{A B}$ is denoted by $W_{A B}$ (see [1, p. 189]). Clearly, $W_{A B}$ is the variation of V along $\widehat{A B}$ from A to B.

The functions $\mathrm{P}(x, y)$ and $\mathrm{Q}(x, y)$ define a mapping

$$
\begin{equation*}
\phi: u=\mathrm{P}(x, y) \quad, \quad v=\mathrm{Q}(x, y) \tag{4}
\end{equation*}
$$

Denote the Jacobian $\frac{\partial(\mathrm{P}, \mathrm{Q})}{\partial(x, y)}$ by $\Delta(x, y)$. Then we have
Lemma 1. Suppose that the system (1) satisfies the hypothesis (H). Let AOB be a sectorial region in (2). Let ${\widehat{\mathrm{SS}_{1} \mathrm{~S}_{2}}}_{2}$ be a segmental arc of $\mathscr{T}_{\alpha_{0}}\left(0<\alpha_{0}<\alpha_{1}\right)$ which lies in AOB , where $\mathrm{S}_{1} \in \mathrm{OB}$ and $\mathrm{S}_{2} \in \mathrm{OA}$, and such that the sense moving from S_{1} to S_{2} along $\overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$ coincides with the positive sense of $\mathscr{T}_{\alpha_{0}}$. If the variation $\mathrm{WS}_{1} \mathrm{~S}_{2}>0(<0)$ then there must be a point $\mathrm{E} \in \overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$ such that $\Delta(\mathrm{E}) \geq 0(\leq 0)$.

Proof. The proof proceeds by reduction to absurdity. Suppose $\Delta(x$, $y)<0$ at each point on the arc $\overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$ Then, ϕ maps $\mathscr{T}_{\alpha_{0}}$ onto the circumference $\mathrm{C}_{\alpha_{0}}$ in the $u v$-plane; $\overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$ is mapped onto the segmental arc $\overparen{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}$ of $\mathrm{C}_{\alpha_{0}}$, i. e., $\overparen{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}$ is the image of homeomorphism of $\overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$. From the property of local homeomorphism it follows that there are no double points on $\mathrm{S}_{1}^{\left(\mathrm{S}_{2}^{\prime}\right.}$ Thus, by the condition $W_{\mathrm{S}_{1} 2}>0$ it follows that the sense moving from S_{1}^{\prime} to S_{2}^{\prime} along $\widehat{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}$ coincides with the positive sense of $\mathrm{C}_{\alpha_{0}}$ (i.e., counter clockwise sense)

The segmental arcs $\overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}$ and $\overparen{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}$ are shown in fig. 1 a and fig. 1 b respectively.
Choose an arbitrary point $p \in{\widetilde{\mathrm{~S}_{1} \mathrm{~S}_{2}}}_{2}$, let $\phi(p)=p^{\prime}\left(\in{\widetilde{\mathrm{S}_{1}^{\prime}} \mathrm{S}_{2}^{\prime}}_{\prime}^{\prime}\right.$. By virtue of a well-known fact (see [2, p. 586]) and $\Delta(p)<0$ it follows that some neighbourhood of p in (2) is homeomorphically mapped onto a neighbourhood of p^{\prime} by ϕ, and the mapping degree of ϕ in p^{\prime} is equal to - 1 . Further, from the properties of mapping degree (see [2, pp. 568-574 and pp. 73-74]) it follows that there are a neighbourhood $\mathrm{U}(p)$ of p and a neighbourhood $\mathrm{U}\left(p^{\prime}\right)$ of p^{\prime}, each of their boundaries $\partial \mathrm{U}(p)$ and $\partial \mathrm{U}\left(p^{\prime}\right)$ is a simple closed curve, and, ϕ homeomorphically maps $\mathrm{U}(p)$ and $\partial \mathrm{U}(p)$ onto $\mathrm{U}\left(p^{\prime}\right)$ and $\partial \mathrm{U}\left(p^{\prime}\right)$ respectively and such that when M traverses $\partial \mathrm{U}(\mathrm{P})$ once in the positive sense, the corresponding point $\phi(\mathrm{M})$ traverses $\partial \mathrm{U}\left(p^{\prime}\right)$ once in the negative sense (i.e., clockwise sense). Denote $\partial \mathrm{U}(p) \cap \overparen{\mathrm{S}_{1} \mathrm{~S}_{2}}=\left\{\mathrm{R}_{1}, \mathrm{R}_{2}\right\}$ and $\partial \mathrm{U}\left(p^{\prime}\right) \cap \overparen{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}=\left\{\mathrm{R}_{1}^{\prime}, \mathrm{R}_{2}^{\prime}\right\}$. Clearly, if the sense moving from R_{1} to R_{2} along ${\widetilde{S_{1}} S_{2}}$ coincides with the positive sense of $\mathscr{T}_{\alpha_{0}}$, then the sense moving from R_{1}^{\prime} to R_{2}^{\prime} along $\overparen{\mathrm{S}_{1}^{\prime} \mathrm{S}_{2}^{\prime}}$ coincides with the positive sense of $\mathrm{C}_{\alpha_{0}}$ provided that $\mathrm{U}(p)$ is small enough (see fig. $1 a, 1 b$). Since $\partial \mathrm{U}(p)$ is homeomorphic to $\partial \mathrm{U}\left(p^{\prime}\right)$, thus, the external half neighbourhood enclosed by curvilinear figure $\mathrm{R}_{1} p \mathrm{R}_{2} q_{2} \mathrm{R}_{1}$ in $x y$-plane must be homeomorphic to the internal half neighbourhood enclosed by curvilinear figure $\mathrm{R}_{1}^{\prime} p^{\prime} \mathrm{R}_{2}^{\prime} q_{2}^{\prime} \mathrm{R}_{1}^{\prime}$ in $u v$-plane. But this is impossible, because the condition (H) implies that any point M_{0} of the external half neighbourhood lies on the curve \mathscr{T}_{α} corresponding to $\alpha>\alpha_{0}$, hence the point $\phi\left(\mathrm{M}_{0}\right)=\mathrm{M}_{0}^{\prime}$ must lie the exterior of the circle $\mathrm{C}_{\alpha_{0}}$ in $u v$-plane (and therefore it cannot belong to the internal half neighbourhood). So Lemma 1 is proved.

