Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Anatoli Pličko, Paolo Terenzi

On bibasic systems and a Retherford's problem

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 77 (1984), n.1-2, p. 28-34. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1984_8_77_1-2_28_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Analisi funzionale. - On bibasic systems and a Retherford's problem. Nota ${ }^{(*)}$ di Anatoli Pličko e Paolo Terenzi, presentata dal Socio L. Amerio.

Riassunto. - Ogni spazio di Banach ha un sistema bibasico (x_{n}, f_{n}) normalizzato; inoltre ogni successione (x_{n}) uniformemente minimale appartiene ad un sistema biortogonale limitato (x_{n}, f_{n}), dove (f_{n}) è M -basica e normante.

§ 1. Notations and definitions

Let X be a Banach space, $\left(x_{n}\right)$ a sequence of X, F a subset of X * (the dual of X), we use the following notations:
$\left[x_{n}\right]=\overline{\operatorname{span}}\left(x_{n}\right), \mathrm{S}(\mathrm{X})=$ the unit sphere of $\mathrm{X}, \mathrm{F}^{\perp}=\{x \in \mathrm{X} ; f(x)=$ $=0$ for every f of F$\}$.

Let Y be a subset of X and let F be a subset of $\mathrm{S}\left(\mathrm{X}^{*}\right)$, we say that F K norms Y if $\|x\| \leq \mathrm{K} \sup \{|f(x)| ; f \in \mathrm{~F}\}$ for every x of Y , where $1 \leq \mathrm{K}<\infty$; in the same way we can say that a subset of $\mathrm{S}(\mathrm{X}) \mathrm{K}$-norms a subset of X^{*}. Let $\left(x_{n}\right) \subset \mathrm{X}$ and $\left(f_{n}\right) \subset \mathrm{X}^{*}$, we say that $\left(x_{n}, f_{n}\right)$ is biorthogonal if

$$
f_{m}\left(x_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}, \quad \text { for every } m \text { and } n\right.
$$

which is equivalent to say that $\left(x_{n}\right)$ is minimal, that is $x_{m} \notin\left[x_{n}\right]_{n_{\neq m}}$ for every m.
Let $\left(x_{n}, f_{n}\right)$ be biorthogonal, with $\left[x_{n}\right]=\mathrm{X}$, we say that
a) $\left(x_{n}, f_{n}\right)$ is bounded if $\left(\left\|x_{n}\right\| \cdot\left\|f_{n}\right\|\right)$ is bounded, which is equivalent to say that $\left(x_{n}\right)$ is uniformly minimal, that is $\inf \operatorname{dist}\left(x_{m} /\left\|x_{m}\right\|\right.$, $\left.\left[x_{n}\right]_{n \neq m}\right)>0$;
b) $\left(x_{n}\right)$ is M-basis of X if $\left[f_{n}\right]^{\perp}=\{0\}$;
c) $\left(x_{n}\right)$ is norming M-basis of X if $\mathrm{S}\left(\left[f_{n}\right]\right) 1$-norms X ;
d) $\left(x_{n}\right)$ is basis of X if $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ for every x of X .

We also say that $\left(x_{n}\right)$ is M-basic (basic) if it is M-basis (basis) of $\left[x_{n}\right]$. Hence we say that $\left(x_{n}, f_{n}\right)$ is bibasic (M-bibasic) if $\left(x_{n}\right)$ and $\left(f_{n}\right)$ are both basic (M-
(*) Pervenuta all'Accademia il 19 luglio 1984.
basic). A basic sequence (x_{n}) is said to be asymptotically monotone if, for every m,

$$
\left\|\sum_{n=1}^{m} a_{n} x_{n}\right\| \leq \mathrm{K}_{m}\left\|\sum_{n=1}^{m+p} a_{n} x_{n}\right\| \quad \text { for every } \quad\left(a_{n}\right)_{n=1}^{m+p}
$$

where $\lim _{m \rightarrow \infty} \mathrm{~K}_{m}=1$; in particular $\left(x_{n}\right)$ is said to be monotone if $\mathrm{K}_{m}=1$ for every m.

Finally we say that $\left(x_{n}, f_{n}\right)$ is normalized if $\left\|x_{n}\right\|=\left\|f_{n}\right\|=1$ for every n.

