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SEZIONE III 

(Botanica, zoologia, fisiologia e patologia) 

Fisiologia. — Variances in spectral analysis of membrane noise W. 
Nota di FRANCESCO ANDRIETTI e CARLA CANEGALLO, presentata (**) 
dal Corrisp. V. CAPRARO. 

RIASSUNTO. — Le fluttuazioni di conduttanza di un modello di canale del potas
sio di una fibra muscolare che segue una cinetica di Hodgkin e Huxley sono state ana
lizzate attraverso l'analisi spettrale indiretta. Sono state confrontate due diverse stime 
della densità spettrale è le loro rispettive varianze: quella della prima stima considerata 
è già nota, mentre quella della seconda stima è stata ricavata da noi nelle medesime ipo
tesi (distribuzione normale). I risultati teorici sono stati confrontati con quelli ottenuti 
mediante simulazione numerica del processo stazionario in questione. Sono state svi
luppate alcune considerazioni sul significato del nostro lavoro per quanto riguarda Tana-
lisi del rumore di membrana: il miglior uso delle stime spettrali, sia dirette che indirette, 
la lunghezza delle sequenze dei segnali di entrata, Putilizzazione di « finestre » di vario 
genere. 

INTRODUCTION 

Spectral analysis, as well as other kinds of statistical analyses of membrane 
noise, have been widely used in the past to obtain information about some 
aspects of biological membranes, as for example an estimate of the number of 
ionic channels. Spectral analysis has been mainly aoplied to artificial mem
branes, neuromuscular junctions, nervous and muscular fibers (a review of 
this subject has been given by Neher and Stevens, [1]). It has been performed 
by means of analogue or digital procedures. 

The present paper is concerned with this second method and more speci
fically with the method of decreasing the variance of computed spectra of con
ductance fluctuations. It does not deal with the different disturbances that 
arise from the use of amplifiers, data processing, thermal noise and the 1 / / com
ponent associated with the leak ionic pathway (see, for example, Stevens, [2]; 
Conti, De Felice and Wanke, [3]). Instead what has been considered is a model 
of potassium ionic channel of muscular fibre, even if the results we have ob-

(*) Lavoro eseguito nel Dipartimento di Fisiologia e Biochimica generali dell'Uni
versità degli studi di Milano, via Celoria, 26. 

(**) Nella seduta del 14 aprile 1984. 
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tain ed may be also used in the analysis of other ionic currents for the similarity 
in the shape of their power spectra ([3], [4], [5]). 

The theory and the numerical methods we have used are to a great extent 
standard in the current literature. Our work consists mainly of their applica
tion to a well known stochastic model of ionic current fluctuations, in order 
to improve its spectral analysis. With regard to the variance of a particular 
estimate of noise spectrum, S2 (/) ( s e e further), we have obtained some results 
that seem to be original. 

THE MODEL 

Following the well known Hodgkin and Huxley model [6], we assume 
that the potassium channel permeability depends on the presence of four 
statistically independent sub-units. Each of them exists in an excited or in 
a non-excited state with probabilities p1 and p0 respectively. When all four 
sub-units of the channel are in the excited state the channel is open and its 
conductance is g. Otherwise it is closed and its conductance is zero. As 
long as we are interested in the statistical aspects of spectral analysis we will 
not consider other possible schemes of ionic conductance, as that given by Hill 
and Chen [7] and Chen and Hill [8] for multi-state channels. 

In steady-state conditions p0 and px are time-independent and pd = p/(a -f-
+ .P)., px = a/(a + (3), where a and (3 are experimentally determined by fitting 
the voltage-clamp potassium current to that predicted by the Hodgkin and 
Huxley kinetics. Let us now indicate with P01 the probability of finding a 
channel closed at time t0 and open at time t0 + At and with P n that of finding 
a channel open at time t0 and open at time tQ-\- At. In steady-state conditions 
the process is stationary and P01 and P n will depend only on the value of At. 
It will be 

P01(AO + Pn(AO = P 1 = A 4 

where i*x is the probability of finding the channel in an open state. Since 
P u (At) —p^p*^ (At), where p^ (At) is the conditional probability that one 
sub-unit be in an excited state at time At provided that it is in an excited state 
at time 0, one has 

Fm(At)=pl-plptll(At). 