Theorem 1. Suppose that the system (1) satisfies the hypothesis (H). Suppose that an exceptional direction of the singular point O is contained in a normal sector D of a certain type and suppose $\Delta(x, y)<0$ in D . The following conclusions are then valid:
(i) D can not be a normal sector of the first type (fig. 2).
(ii) Is' D is a normal sector of the third type, then in D there are no trajectories of (1) tending to O along this exceptional direction (fig. 3).

Proof. (i) If D is a normal sector of the first type (fig. 2) then the two sides $\mathrm{OB}_{1}, \mathrm{OA}_{1}$ of the normal sector are both crossed outward (or inward) by trajectories. Consider a closed Jordan curve $\mathscr{T}_{\alpha_{2}}$ of the family (3) where $0<$ $<\alpha_{2}<\alpha_{1} \cdot{\widehat{S_{3}} \widehat{S}_{4}}$ denotes the segmental arc of $\mathscr{T}_{\alpha_{2}}$ which lies in D and such that the sense moving from S_{3} to S_{4} along ${\overparen{\mathrm{S}_{3} \mathrm{~S}_{4}}}_{4}$ coincides with the positive sense

Fig. 2.
of $\mathscr{T}_{\alpha_{z}}$. It is easy to see that when a point M moves from S_{3} to S_{4} along $\widehat{\mathrm{S}_{3} \mathrm{~S}_{4}}$, the algebraic sum θ of the rotated angle of the vector $V=(P, Q)$ is not less then $<\mathrm{B}_{1} \mathrm{OA}_{1}$ (note that, by definition, the vector $\mathrm{V}=(\mathrm{P}, \mathrm{Q})$ is not orthogonal to the radius vector OZ at any Z of D . And, in the general case, D can be sufficiently small such that it contains only one exceptional direction). Thus the variation $\mathrm{W}_{\mathrm{S}_{35}}>0$. By applying Lemma 1 it follows that there must be a point $\mathrm{E} \in \overparen{\mathrm{S}} 33^{\mathrm{S}_{4}}$ such that $\Delta(\mathrm{E}) \geq 0$. But this is contradictory to the conditions of Theorem 1. Hence conclusion (i) is proved.

To prove (ii), we suppose that D is a normal sector of the third type and suppose that in D there exists at least one trajectory of (1) which tends to O (and therefore there are an infinite number of trajectories of (1) which tend to O). (see fig. 3).

Let the integral curve OM_{3} be a boundary of the parabolic sector adjacent to the singular point O . For a point M_{r} lying on the integral curve OM_{3}, the angle $\delta(r)$ between the direction of the vector $\mathrm{V}\left(\mathrm{M}_{r}\right)$ and the direction of the vector $\overrightarrow{\mathrm{OD}}_{3}$ (it is just the exceptional direction in D) will be sufficiently small provided the radius r is small enough.

Fig. 3.
Consider now a curve $\mathscr{T}_{\alpha_{3}}$ of (3) where α_{3} is sufficiently small, and consider an its segmental arc $\overparen{S}_{5} \mathrm{~S}_{6}$ which is the intersection of $\mathscr{T}_{\alpha_{3}}$ and the region bounded by the integral curve OM_{3}, a side OA_{3} of D and the curve arc $\mathrm{A}_{3} \widehat{\mathrm{M}}_{3}$ When M moves from S_{5} to S_{6} along $\overparen{5_{5} \mathrm{~S}_{6}}$ in the positive sense of $\mathscr{T}_{\alpha_{3}}$, the algebraic sum θ of the rotated angle of the vector $\mathrm{V}=(\mathrm{P}, \mathrm{Q})$ is not less than $L \mathrm{D}_{3} \mathrm{OA}_{3}-\delta(\gamma)$. Since α_{3} is small enough (hence r is small), $\delta(r)$ is also small, thus $\theta \geq!\mathrm{D}_{3} \mathrm{OA}_{3}$ -$-\delta(\gamma)>0$. Therefore by applying Lemma 1 it follows that there must be a point $\mathrm{E} \in{\overparen{\mathrm{S}_{5} \mathrm{~S}_{6}}}_{6}$ such that $\Delta(\mathrm{E}) \geq 0$. Thus we reach a contradiction with the assumption that $\Delta<0$ in D and the conclusion (ii) is also proved. Hence Theorem 1 is completely proved.

References

[1] G. Sansone and R. Conti (1964) - Non-linear Differential Equations, Pergamon Press Inc. (English).
[2] P.S. Alexandroff (1947) - Combinatorial Topology (Russian).