§2. Problems on bibasic and M-bibasic systems

Banach proved ([1] p. 107, Th. 3; see also [7] p. 112, Th. 12.1) that if $\left(x_{n}\right)$ is basic of X and $\left(x_{n}, f_{n}\right)$ is biorthogonal, then $\left(f_{n}\right)$ is basic.
Retherford (1964) raised the following problem (see also [5], Probl. 3.2)
"... If $\mathrm{Y} \subset \mathrm{X}, \mathrm{X}$ a Banach space and $\left(y_{n}\right)$ a basis for Y , with coefficient functionals $g_{n} \in \mathrm{Y}^{*}$. Does there exist a Hahn-Banach extension $\left(f_{n}\right)$ of $\left(g_{n}\right)$ in X^{*} such that $\left(f_{n}\right)$ is a basic sequence in X ?

If the Hahn-Banach extension f_{n} of g_{n} is without conditions on the norm, this problem has a positive answer ([8] p. 84, Pbl .1 .6 ; see also p. 856).

Instead, if the extension is with the same norm, the next example gives a negative answer, also with the weaker condition of $\left(f_{n}\right) \mathrm{M}$-basic and also if Y has codimension one in X .

Example. Let $\mathrm{X}=l^{1},\left(e_{n}\right)_{n \geq 0}$ the natural basis of l^{1}, set

$$
\begin{equation*}
y_{n}=\left(e_{n}-e_{0}\right) / 2 \quad \text { for every } \quad n \geq 1, \mathrm{Y}=\left[y_{n}\right]_{n \geq 1} . \tag{1}
\end{equation*}
$$

There exists $\left(g_{n}\right)$ of Y^{*} with $\left(y_{n}, g_{n}\right)$ biorthogonal and normalized; however there exists a unique extension with the same norm $\left(f_{n}\right)$ of $\left(g_{n}\right)$ in X^{*}, which is not M-basic.

From the above a natural question arises as to whether the extension with a bounded norm is possible, that is if there is a positive answer for the intermediate case. Precisely we have

Problem 1. Does every basic sequence belong to a bounded bibasic system?
Problem 2. Does every uniformly minimal M-basic sequence belong to a bounded M-bibasic system ?

The next theorem gives a positive answer to Problem 2.
Theorem I. Every uniformly minimal sequence $\left(x_{n}\right)$ of X belongs to a bounded biorthogonal system $\left(x_{n}, f_{n}\right)$, where $\left(f_{n}\right)$ is norming M-basic.

Recall that the existence of bounded bibasic systems was stated in [2], moreover in [9] (Cor. I*, p. 352) we stated the existence of bibasic systems $\left(x_{n}, f_{n}\right)$ with $\left\|x_{n}\right\| .\left\|f_{n}\right\|<1+\varepsilon$ for every n, for every fixed $\varepsilon>0$. Hence in [9] the following question was raised:

Problem 3. Does there exist a bibasic system (x_{n}, f_{n}) normalized?
Next theorem answers Problem 3.

Theorem II. Every Banach space has a normalized bibasic system (x_{n}, f_{n}) with $\left(x_{n}\right)$ and $\left(f_{n}\right)$ asymptotically monotone.

Problem 1 is still open.

§ 3. Proofs

Proof of example. (y_{n}) is basic monotone, indeed by (1) for every $\left(a_{n}\right)_{n=1}^{m+p}$ it follows that

$$
\begin{gathered}
\left\|\sum_{n=1}^{m} a_{n} y_{n}\right\|=\left\|\left(-\sum_{n=1}^{m} \frac{a_{n}}{2}\right) e_{0}+\sum_{n=1}^{m} \frac{a_{n}}{2} e_{n}\right\|=\left|\sum_{n=1}^{m} \frac{a_{n}}{2}\right|+\sum_{n=1}^{m} \frac{\left|a_{n}\right|}{2}= \\
=\left|\sum_{n=1}^{m+p} \frac{a_{n}}{2}-\left(\sum_{n=m+1}^{m+p} \frac{a_{n}}{2}\right)\right|+\sum_{n=1}^{m} \frac{\left|a_{n}\right|}{2} \leq\left|\sum_{n=1}^{m+p} \frac{a_{n}}{2}\right|+\sum_{n=1}^{m+p} \frac{\left|a_{n}\right|}{2}=\left\|\sum_{n=1}^{m+p} a_{n} y_{n}\right\| .
\end{gathered}
$$