From the Bayes' formula we have the conditional probability that a channel 
is open at time t provided that it is closed at time 0 

. P01(AO pl-ptp^iM) 
P 1 / . ( A 0 = - p - = — r = r s — 

and px\x (At) is given by the Hodgkin and Huxley equation [6] 

M <A<) = — + (1 - — ) exp ( - — J 
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The conditional probability P0/x (At) is 

P 0 / i (Ai) .= l - P l / l ( A O = l - i > î / 1 ( A * ) . 

In our simulation we have used a value of a = 0.05 msec-1, (3 = 0.01 msec~J. 
These are the rounded values experimentally found in our laboratory (Dr. Peres, 
personal communication) for the semi-tendinous muscle of Rana Esculenta at 
a membrane potential of — 20 mV and they are not far from those given in 
the literature for the same potential and temperature (about 3 °C) of similar 
fibres (Adrian, Chandler and Hodgkin, [9]). 

In order to avoid aliasing effects in the use of fast Fourier transform algo
rithms we have taken a sampling interval A* = 0.4 fd — 4 msec (Bendat and 
Piersol, [10], p. 321), where fd = 100 Hz is the cut-off frequency. This is 
because the range of interest of spectral analysis of conductance fluctuations, as 
appears from the current literature, lies approximately between 0 and 100 Hz. 
The input was generated according to the value of P3/0 (At) and PQ^ (At) of the 
model and was represented by 2N points spaced by At. N ranged between 7 
and 9. The upper limit was due to the limited storage capacity of our micro
computer. The output was represented by 2 N points spaced by 1/(2N At) in 
the frequency domain. However our figures will show only a 32 points output 
from 0 to 60.5 Hz. 

The spectral analysis was performed on the zero mean random variable 
x(t)==S(t)—S^i- According to our model the autocovariance function of 
x (t) is 

R (r) = E [* (t)x(t+\r !)] =g> P, P l / t (r) - £ 2 P*. 

Putting P ^ (r) =p*i1 (r) one finds after some straightforward calculations 

R (r) =§2 PÎ £ ( • ) Pi"' (1 - PiV e^P i-ïïh) 
j = i \J J 

where y — l/(a + P) • 

The power spectrum is 

oo 

2 7/7 

+ (2 nfflj)* 
S (/) = j R (r) exp ( - 2 „ijr) dr =g* P* £ ( ?

4) P ^ (1 - P.)» r 

The power spectrum of potassium conductance fluctuations has been used 
for different purposes. One of them is that of determining the number of ionic 
channels. In fact if n is the number of channels present in a given area of the 
membrane and if the activities of single channels are statistically independent, 
then the total power spectrum due to the contribution of all channels is 
Stot ( / ) = w S ( / ) . As a value of ng may be experimentally determined by a 
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measure of the total conductance, fitting the results of the spectral analysis to 
Stot ( / ) will give an estimate of n and g. 

Spectral analysis has been used also to see if the kinetics of a single potas
sium or sodium channel is that effectively predicted by the Hodgkin and Huxley 
model for the average kinetics of many channels, as we have assumed in our 
analysis ([1], [11]). 

Given that the numerical value of g does not affect the statistical properties 
of the results, in our computations we have taken g = 1. 

INDIRECT SPECTRAL ANALYSIS 

We shall consider two different estimates of the autocovariance function 

X — | r | 

Mr^O/T) J* *(*)*(*+ \r |) àt 

R2(r) = (l/T) jx(t)x(t + \r\)dt. 

0 

The corresponding spectral estimates will be 

T 

S X ( / ) = J M r ) e x p ( - i 2 7u/r)dr 

- T 

T 

S2 ( / ) = f Ra (r) exp (— i 2 izfr) dr . 

- T 

The variance of spectral estimates in general is unknown. But in case 
of Normal processes one has ([12], p. 415) 

Var [S, ( / ) ] = (1 - T » ) / 1 S ( * ) s i n * T ( / ~ * ) s m u T ( / + * ) ^ 
J Tz(f-x) n(f+x) 

\.—oo 

f s i n . T (f + y) smnT {f-y) dy + 

J n(f + y) *('f—y) 
—oo 

oo oo -^ 

+ f S (,) ^JILSIZA dx fs (y) ^^Sl± 
sin* nT (f + y) dy\ 
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This result may be simplified for Normal processes whose spectra are 
approximately constant around the value of / , since the term S (/) may be taken 
outside the integral. In fact from Jenkins and Watts' formula (A9.1.16) [12], 
letting fx =f2=f, one has 

Var [ S,(/) ] « S-(/) J S h ^ Ì ^ / + 1 w . xx. . , j ^ 2izTf 

this result is exact for Normal white noise processes. 

