Pličko, Anatoli and Terenzi, Paolo: 
On bibasic systems and a Retherford’s problem
 Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Serie 8 77 (1984), fasc. n.1-2, p. 28-34,  (English)
pdf (678 Kb), djvu (655 Kb).  | MR 0884374  | Zbl 0609.46008 
Sunto
Ogni spazio di Banach ha un sistema bibasico $(x_{n},f_{n})$ normalizzato; inoltre ogni successione $(x_{n})$ uniformemente minimale appartiene ad un sistema biortogonale limitato $(x_{n},f_{n})$, dove $(f_{n})$ è M-basica e normante.
Referenze Bibliografiche
[1] 
BANACH S. (
1932) - 
Théorie des operations linéaires. 
Chelsea Publishing Company, New York. | 
Zbl 0067.08902[2] 
W.J. DAVIS, 
O. DEAN and 
L. BOR-LUH (
1973) -	
Bibasic systems and norming basic sequences. «
Trans. Amer. Math. Soc.», 
176, 89-102. | 
MR 313763 | 
Zbl 0249.46010[3] KRANSOSELSKII M.A., KREIN M.G. and MILMAN D.P. (1948) - On defect numbers of linear operators in a Banach space and on some geometric problems. «Sbornik Trud. Inst. Matem. Akad. Nauk Ukr. SSR», 11, 97-112.
[4] 
MILMAN V.D. (
1970) - 
Geometric theory of Banach spaces. Part I. «
Russian Math. Surveys», 
25, 111-170. | 
MR 280985 | 
Zbl 0221.46015[5] PELCZYNSKI A. (1966) - Some open questions in functional analysis (A lecture given to Lousiana State University). Dittoed Notes.
[6] 
SINGER I. (
1970) 
—Best approximation in normed linear spaces by elements of linear subspaces. Berlin-Heidelberg-New York: 
Springer. | 
MR 270044 | 
Zbl 0197.38601[7] 
SINGER I. (
1970) - 
Bases in Banach spaces I. Berlin-Heidelberg-New York: 
Springer. | 
MR 298399 | 
Zbl 0198.16601[8] 
SINGER I. (
1981) - 
Bases in Banach spaces II. Berlin-Heidelberg-New York: 
Springer. | 
MR 610799 | 
Zbl 0467.46020[9] 
TERENZI P. (
1979) — 
A complement to Krein-Milman-Rutman theorem, with applications. «
Ist. Lombardo (Rend. Sc.)», A 
113, 341-353. | 
MR 622113 | 
Zbl 0465.46005