Moreover $\operatorname{dist}\left(y_{m},\left[y_{n}\right]_{n_{\neq m}}\right)=\left\|y_{m}\right\|=1$ for every m; indeed by (1) for every m and for every $\left(a_{n}\right)_{n=1, n \neq m}^{p}$ it follows that

$$
\begin{aligned}
& y_{m}+\sum_{n=1, n \neq m}^{p} a_{n} y_{n}\|=\|-\left(1+\sum_{n=1, n \neq m}^{p} a_{n}\right) \frac{e_{0}}{2}+\frac{e_{m}}{2}+\sum_{n=1, n \neq m}^{p} \frac{a_{n}}{2} e_{n} \|= \\
&=\left(\left|1+\sum_{n=1, n \neq m}^{p} a_{n}\right|\right.\left.+1+\sum_{n=1, n \neq m}^{p}\left|a_{n}\right|\right) \frac{1}{2} \geq \mid 1+\sum_{n=1, n \neq m}^{p} a_{n}- \\
&-\sum_{n=1, n \neq m}^{p} a_{n} \left\lvert\, \frac{1}{2}+\frac{1}{2}=1 .\right.
\end{aligned}
$$

Therefore there exists $\left(g_{n}\right)$ of Y^{*} such that

$$
\begin{equation*}
\left(y_{n}, g_{n}\right)_{n \geq 1} \quad \text { is biorthogonal and normalized. } \tag{2}
\end{equation*}
$$

Fix a natural number m.
Let $f_{m} \in \mathrm{X}^{*}$ such that f_{m} is extension of g_{m} with the same norm, $f_{m}=\left(a_{m n}\right)_{n=0}^{\infty}$.

Now $f_{m}\left(y_{m}\right)=1$ implies $\left(\mathrm{a}_{m m}-\mathrm{a}_{m 0}\right) / 2=1$, while $f_{m}\left(y_{n}\right)=0$ implies $\left(a_{m n}-a_{m 0}\right) / 2=0$ for every $n \neq m$. On the other hand by (2) and (3) $\sup _{n}\left|a_{m n}\right|=1$, hence it follows that

$$
\begin{equation*}
a_{m m}=1 \quad, \quad a_{m 0}=-1 \quad, \quad a_{m n}=a_{m 0} \quad \text { for } \quad n \neq m \tag{4}
\end{equation*}
$$

Therefore the Hahn-Banach extension $\left(f_{n}\right)$ of $\left(g_{n}\right)$ in X^{*}, with the same norm, is unique. Let $\bar{f} \in \mathrm{X}^{*}$ such that

$$
\begin{equation*}
\bar{f}=\left(\bar{a}_{n}\right) \quad, \quad \text { with } \quad \bar{a}_{n}=1 \quad \text { for every } \quad n \geq 0 \tag{5}
\end{equation*}
$$

We affirm that

$$
\begin{equation*}
\bar{f} \in \cap_{m=1}^{\infty}\left[f_{n}\right]_{n \geq m} . \tag{6}
\end{equation*}
$$

Indeed fix m.
For every p and k by (5) and (4) we have that

$$
\left(\bar{f}+\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\right)\left(e_{k}\right)=1+\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\left(e_{k}\right) ;
$$

where

$$
\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\left(e_{k}\right)=\left\{\begin{array}{l}
-1 \text { if } k \leq m \quad \text { and if } \quad k \geq m+p+1 \\
-1+\frac{2}{p} \text { if } m+1 \leq k \leq m+p
\end{array}\right.
$$

hence

$$
\left.\| \bar{f}+\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\left|=\sup _{k}\right|\left(\bar{f}+\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\right)\left(e_{k}\right) \right\rvert\,=\frac{2}{p} ;
$$

consequently

$$
\lim _{p \rightarrow \infty}\left\|\bar{f}+\frac{1}{p} \sum_{n=m+1}^{m+p} f_{n}\right\|=0 .
$$

Therefore (6) is proved, hence $\left(f_{n}\right)$ is not M-basic ([8] p. 225, Rem. 8.2); which completes proof of the example.