Fig. 1. - (•) Average values of 80 com
puted spectral estimates S t (/) for N = 7 ; 
(n) standard deviations of (•); the con
tinuous line represents S ( / ) . The va
lues at the left of the ordinate axis repre
sent the values corresponding to 0 Hz. 

Fig. 2. - As fig. 1 for N = 9. 

From Andrietti [13] the variance of S2 ( / ) yields 

* sin2 2 TZ sT 
V a r [ S s ( / ) ] = ( 2 / T « ) . 

4-Tt2*2 

sin2 7r ( /— g)T fsin227i:sT 

J f a / , x Q / , Sin 2 7T ( / + g) T 

J T=(f+g) 

2*(f—g)TA , f s i n 2 2 7 L s T , / •_ . , , 0 . , s in 2 2^( /—g)T . 

n(f~g) J 4TT: 2 S 2 J T?(f—gY 
—00 —oo J 

For random processes whose spectra are approximately constant around / 
the term S (/) may be taken outside the integral and for the limit case 
/ i = / 2 —/ , one obtains [13] 

(2) Var[S2(/)]]^S2(/)jS Ì i;4^y+2J. 
[ In if ) 
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This result is exact for Normal white noise processes. It shows that the 
variance of S2 (/) h larger than that of Si (f) contrary to what could be conjectur
ed on the basis that a greater number of signals should improve the variance 
([14], p. 67). 

Fig. 3. - (.) Average values of 80 com
puted spectral estimates Sa ( / ) for 
N = 7; (•) standard deviations of (•); 
the lower continuous line represents 

S ( / ) and the upper one )'T S ( / ) . 

Fig. 4. - As fig. 3 for N = 9. 

In any case (1) and (2) show that when the value of T is large the standard 
deviations of Si ( / ) and S2 ( / ) , for spectra approximately constant around/, 
become 

(3) t Var [ax (/)] « S ( /) 

(4) Var[â,(/)]*y2S(/). 

The trigonometric terms in the right hand side of (1) and (2) give rise to 
some damped oscillations of the variances around the value given by (3) and (4). 
These oscillations f o r - / = 2 are less than 16% for (1) and 8% for (2) for N = 7 
and decrease w h e n / a n d N increase. In figs. 1-4 are shown the average values 
of 80 spectra calculated with the indirect method for N =7 - , N = 9, together 
with their standard deviations. One may see that the standard deviations are 
well represented by (3) and (4). The higher values for / = 0 are probably 
due to the trigonometric terms in (1) and (2). 
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WINDOWS 

We will consider the spectral estimates given by 

Si ( / ) = J Ri (r) wx (r) exp (— i 2 T T » dr 

S2 ( / ) = % (r) wl (r) exp (— £ 2 TU./T) dr 

where &?z (r) is a lag window, with wz (r) = 0 for r > M. It may be shown chat 
for Normal processes whose spectra are approximately constant over the width 
of the lag window, when M < T, the standard deviation of $L (/) may be ap
proximated (12, p. 418) 

M 

(5) Var [Sx ( / ) ] ^ i ^ Q | wf (u) du \ 

1/2 

-M 

Andrietti [13] has shown that the same formula holds for S2 ( / ) and in this 
case the result does not require M < T. 

In figs. 5 and 6 one may see the decrease of the standard deviations when 
boxcar windows are used. We observe that what is important is the relative 

Freeueney (Hz) 

Fig. 5. - Standard deviations of 80 com
puted spectral estimates S2 ( / ) with box
car windows: (o) N• = 9, M = 64 At; 
(D) N = 8, M = 32 At; ( + ) N = 9, M 
= 16 At . The upper continuous line re
presents S (/) ; the intermediate line repre
sents the predicted standard deviation of 
(o) and (D); the lower line the predicted 

standard deviation of ( + ). 

Fig. 6. - (.) Average values of 80 com
puted spectral estimates S2 ( / ) with a 
boxcar window, N = 9, M = 16 At; 

(n) standard deviation of (•)• 

18. — RENDICONTI 1984, vol. LXXVI, fase. 4. 
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: A-3 

Fig. 7. - Theoretical biased spectra (ac
cording to (6)) for N = 7 and boxcar 
windows: (•) M = 128 Ai; ( + ) M == 
16 At; (o) M = 8 A t. The continuous 

line represents S ( / ) . 