Proof of Theorem I. We can suppose
(7) $\quad\left(x_{n}, g_{n}\right)$ biorthogonal , $\left\|x_{n}\right\|=1$ and $\left\|g_{n}\right\| \leq \mathrm{K}<\infty$ for every n.

Set $f_{1}=g_{1}, f_{2}=g_{2}$ and proceed by induction.

Fix $m \geq 2$.
Suppose that we have $\left(f_{n}\right)_{n=1}^{m} \cup\left(g_{m n}\right)_{n>m}$ of X^{*}, moreover (only if $m>2$) a sequence $\left(z_{n}\right)_{n=1}^{p_{m-1}}$ of X and two sequences $\left(p_{n}\right)_{n=2}^{m-1}$ and $\left(q_{n}\right)_{n=2}^{m-1}$ of natural numbers, so that

$$
\begin{align*}
& \left(x_{n}, f_{n}\right)_{n=1}^{m} \cup\left(x_{n}, g_{m n}\right)_{n>m} \text { is biorthogonal } ; \\
& \left\|f_{n}\right\|<3 \mathrm{~K} \text { for } 1 \leq n \leq m \text { and }\left\|g_{m n}\right\|<3 \mathrm{~K} \text { for } n>m ; \\
& \left(z_{n}\right)_{n=1}^{p_{m-1} \subset\left[\left(f_{n}\right)_{n=1}^{m} \cup\left(g_{m n}\right)_{n>m}\right]^{1}} \tag{8}
\end{align*}
$$

moreover for every n, with $2 \leq n \leq m-1$,

$$
\left[z_{k}\right]_{k=1}^{p}+\left[x_{k}\right]_{k=1}^{q}\left(1+\frac{1}{2^{n}}\right) \text { - norms }\left[f_{k}\right]_{k=1}^{n}
$$

There exist a natural number q_{m}^{\prime} and a sequence $\left(y_{n}\right)_{n=p_{m-1}+1}^{p_{m}}$ of X so that

$$
\left[x_{n}\right]_{n=1}^{q^{\prime}}+\left[z_{n}\right]_{n=1}^{p}+\left[y_{n}\right]_{n=p_{m-1}+1}^{p_{m-1}}\left(1+\frac{1}{2^{m}}\right)-\text { norms }\left[f_{n}\right]_{n=1}^{m}
$$

By (7) and by [10] (p. 502, Lemma 1) there exist a natural number t_{m+1} and a sequence $\left(g_{m+1, n}\right)_{n>t}{ }_{m+1}$ of X*, so that

$$
\begin{gathered}
t_{m+1} \geq m+1,\left(x_{n}, g_{m+1, n}\right)_{n>t_{m+1}} \quad \text { is biorthogonal } ; \\
{\left[x_{n}\right]_{n=1}^{t_{m+1}}+\left[z_{n}\right]_{n=1}^{p_{m+1}}+\left[y_{n}\right]_{n=p_{m-1}+1}^{p_{m}} \subset\left[\left(g_{m+1, n}\right)_{n>t_{m+1}}\right]^{1} ;} \\
\left\|g_{m+1, n}\right\|<3 \mathrm{~K} \text { for } n>t_{m+1} .
\end{gathered}
$$

Set

$$
\begin{gathered}
f_{m+1}=g_{m, m+1}, g_{m+1, n}=g_{m, n} \quad \text { for } \quad m+2 \leq n \leq t_{m+1} \\
z_{n}=y_{n}-\left(\sum_{k=1}^{m+1} f_{k}\left(y_{n}\right) x_{k}+\sum_{k=m+2}^{t_{m+1}} g_{m+1, k}\left(y_{n}\right) x_{k}\right) \quad \text { for } \quad p_{m-1}+1 \leq n \leq p_{m} .
\end{gathered}
$$

Hence, setting $q_{m}=\max \left\{q_{m}^{\prime}, t_{m+1}\right\}$, we have (8) with $m+1$ instead of m.
So proceeding we get $\left(f_{n}\right)$ of $\mathrm{X}^{*},\left(z_{n}\right)$ of X and two sequences $\left(p_{n}\right)_{n \geq 2}$ and $\left(q_{n}\right)_{n \geq 2}$ of natural numbers, so that

$$
\left(x_{n}, f_{n}\right) \text { is biorthogonal, }\left(z_{n}\right) \subset\left[f_{n}\right]^{\perp} \text { and }\left\|f_{n}\right\|<3 \mathrm{~K} \text { for every } n ;
$$

$$
\begin{equation*}
\left[z_{n}\right]_{n=1}^{p_{m}}+\left[x_{n}\right]_{n=1}^{q_{m}}\left(1+\frac{1}{2^{m}}\right)-\text { norms }\left[f_{n}\right]_{n=1}^{m} \text { for every } m \geq 2 \tag{9}
\end{equation*}
$$

Fix m and set

$$
\begin{equation*}
\mathrm{F}_{m}=\left[f_{n}\right]_{n=1}^{m} \quad, \quad \mathrm{~F}^{m}=\left[f_{n}\right]_{n>q_{m}}, \quad \mathrm{Y}_{m}=\left[x_{n}\right]_{n=1}^{q_{m}}+\left[z_{n}\right]_{n=1}^{p_{m}} . \tag{10}
\end{equation*}
$$

Let P_{m} be the projector

$$
\begin{equation*}
\mathrm{P}_{m}: \mathrm{F}_{m}+\mathrm{F}^{m} \rightarrow \mathrm{~F}_{m} . \tag{11}
\end{equation*}
$$

By (9) and (10) $\mathrm{F}^{m} \subset \mathrm{Y}_{m}^{1}$, moreover $\mathrm{Y}_{m}\left(1+1 / 2^{m}\right)$-norms F_{m}, hence it is easy to see that

$$
\begin{equation*}
\left\|\mathrm{P}_{m}\right\| \leq 1+\frac{1}{2^{m}} \tag{12}
\end{equation*}
$$

By (11) and (12) it follows that

$$
\sup _{m} \operatorname{dist}\left(f,\left[f_{n}\right]_{n>m}\right)=\|f\|, \quad \text { for every } f \text { of }\left[f_{n}\right]
$$

Hence $\left(f_{n}\right)$ is norming ([4], p. 121-122 and Lemma I.11); which completes the proof of Th. I.

Proof of Theorem 1I. We construct two sequences $\left(x_{n}\right)$ of X and $\left(f_{n}\right)$ of X^{*}, moreover two sequences of finite subsets $\left(\mathrm{Y}_{n}\right)$ of X and $\left(\mathrm{G}_{n}\right)$ of X^{*}, so that for every n :

$$
\begin{align*}
& \quad f_{n}\left(x_{n}\right)=1, \quad x_{n} \in \mathrm{Y}_{n} \subset \mathrm{~S}(\mathrm{X}) \quad, \quad f_{n} \in \mathrm{G}_{n} \subset \mathrm{~S}\left(\mathrm{X}^{*}\right), \quad \mathrm{Y}_{n-1} \subset \mathrm{Y}_{n}, \\
& \text { (13) } \quad \mathrm{G}_{n-1} \subset \mathrm{G}_{n} ; \mathrm{Y}_{n}\left(1+\frac{1}{2^{n}}\right)-\text { norms }\left[f_{k}\right]_{k=1}^{n}, \quad \mathrm{G}_{n}\left(1+\frac{1}{2^{n}}\right)-\text { norms } \tag{13}
\end{align*}
$$

$$
\left[x_{k}\right]_{k=1}^{n} ; x_{n+1} \in \mathrm{G}_{n}^{\perp} \text { and } f_{n+1} \in \mathrm{Y}_{n}^{\perp}
$$

We pick x_{1} of $\mathrm{S}(\mathrm{X})$ and f_{1} of $\mathrm{S}\left(\mathrm{X}^{*}\right)$ with $f_{1}\left(x_{1}\right)=1$; let $\mathrm{Y}_{1}=x_{1}$ and $\mathrm{G}_{1}=f_{1}$.