Fig. 8. - Theoretical biased spectra (ac
cording to (6)) for N = 9 and boxcar 
windows: ( + ) M = 1.6 At; (o) M = 8 At, 

The continuous line presents S .(/). 

energy of the window, i.e. the ratio between the window area and the record 
time length, so that approximately the same results are obtained when both M 
and T are halved. It is also apparent that the variance decrease is rather well 
predicted by (5) and is about the same for Sj ( / ) or S2 ( / ) . In fig. 6 the average 
values of 80 spectra are also shown. One sees that they can be fitted by a much 
smoother line that those of figs. 1-4. 

To what extent can the window width be reduced ? It may be shown 
that, making the base width of the lag window narrower, the variance of the 
estimated spectrum decreases and at the same time its bias, i.e. the difference 
between the expected value of the spectral estimate and S (/), increases [12], 
p. 246). It will be 

M 

(6) 

(7) 

EtSxC/)] 
T 

R (r) wl (r) exp (— i 2 nfr) âr 

-M 

M 

E [ S2 ( / ) ] = f R (r) tot (r) exp ( - i 2 TZ fr) àr . 

-M 

The bias of S, ( / ) is larger than that of S3 ( / ) and E [Sx ( / ) ] -> E [Sa ( f)] 
when T —> oo. When wt (r) = 1 one obtains the bias for a boxcar window 
and if moreover M is replaced by T one has the bias for the case in which no 
windows are used. 

We may try to find the maximum boxcar window width for which the bias 
is not too high. In figs. 7 and 8 the biased spectra are represented according 
to the discrete formulation of (6). It is apparent that changing from N = 7 
to N — 9 does not greatly influence the results. This is due to the fact that 
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Fig. 9. - Effect of an algebraic window 
wi th S = 1, N = 7, M = 16 àt on the 
average values of 80 computed spectral 
estimates Sx ( / ) (•), on their s tandard 
deviations ( • ) and on the corresponding 
theoretical biased spect rum ( + ). Stan
dard deviation of a boxcar window of 
the same w i d t h (S3). T h e lower conti
nuous l ine represents the predic ted value 
of ( • ) ; the upper l ine represents S ( / ) . 

Fig. 10. - Effect of an algebraic window 
wi th 8 = 2, N = 7, M = 16 At. on the 
average values of 80 computed spectral 
•estimates"Sj ( ' /) ( . ) , on their s tandard de
viation ( • ) and on the corresponding, 
theoretical biased spec t rum ( + ). S tand
ard deviation of the same algebraic win
dow for the estimate S 2 ( / ) (31). T h e 
lower cont inuous line represents the p r e 
dicted value of ( • ) a n d (53). T h e u p 

per l ine represents S ( / ) . 

Fig . 11. - ( . ) , ( • ) As fig. 9 for a diffe
rent t ra in of i npu t signals; (53) s tandard 
deviation calculated from the values of 
80 spectral estimates 3d (/ .), computed 
th rough the direct method, wi th an 
« equivalent » window (see text). T h e 

cont inuous l ine represents S ( / ) . 

Fig . 12. - S tandard deviation for one 
channel (33) and for 100 channels ( • ) 
calculated from the values of 80 compu
ted spectral estimates S ^ / ) wi th a box
car window, N = 7, M-=^ 16 At. T h e 

cont inuos line represents S ( / ) . 

18*. — RENDICONTI 1984, vol. LXXVI, fase. 4. 
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the term (T — | r |)/T is very close to 1 for | r \ < M. Moreover M ' = 16 At 
seems to be a limit value under which the biased spectrum becomes very distant 
from the unbiased one. 

Our considerations have been confirmed with other kinds of windows. 
Fig. 9 represents the results obtained with a window 

«*(«) = ( l - | r | / M ) * 

with 8 = 1. One sees that now the decrease of the standard deviations is higher 
than in the case of boxcar windows. The computed average spectrum is much 
smoother and closely follows the biased spectrum given by (6). In fig. 10 the 
case for 8 = 2 is shown, together with the standard deviation found for S2 ( / ) . 
One sees that a larger value of S (and so a decrease of the relative energy of the 
window) decreases the standard deviation, making the average computed spectra 
still smoother, and at the same time increases the bias, as we should expect. In 
any case algebraic windows always show minor standard deviations and higher 
bias than boxcar windows of the same width. 

DIRECT SPECTRAL ANALYSIS 

When the spectrum estimate is performed by means of the direct 
method, i.e. 