If for $n-1$ such objects are constructed, by Krasnoselski-Krein-Milman th. [3] (see also [6] p. 269) pick an element x_{n} of $S\left(\mathrm{G}_{n-1}^{\perp}\right)$, which is orthogonal for $\left[\mathrm{Y}_{n-1}\right]$; and by Hahn-Banach theorem pick f_{n} of $\mathrm{S}\left(\mathrm{X}^{*}\right)$ such that $f_{n}\left(x_{n}\right)=1$ and $\mathrm{Y}_{n-1} \subset f_{n}^{\perp}$.

After, pick finite sets $\mathrm{Y}_{n} \supset\left(x_{n}, \mathrm{Y}_{n-1}\right)$ and $\mathrm{G}_{n} \supset\left(f_{n}, \mathrm{G}_{n-1}\right)$, which $(1+$ $+1 / 2^{n}$)-norm $\left[f_{k}\right]_{k=1}^{n}$ and $\left[x_{k}\right]_{k=1}^{n}$ respectively.

Fix m and set

$$
\begin{equation*}
\mathrm{X}_{m}=\left[x_{n}\right]_{n=1}^{m} \quad, \quad \mathrm{X}^{m}=\left[x_{n}\right]_{n>m} \quad, \quad \mathrm{~F}_{m}=\left[f_{n}\right]_{n=1}^{m} \quad, \quad \mathrm{~F}=\left[f_{n}\right]_{n>m} . \tag{14}
\end{equation*}
$$

Let P_{m} and Q_{m} be the projectors

$$
\mathrm{P}_{m}: \mathrm{X}_{m}+\mathrm{X}^{m} \rightarrow \mathrm{X}_{m} \quad, \quad \mathrm{Q}_{m}: \mathrm{F}_{m}+\mathrm{F}^{m} \rightarrow \mathrm{~F}_{m}
$$

By (13) and (14) $\mathrm{X}^{m} \subset \mathrm{G}_{m}^{\perp}$ and $\mathrm{F}^{m} \subset \mathrm{Y}_{m}^{\perp}$, where $\mathrm{G}_{m}\left(1+1 / 2^{m}\right)-$ norms X_{m} and $\mathrm{Y}_{m}\left(1+1 / 2^{m}\right)$-norms F_{m}; therefore it is easy to see that

$$
\left.\left\|\mathrm{P}_{m}\right\| \leq 1+\frac{1}{2^{m}}, \quad\left\|\mathrm{Q}_{m}\right\| \leq 1+\frac{1}{2^{m}}\right) .
$$

Hence $\left(x_{n}\right)$ and $\left(f_{n}\right)$ are asymptotically monotone; which completes proof of Theorem II.

Bibliography

[1] Banach S. (1932) - Théorie des operations lineaires. Chelsea Publishing Company, New York.
[2] Davis W.J., Dean O. and Bor-Luh L. (1973) - Bibasic systems and norming basic sequences. «Trans. Amer. Math. Soc.», 176, 89-102.
[3] Kransoselskit M.A. , Krein M.G. and Milman D.P. (1948) - On defect numbers of linear operators in a Banach space and on some geometric problems. «Sbornik Trud. Inst. Matem. Akad. Nauk Ukr. SSR », 11, 97-112.
[4] Milman V.D. (1970) - Geometric theory of Banach spaces. Part I. «Russian Math. Surveys ", 25, 111-170.
[5] Pelczynski A. (1966) - Some open questions in functional analysis (A lecture given to Lousiana State University). Dittoed Notes.
[6] Singer I. (1970) - Best approximation in normed linear spaces by elements of linear subspaces. Berlin-Heidelberg-New York: Springer.
[7] Singer I. (1970) - Bases in Banach spaces I. Berlin-Heidelberg-New York: Springer.
[8] Singer I. (1981) - Bases in Banach spaces II. Berlin-Heidelberg New York: Springer.
[9] Terenzi P. (1979) - A complement to Krein-Milman-Rutman theorem, with applications. «Ist. Lombardo (Rend. Sc.)", A 113, 341-353.
[10] Terenzi P. (1983) - Extension of uniformly minimal M-basic sequences in Banach spaces. «J. London Math. Society (2)", 27, 500-506.