T 

S„(/) = (l/T) x (t) exp (— i 2 TC/7) dt 

and no windows are used, it is easy to show that S^ (/) = Si ( / ) ([14], p. 77). 
In fact 

T T 

S, ( / ) = ( 1 ,T) j j x (t) x (v) exp ( - * 2 TC/ (* — »)) àt dv 

0 0 

T çT-\r\ ^ 

= (1 /T) | exp (— i 2 izfr) I I x (v) x (v + \r |) dv I dr 

-T ^ o J 

T 

= ÌR1(r)txp{—i2nJr)dr = S1U)' 

Instead when a boxcar window is used in the direct case, its effect will be 
only that of decreasing the number of available data, i.e. of changing N. When 
other data windows are used, one obtains different results. We do not know 
of any explicit expression for the variance in this case, when a window wd (u) 
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is applied to the data to be processed. In fig. 11 the use of a window in both 
the direct and the indirect method is shown. For the indirect method an alge
braic window with 8 = 1, M = 16 At has been used. In the direct case we 
used a window « equivalent » to the preceding one, i.e. a window giving the 
same bias in the direct method of the algebraic window in the indirect one ([14], 
p. 96). We compared also the effect in direct and indirect method of the 
same window of the cosine family, largely used in direct spectral analysis ([10], 
p. 325; [15]). 

Our results, not shown here, showed no improvement in the average com
puted spectra. 

DISCUSSION 

We wish to develop here some considerations on the practical use of what 
we have seen above. 

When a sequence of data has to be processed, it may be useful to divide 
the whole sequence into shorter ones in order to obtain better results. We may 
distinguish between two different cases: 

1) the case in which no lag windows are used. In this situation, as 
we have seen, direct and indirect spectral analyses are equivalent, so that the 
first method should be preferred, as the computation time is about three times 
shorter. We have also seen that the variance of the spectra does not depend 
on the record length. So, the better results, for that which concerns the va
riance, are obtained with the maximum number of short sequences of signals, 
for the purpose of averaging on a greater number of spectral estimates. Of 
course a lower limit to the signal train length will oe given by frequency reso
lution and bias requirement. We found that below the minimum length of 
N = 7, the biased spectrum becomes very different from the unbiased one. 

2) The case in which lag windows and the indirect method are used. 

In this situation one has a decrease of spectral variance. The same results 
would be obtained by averaging on the greater number of values obtained from 
a larger number of shorter signals trains. In this case the processing of longer 
sequences has to be pi eferred in order to improve frequency spectral resolution. 
In principle, in this way the bias should also be improved, but as long as M <̂  T 
the bias depends practically on M and not on T, as we saw above 4. 

For what concerns which spectral estimate should be preferred, gx ( / ) or 
g2 ( / ) , we see no reason in the use of g2 ( / ) when the analysis is digitally perform
ed. When lag windows are used, the variance of g2 ( / ) is the same of that of g, ( / ) , 
and the improvement of the bias is too low to justify the use of g2 ( / ) . We 
recall that for the computation of g2 ( / ) we are not allowed to use fast Fourier 
transforms in convolutions and this fact enoimously increases the computation 
time required for the autocovariance function estimate when N is large. Instead, 
the estimate g2 ( / ) may become of interest in analogue data analysis procedures 
(see, for example, [10], p. 282). 
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As we have seen, windows in indirect spectral analysis should be used 
when the problem to reduce the variance of spectral estimates is important. 
No systematical attempt has been made to determine the « best » window for 
what concerns the variance and the bias of on statistical model. We think it 
should be determined according to the experimental situation and to the par
ticular aim of the research. For example, when spectral analysis is used to 
determine the number of ionic channels we could take into account the bias 
making use of (6) and (7). 

For what concerns the use of windows in direct spectral analysis, we con
sidered only a few cases in which we found no improvement of the results. 

A final point we want to examine is the fact that we have always considered 
the behaviour of a single channel. In fig. 12 are shown the results obtained 
with N = 7 and a 16 point boxcar window for a single channel and 100 inde
pendent channels. In the second case the computed average spectra are divided 
by 100. Similar results have been obtained both without windows and with 
other kinds of windows. The main effect of considering many independent 
channels seems to be that of a multiplicative constant. This is also what we 
should expect to find on a theoretical basis. In the case of many channels, 
the sum of many independent open-close processes should only be more « Nor
mal » than a single one. 

Things would be different if the activities of single channels were not inde
pendent. In this case we would find a higher value of the total power estimated 
spectrum. 

The use of a single channel, instead of many, as one generally does in this 
kind of modelling, has clearly the advantage of drastically reducing the time 
of computation. 
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